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Abstract, Many sensor fusion systems combine redundant inputs to in-
crease information refiability. In spite of this, few studies show how to
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choose redundant sensors for these systems. We find sensor configura-
tions that minimize system cost while ensuring system dependability.
Dependability is the generic term for system reliability and availability.
Given many types of sensors, all fulfilling system operational require-
ments, but with ditferent dependabllity and per item cost, heuristic search
methods are used to find minimum cost configurations. Our main contri-
butlons are deriving the optimization problem, showing the search can
be limited to a multidimensional surface, deriving & fitness funiction, and
providing an efficient algorithm for computing dependability bounds. Two
heuristics, genetic algorithms and simulated annealing, are proposed as
methods. Experimental results show cost savings of up to 20% com-
pared to systems with only one component type. © 1998 Society of Photo-
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1 Introduction

Sensor integration increases the ability of systems to inter-
act with their environment by combining readings from in-
dependent physical sensors.”? - Highly redundant sensing
systems are a major area of sensor integration research.
Applications for highly redundant sensors include autono-
mous land vehicles,! manufacturing systems,2 missile de-
fense systems,3 nuclear power plant regulators.,2 global po-
sitioning systerns,3 and remote sensing applications."2
Existing battlefield analysis systems handie up to 100,000

| reports-a-minute from 156 separate sensor.platforms cover-

The approach we propose requires standardized sensors
that enable redundancy using heterogeneous components,
Good engineering practice dictates the use of off-the-shelf
components to reduce systern comglexity and cost,® espe-
cially for redundant sensor systems.” The National Institute
of Standards and Technology has produced a draft standard
for sensor interfaces' enabling heterogeneous components
to be used redundantly without impacting software com-
plexity. For avionics and sensors applications the use of
heterogeneous components is innately beneficial to system
dependability.!!

ing over 800 km®

Highly redundant sensor systems have these advantages:
reduced cost since multiple inaccurate sensors can cost less
than a few accurate sensors,” increased sensor reliabiﬁty,s'6
ind increased semsor efficiency.’ Several methods have
been attempted for designing systems that satisfy the need
for reliable systems that interact with the real world. Meth-
ods not based on redundancy are particularly sensitive to

. Sensor noise.” Success in designing these systems depends
on both the correct fusion of sensor readings and making
the ““choice of best possible trade-off at least cost.” 3 This

_ Paper discusses a strategy for making these trade-offs that

" Minimizes system cost.

The methodology derived here finds combinations of
Commercjal off-the-shelf (COTS) components that fulfill
dependability constraints while minimizing system cost.

¢ same methodology can minimize system weight for

Brospace applications. Alternatively, the dual problem of

nding the most reliable system within weight or cost con-

& 02INtS can be solved.
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2-—Problem Formulation-and Layout

The N-modular redundancy (NMR)} uses N independent
COMpOnEnts in parallel.'’> The results from the N compo-
nents can be compared to ensure correctness. ! Distributed
systems must infer correct information in the presence of
failures in a relatively large number of modules, this is
known as the Byzantine generals problem.“ Algorithms
exist that make a unanimous decision in the presence of
arbitrary errors as long as fewer than one third of the pro-
cessors are faulty. For a full discussion refer to Ref, 15.
As noted in Section 1, the same problem exists for mul-
tisensor fusion applications that glean the best interpreta-

-tion from noisy sensor data of limited resolution, Figure 1

illustrates a 1-D case for which these algorithms tolerate
failures in up to one half of the sensors. Marzullo and
Chew'® expanded this approach to cover more than one
dimension and found that the number of faults that can be
tolerated depends on the number of dimensions used, '8!
The relationship between sensor fusion and the Byzantine
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Fig. 1 These sensors function correctly if the data are within 0.5 of
the correct values.

generals problems is explained by Brooks and Iyengalr.lg'20

The sensor fusion and Byzantine agreement extensions to
NMR aid in the design of reliable systems and guarantee
that a system will function correctly as long as more than
N/2D (in the case of D-dimensional sensor fusion) of the N
components function correctly.

Sensor selection to simultaneously improve reliability
and resolve resource allocation conmflicts is an open
quesl‘.i(m.6 An approach using system cost and sensor accu-
racy was given in Ref. 5. This paper presents a more gen-
eral methodology based on system dependability (reliability
or availability) instead of sensor accuracy. We assume
component failure is statistically independent. The depend-
ability statistics for components can be based on several

~ statistical-models.

For sensor systems, dependability models must reflect

. the exact problem being considered; if the design is con-

cemned primarily with mechanical failure then mean time to
failure and mean time to repair are adequate. Since sensor

"information must be timely, mechanical degradation, which

affects performance, is equivalent to failure. To consider
transient and intermittent errors the distributions of fault
arrival and duration must be known, Our examples use ex-
ponential distributions for component failure and repair for

tions are derived for systems where over half of the com-

Faflure rates 50% or All
mars of the components
components have
have feiled failed
2+ 1)A
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working has laled componants
wark Repalr rates

System has failed if Nf2 or mose
components hava failed

Fig. 2 Markov chain for a system that can tolerate failure of up to
half of its components.

siders these results to justify utilizing genetic algorithms
and simulated annealing to obtain minimal cost configura-
tions for problems of more dimensions. It also presents

results from all three approaches on examples of more than _ .

five dimensions. Section 8 discusses the results of this pa-
per and proposes future extensions to our research.

3 Dependability Measures

Dependability is the standard terrih used in a generic sense
to address either system reliability or availability. Reliabil-
ity refers to the probability that a system is functional at a
given point in time, called the mission time T'. It is used for
single mission systems where repair is unfeasible. Avail-
ability is the percentage of time a system will be functional
when the system reaches a steady state, Availability is used
for systems that can be maintained and repaired.

To compute system reliability, we either consider a Mar-
kov model or perform a combinatorial analysis. Figure 2
shows a Markov chain used to model system dependability.
For reliability evaluation, the repair rate g is zero. The
system contains N identical components that fail indepen-
dently. Availability provides a dependability measure for
systems where maintenance is possible. For availability, the
repair rate g is nonzero, The formulas derived here for

ponents must be functional, this can be changed by replac-
ing N/2 as necessary.

Dependability is a generic term for both reliability and
availability. When a system with strict dependability re-
quirements is being designed, a choice must be made be-
tween different component types that could be used redun-
dantly to mask errors. Given a choice between various
modules, with different dependability parameters and costs,
we search for the configuration that meets dependability
requirements with the Jowest system cost. Cost may be cur-
rency, weight, power consumption, bandwidth require-
ments, etc., as appropriate for the system being designed,

The paper is organized as follows. Section 3 explains the
computations necessary for determining system depend-
ability measurements and presents the necessary equations.
It also provides a framework for formalizing the optimiza-
tion problem in Section 4. Section 5 illustrates the problem
geometrically and presents a methodology that obtains the
configuration. Results, generated on problems of less than
five dimensions, are presented in Section 6. Section 7 con-
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tractability-and-consistency with reliability literature. EQUa- __ ¢yctem reliabitity are also_valid for system availability, ex-

cept that component reliability r(#) must be replaced by

component availability a(f) (Ref. 21).

The first approach to solving this problem uses the Mar-
kov model directly, assumes all failure rates are constant,
derives a set of differential equations directly from the dia-
gram in Figure 2, and solves the equations using Laplace
transforms or numerically. Another approach performs a
combinatorial analysis and assumes each component has an
identical probability of success r(r). If all components
have the constant failure rate A, r(#)=e~™. The probabil-

ity of failure, g(¢)=1~r(¢). The assumption of statistical

independence uses Bernoulli’s law, which gives the prob-
ability of { out of N components working at time 1

N ;
( ,.)[r(rn'[q(rn”-‘. M

The reliability for the system is the summation of the terms
with { varying from N to {N/2}+ 1. Both approaches derive
the same answer. :




e
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br

The combinatorial approach is independent of the distri-
bution defined by the reliability function r(r) and easier to
apply when more than one type of component is used (a
situation encountered in sensor fusion). When a system has
two different types of sensors and N1(Ny) is the number of
components of type 1(2), the total number of sensors is N
=N,+N,. The Markov chain model would require of the
order of 3(N—2) states, and be computationally expensive
as the number of component types increases. The deriva-
tion using Bernoulli’s law can be cover the new configura-
tion with little additional computation.

Consider the cases where no components of type 1 have
failed, one component of type 1 has failed, etc., up fo the
sase where all N, components of type 1 have failed, These
cases are disjoint and the sum of their probabilities is one.2
» It partitions the sample space giving an expression for sys-
tem reliability at time 7 in terms of r;(f) the reliability of
component type 1, and ry(7) the reliability of component

type 2

o

W

Procedure: Rel_eval

Pr (f)

Procedure:
Step la. Let s[L1)=q,

s[Lk]=s{1,k—1]+ g,
s[k,k]=s[k—1k—11xq;

Step 2. Solve:

~ N

s[m,k]=s[m,k—1]+s{m— Lk—1]*xq,

= S [ (M k Nk
R(=2 | g I -n(0]"

Ny

[(I:{nz){"z(f)]m[l—Tz(f)]Nz_m})-
@

m=|N2)+1—k

This approach can be extended to more than two compo-
nent types. Evaluating a combination of J different types of
components requires J levels of summations in the format
of Eq. (2). The following algorithm®? is equivalent to Eq.

(2) and reduces the number of multiplications drastically. -

For sensor fusion applications the constant m is equal to

UN=1)/2).

Input: component failure probabilities ¢1.92:.-.qN
Output: reliability of system composed of the N components

b. For k=(2..N) and m=(2,..k—1), obtain

k—1
Pr{f )“g;,, (—l)k"m(m_l)s[k,N].

Rel_cval calculates the nested summations efficiently by
creating a tableau of intermediate terms as shown in Figure
3, Should the number of components of a single type be
large, say Ny, the algorithm may be made more efficient by
making the first N, elements of the tableau all elements of
type T,. Column N, can be approximated using Stirling’s
approximation or calculated directly as:

Lé S(E»N1)=(Iil)qﬂ- 3)

Figure 3 shows the elements of the tableau that must be
- computed in this case. If Stirling’s approximation is used
% approximately N;+8(N—m) multiplications and 3(N
& Tm) logs must be calculated to compute all elements
& s(i,N,). f N /2<m, as is the case for the sensor fusion
3 Droblem, in the worst case calculating s(i,N,) directly te-
gy Quires approximately Ny+m{(4Ny—m)2+N—m multipli-

3

cations. The original algorithm takes (N1)(N—m)/2 multi-
plications to compute the colurn; O[(N=N)(N—m)]
multiplications are required to compute the rest of the tab-
leau. :

4 Optimization Model

Section 3 provides an efficient algorithm to determine the
dependability of a given system configuration. in this sec-
tion, we derive an optimization model for finding the con-
figuration that fulfills the dependability criteria with mini-
mum cost. Components have either a known component

- reliability function or a known component availability.

Each component type is characterized by its dependability
statistics and positive per item cost.

Given J different component types that meet a system’s
requirements. Finding the combination of components that
meets dependability requirements with the lowest fotal cost,
requires considering each combination of the J component
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Fig. 3 if there are a large number of components of ane type only
the nonshaded elements need be computed.

types as a point in a discrete J-dimensional space. This
point is described by the J-dimensional vector
(x{.Xy,....x;), where each position in the vector corre-
sponds to the number of components of a given type in-
cluded in the system. If the choice is between three types of
components, the combination of 2 components of type 1,
25 components of type 2, and none of type 3 corresponds to
point (2, 25, 0). An extension of Eq. (2) to three dimensions
determines if a given point in the J-dimensional space cor-
responds to a system that fulfills the reliability requirement
or not,

Since each component has a known per item cost, if
component type i has cost ¢;, the cost of point (2, 25, 0) is
2(e)+25(c;) +0(cs). The question remains as to how to
find the combination that minimizes the fitness function:

J

2 ;. (4)

i=
This is a combijnatorial optimization problem. Unfortu-

p_pgrammmg ot integer programming. These techniques
are inappropriate since Eq. 2(52) which defines dependability
requirements, is nonlinear.® Another approach is needed.

The region with valid solutions is the feasible set in the
J-dimensional space.? We determine a surface that divides
points in the feasible set or with proper subsets in the fea-
sible set, from the rest of the J-dimensional space. We use
this surface to restrict our search for the optimal configura-
tion to a small portion of the configurations in the feasible
set.

When N/2 failures can be tolerated, adding fewer than
two components to configuration C giving -configuration
€', may cause the dependability of C’ to be less than the
dependability of C. Note that C' may contain more com-
ponents which may fail than C but the same number of
failures can be tolerated in both C and C'. For this reason,
the region above the surface may contain configurations
that do not meet dependability requirements. However, all
points above the surface either fulfill the dependability re-
quirement or contain proper subsets that do.

508 Opfical Engineering, Vol 37 No. 2, February 1998

temma 1. An optimal answer must lie on the surface
dividing the J-dimensional problem space into two regions:
one region containing points satisfying the dependability
requirenents or with proper subsets satisfying the depend.
ability requiremnent and one region confaining points that
neither satisfy the dependability requirements nor contain
subsets that satisfy the dependability requirements.

Proof.  Three distinct types of points exist: points be-
neath the surface in the region that does not satisfy reliabil-
ity constraints, points on the surface, and points above the
surface.

Points below the surface can be dismissed trivially since
they do not satisfy the dependability constraints. Any point
K above the surface that satisfies dependability constraints
can be dismissed since there is at least one other point L
that satisfies the dependability constraints with at least one
component of at least one type fewer. Point L has a lower
cost than point K, since all costs are positive. Similarly,
any point K above the surface that does not satisfy depend- ﬁé
ability constraints can be dismissed trivially. Thus the mini- i
mum cost point being sought must be located on the
J-dimensional surface defining the set of points that satisfy i
the reliability requirements, or contain subsets that do.

" I, ‘.’I . L. . ".‘ . i
il anns bl b B S -, R A

RO T LT
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5 Exhaustive Search on the Multidimensional
Surface

First, we present a method that finds the minimal cost so-
lution by considering all points on the surface defined in
Section 3. For decisions involving a choice between a small
number of component types, this search will be reasonable,
If the choice is among a large number of types, the time
required will be prohibitive, and the heuristics presented in
Section 7 should be considered. To search the surface for
the minimum cost point we consider the surface’s exact
shape. We start with the 1-D case and then extend it to 7
higher dimensions. :

Component dependability is constrained to a range of 4
values between 0 and 1. A value of 1 (0) indicates a com-

PRI PR R URaUL IR S S

S

_system tends toward.zero, remains about 1/2, or asymptoti-
cally approaches 1 with the increase in the number of com-
ponents comprising the system, provided the dependability
measure of the components is less than 1/2, exactly 1/2, or
greater than 1/2, respectively. It, thus, depicts the
*‘S-shaped property’’ described in Ref. 27. If components
are perfect, system reliability will be 1 no matter how many
components are used. Fault masking systems are feasible
for components with dependability values between 50 and
100%. Only dependability vatues within this range should
be considered. This paper assumes components fit this re-
quirement., Figure 4 shows the problem space when only
one type of component is considered. The feasible set that
fulfills the dependability requirements, or contains a subset
of components that fulfills the requirements, is a half line
and the bounding surface is a point N,

As long as the system dependability constraints is less
than 1 and individual component dependability is greater
than 1/2, the fact that system dependability asymptotically
approaches 1 as the number of redundant components in-

e | e

il o

it S . .
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Fig. 4 Half space salisfying constraints and bounding surface in the
1-D case.

creases proves that number of components N exists that
fulfills system dependability constraints. For one dimen-
sion, N is all the search needs to find.

Figure 5 shows the feasible set and bounding surface for
the 2-D case. The x(y) axis is the number of components
of type 1 (2) in the system configuration. Ignoring the pos-
sible exception of a few points in the neighborhood of
N{(N;) due to border effects, the feasible set includes all
points greater than Ny(N,) on the axis. Although part of
the bounding surface, they are not considered by the search
since they are of higher cost than configurations (N,0) and
(O,N,), respectively. The portion of the surface the algo-
rithm searches is between (N1,0) and (0,N,). The shape of
the bounding curve is defined by Eq. (2). In general in-
creasing the value of the second dimension variable will
tend to decrease the value nceded for the first dimension
variable, but the curve is not smooth. Adding one module
to the second dimension may lower the reliability of the
system and increase the number of first dimession compo-
nents required to meet dependability requirements. The ex-
perimental results presented in Section 6 confirm this, as do
the results presented in Ref, 28,

Extending the search from two to three to J dimensions

- —— s straightferward; - L represents the number of fypes.of. - .
| - compopents being considered. As an example, Figure 6

considers a 3-D case and the arrows show the path taken by
the search. The search starts with configuration (¥,,0,0),
which consists only of components of type 1. The proce-

(0N ) cenfigurations
with > No components
of fype £ are valid

{0,Ny ) configurations
with » M4 componenis
¥ of type 1 are valid

(0.0.N3}

~
—_—— P ©
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—
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Nf.o,o) (x4:3.0)

{ON5.0)

Fig. 6 Path !aken-by an exhaustive search In three dimensions.

dure finds the components of type 1 needed if one compo-
nent of type 2 is present giving configuration (x;,1,0).
Components of type 2 are added one at a time until con-
figuration {0,N,,0) is reached. After (0,N;,0), the proce-
dure finds the number of type 1 components needed if none
of type 2 and one of type 3 are present, i.e., configuration

(x1,0,1). As before, components of type 2 are added one at '

a time until configuration (0,x,,1) is reached. The diagram
shows this procedure adding components of type 3 until the
final configuration (0,0,N3) is reached.

When J is greater than 3, the planes defining a 4-D
subspace can be traversed in order, similarly the 4-D sub-
spaces defining a 5-D subspace can be traversed, etc., until
the entire J-dimensional space has been traversed.

6 Experimental Results o-f the Search Algorithm

The search algorithm from Section 5 has been implemented
and tested on several sample data sets of fewer than five
dimensions. This section discusses representative examples
and observations. We use an inflated availability constraint
for the first example to illustrate the shape of the
J-dimensional surface. All other examples use the avail-
ability constraint 0.995. Failure and repair rates are given in

1). The solo configuration describes the number of compo-
nents of one single type needed to fulfill the availability
constraint. Solo cost refers to the cost of that configuration.
All components are comparable in that the solo configura-
tions do not vary greatly in cost. It is interesting to note that
the minimum cost solution does not contain any compo-
nents of type 1 although its solo configuration is the least
expensive. The minimum cost configuration represents a
savings of 6.5% compared to the lowest cost solo configu-
ration.

Figures 7 and 8 represent the surface on which the mini-
mal solution is located, Figure 7 depicts the number of

~ ‘components of type 1 needed for various combinations of

components of types 2 and 3. Figure 8 shows the cost of
each configuration, again in terms of the number of com-
ponents of types 2 and 3. Note the shape of the surface is
basically the same. Macroscopically the surface is repre-
sented by a series of jagged lines. The jaggedness of the
lines are caused by two factors: the problem space is dis-
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Brooks, lyengar, and Ral: Comparison of genetic algorithms . . .

Table 1 Parameters and costs for Example 1.

Parameters Component 1 Compoenent 2 Compaonent 3
Failure rate 0.0001 0.01 0.005
Repalr rate 0.5 0.1 0.3

Unit cost 36.57 - 525 12.35.
Solo configuration 5 35 15

Solo cost 182.85 183.75 185.25
Minimum configuration 0 2 i3
Minimum cost 171.05

crete, and tolerating failures of less than 50% of the com-
ponents means two components must be added to increase
system reliability. Adding one component increases the
number of items that may fail without increasing the num-
ber of faitures that can be tolerated; this effect was also
noted in Ref. 28. This jaggedness indicates that the search
space has many local minima and search methods that de-
pend only on information in the neighborhood of a point
will be unsuited to solving this problem, which indicates
that genetic algorithms may be an appropriate metaheuristic
for solving this problem.

Table 2 illustrates the parameters and results for two
examples. Examples 2 and 3 are identical except that the
unit prices of components 3 and 4 have each been modified
by $0.01. Note that this minor change has radically altered
the minimum cost configuration. This further iHustrates the
jagged nature of the surface. '

7 Metaheuristic Methods

As mentioned in Section 4, the algorithm presented in Sec-
tion 5 has an exponential growth rate. Moreover, the jag-
gedness of the search space makes minimal cost configura-
tion detection unsuitable for many search methods, such as
hill-climbing, gradient descent, etc. that make decisions
based only on information local to the point being consid-
ered. These methods stop at a locally optimal solution and

LT R IR 2 1 - -

Component 1L

—— Plot

Fig. 7 Number of components of type 1 needed versus number of
components of types 2 and 3 needed to fulfilt constraints. This
shows the shape of the surface containing the optimal configuration.
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Fig. 8 Cost of resulting system versus number of components of
types 2 and 3 needed to fulfill constraints.

will generally be unable to find the globally optimum solu-
tion. However, methods such as genetic algorithms,” simu-
lated anmealing,’ neural networks,”® or tabu search’® are
less sensitive to the effects of local minima and should be
considered as alternative approaches. This section finds
minimal cost configurations by utilizing genetic algorithms:
and simulated annealing. We observe that they provide
good, if not always optimal, combinations in less than ex-
ponential time for typical problems of medium'size. Both
genetic algorithms and simulated annealing use metaphors
from other branches of science to solve combinatorial op-
timization problems. These methodologies apply stochastic
processes in the search for optimal solutions, and have been

contain local minima 2

7.1  Genetic Algorithms
Genetic algorithms, first developed in the mid-1960s, at-

tempt to apply a Darwinian concept of survival of the fittest

to optimization problems. Possible solutions to a problem
are represented in a mathematical structure referred to as 2
chromosome and a diverse set of chromosomes are grouped
into a population. The relative quality of these answers are
determined using a fitness function, and this quality is used
to determine whether or not the chromosores will be used
in producing the next generation of chromosomes. The next
generation is generaily formed via the processes of cross-
over, combining elements of two chromosomes from the
gene pool, and mutation, randomly altering one or more

elements of a chromosome (refer to Ref. 32 for details and

Ref. 34 for a survey of more recent developments). An in
depth comparison of genetic algorithms versus exhaustive
search for another reliability design problem can be found

in Ref. 35. Several different reproduction strategies are at- -
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Table 2 Parameters and costs for Examples 2 and 3:

our implementation takes multiple genes from both chro-

~'— Triosores s process i called mutnipointcrossover—TFhe—

remaining 5% of the next generations gene pool consist of
random mutations, This strategy has been found to be

|

Algorithm: genetic_search
Inputs: J, d;, for 1=i=J, ¢; for 1=i{=/J, and D.

Parameters Component 1 Component 2 Component3 Component 4
Failure rate 0.04 0.04 0.03 0.01
Repair rate 0.24 0,19 0.13 0.04
= Unit cost {Example 2) 15.00 10.45 10.45 8.76
- Unit cost (Example 3) 15.00 10.45 10.44 8.77
;% Solo configuration 9 13 13 15
Solo cost (Example 2) . 135,00 135.85 135.85 131,40
Solo cost (Examnple 3} 135.00 135.85 1356.72 131.55
& Minimum configuration (Example 2) 0 8 ] 7
Minimum configuration (Example 3) 2 1 8 o
Minimum cost (Example 2} 124.02
- Minimum cost {(Example 3} 124.04
tempted in the literature. We apply an elifist strategy, given stable since the quality of the best answers will be mono-
% in Ref. 29 and also discussed in Ref. 20, to the configura- tonically increasing. The large number of mutations is use-
tion problem, ful since it provides a steady stream of new data to the
The solution space to this optimization problem consists algorithm; this guards against the algorithm converging
of component configurations. For this reason, the chromo- prematurely to a suboptimal answer, This mutation strategy
somes used by the genetic algorithm consist of a vector that is different from strategies used in other reproduction
describes a possible system configuration. Position i of the schemes where mutations are done at random throughout
vector, where i is between 1 and J, is an integer ranging the entire population, Mutations applied to members of the
from O to N; giving the number of components of type i in elite 20% could make them less optimal, More information
the system. The number of elements of type 1 is calcnlated on the difference between elitist and classical reproduction
by the program and set to the smallest number of compo- strategies can be found in"Refs. 29, 36, and 37.
nents of type 1 and needed to fulfill the system dependabil- The algorithm used here starts by initializing the. gene
ity requirements. Using component 1 as .a-dependent vari- pool using a set of reasonable answers. These answers in-
able forces all chromosomes to be points on the surface that clude all single component type configurations, and many
contains the optimal answer. The fitness function used in configurations containing a small number of components.
determining the relative quality of chromosomes is the cost The reproduction scheme and the genetic algorithm deter-
of the configuration described by the chromosome. mines the following generations, The algorithm was per-
We used an elitist reproduction strategy consisting of formed for 500 iterations and the best solution present in
three major steps. First, the best 20% of the gene pool is the gene pool at that point was taken to be the configuration
copied intact into the gene pool for the next generation. proposed by the genetic algorithm. There are no determin-
Second, 75% of the next peneration is determined by ran- istic means of finding the values for many parameters of &
domly mixing elements from two chromosomes chosen at genetic algorithm: such as gene pool size, crossover rate,
| ___ random from the gene pool of the current generation; since mutation rate, and stopping criteria, these values must gen-

érally ‘be determined experimentatly. “We used-agenetic—-- - - - -
— -algorithm- as proposed by Holland™Z. with the elitist repro- ..

duction strategy advocated in Ref. 29 and modified it to suit
our application. The algorithm is summarized as follows:

Outputs: Vector L of length J with the minimum cost dependable configuration.

Procedure:

Step 1: Compute N;, 1=i=/. Note, N; is the number of components of type i needed to meet
requirement D when no components of another type are used.

Step 2: Sort component types in increasing order of the value N;c;.

Step 3: Generate initial gene pool GP of 150 integer vectors of length J. The size,
150, of GP was detexrmined experimentally. GP containg all solo configurations, and
combinations of small numbers of component types.

Step 4: for k=1 to 500 begin /* 500 determined experimentally, */

/* as are percentages for elite, */

/% crossover and mutation */
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for h=1 to 150 begin

x;=number of components of type 1 needed for configuration
GP[h] to fulfill dependability requirement D.
cost[h}=cost of configuration GP[h] modifled so that

position 1 is x;.
end
for h=1 to 30 begin

end
for h=31 to 142 begin

/% keep the eliteé x/
GP_next{h]=the h’th least expensive configuration in GP.

/xnew combinations from crossover */

GP_next[k]=randomly combine 2 configurations chosen at random

from GP.
end

for h=143 to 150 begin /*mutants */

GP_next{h]=randomly create configurations.

end

GP=GP_next

-end o ) ,
Step 5: for h=1 to 150 begin

x;=number of components of type 1 needed for configuration
GP[h] to fulfill dependability requirement D,
cost[h)=cost of configuration GP[h] modified so that

position 1 is xq.
end

L=configuration in GP with the lowest cost

output L

Genetic algorithms are not sensitive to the presence of local
minima since they work on a large number of points in the
problem space simultaneously. By comparing many pos-
sible solutions they achieve what Holland has termed im-
plicit parallelism, which increases the speed of their search
for an optimal solution®? Discussion of the advantages
‘gained by using genetic algorithms instead of exhaustive
search for a different optimization problem based on sys-

tem reliability can be found in Ref. 38. The elitist repro-

duction strategy used here is useful in that it guarantees the

Note as well that as the number of components increases
the computational complexity of this approach changes
very little. Only step 1, the length of the vectors and the
calculation required to determine the fitness function are
affected. This means that increasing the number of compo-
nent types will not strongly affect the run time of this heu-
ristic.

7.2 Simulated Annealing

Simulated annealing attempts to find optimal answers (o a
problenr in a manner analogous to the formation of erystals
in cooling solids. A material heated beyond a certain point
will become fluid, if the fluid is cooled slowly the material
will form crystals and revert to a minimal energy state.
Refer to Ref, 33 for a full description of simulated anneal-
ing and a discussion of its scientific basis. -

The strategy of the algorithm is again based on a fitness
Function comparing the relative merit of various points in
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the problem space. As before, the problem space is de-
scribed by vectors corresponding to possible system con-
figurations, and the fitness function is the cost of the con-
figuration described by the vector. The algorithm starts at a
point in the search space. From the algorithm’s current po-
sition a neighboring point is chosen at random, The cost
difference between the new point and the current point is
calculated. This difference is used together with the current

position being accepted. This probability is given by a Bolt-

~quality of the answers found “will inerease monotonically:- —- zinann_ distibution exp(= ACT7). The Process CORGinues ~ ,

with the same temperature r for either a given number of
iterations, or until a given number of positions have been
occupied, at which time the value 7is decreased. The tem-
perature decreases until no transitions are possible, so the
system remains frozen in one position. This occurs only
when AC is positive for all neighboring points, therefore
the position must be alocal minimum and may be the glo-
‘bal minimum.*®

The simulated annealing method used in our research is
based on the algorithm given in Refs. 33 and 39. The algo-
rithm has been modified so that the parameters being opti-
mized and the fitness function are appropriate for our ap-
plication, and a cooling schedule has been found which
allows the algorithm to converge to a reasonable solution.

Pseudocode of the simulated annealing algorithm is
summarized as

system temperature to calculate the probability of the new '
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Algorithm: simulated_annealing
Inputs: J, d; for 1=si=/, ¢; for 1=si<J, and D,
Outputs: Vector L of length J with the minimum cost dependable configuration.

Procedure: 7 _
Step 1: Compute N;, 1=j=J. Note, N; is the number of components of

type i needed to meet requirement D when no components of another

type are used.
Step 2: Sort component types in increasing order of the value N;*¢;.

Step 3: CC=(N0,..,0) /% Initial position in search space */
=10 /% Initial temperature */
Step 4: CC_mod=1
stepd_iter=0
While (CC_mod not=0) and (step4 _iter <maximum number for step 4)
do
begin
cC_mod=0
inner_loop_iter=0
While (CC_mod<maximum number of rransitions} and
(inner_loop_iter<maximmn number for inner loop) do
begin )
x;=number of components of type 1 needed to fulfill the
dependability constraint for CC
CC=CC with first position x;
new_CC=random modification of CC
x;=number of components of type 1 needed to fulfill the
dependability constraint for new_CC
new_CC=new_CC with first position x;

i

. __CC=new _CC

AC=cost{CC)—cost{new_CC)

if (AC<0) then
begin
CC=new_CC

CC_mod=CC_mod+1
end

else with probability according to Boltzmann distribution

using AC and 7do
begin '

I & QJ;?EEQC—_WOE_{ L

end
inner_loop _iter=inner_loop_iter+ 1

end
7=0.9%7
steph_iter=steph_iter+t 1
end

Step 5: Output CC as the minimal cost configuration.

Just as many different reproduction schemes exist for
genetic algorithms, several possible cooling schedules exist
for simulated annealing. A cooling schedule is defined by
the initial temperature, the number of iterations performed
at each temperature, the number of position modifications
allowed at a given temperature and the rate of decrease of
the temperature. The answers found by the algorithm are
directly dependent on the cooling schedule and no definite

—

rules exist for defining the schedule.**? The cooling sched-

 ule used in this application started with a temperature of 1.0

which decreased at a rate of 10%. The total number of
iterations at a given temperature was limited to 100/, and
the maximum number of positions visited at a given tem-
perature was limited to 107. The cooling schedule is im-
portant in that it determines the rate of convergence of the
algorithm as well as the quality of the results obtained. The
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Table 3 Parameters and costs for Exampls 4.

Comp. 1 Comp.2 Comp.3 Comp.4- Comp.5 Comp.& Comp.7 Comp.8

Failure rate 0.03 0.05 0.05 0.01 0.08 0.03 0.04 0.01
Repalr rate .45 0.85 0.3 0.05 0.45 0.97 0.3 0.1
Unit cost 22.06 25,00 . 12.25 10 9.50 36.7 15.50 15.10
Solo config. 5 5 e T 1 11 3 7 7
Solo cost 110300 125.00 110.25 110.00 104.50 110.10 108.50 105,70
Min. config. 0 1 g 0 0 0 0 4
Min. cost 85.40 '
GA config. 0 1 0 ¢ 0 o 0 4
GA cost 85.40

SA contig. 0 1 0 0 0 0 ] 4
SA cost 85.40

complexity of this approach could potentially increase in
the order of J2. This increase is significantly less than the
exponential growth of the exhaustive search, but greater
than the increase for the genetic search.

The starting configuration is taken as the lowest cost
solo configuration. New configurations are generated ran-
domly from the current configuration. In choosing a new
configuration each position in the vector had a 40% chance
of being modified. Those positions chosen for modification
had a 25% chance of being incremented, a 25% chance of
being decremented, and a 50% chance of staying the same.

7.3 Experimental Resulls

Examples 4 and 5 (see Tables 3 and 4) are-test cases of
multiple dimensions which have been used to test the ex=
haustive search, simulated annealing (SA), and genetic al-
gorithms (GAs) approaches to this problem. They consist
of eight and eleven dimensions respectively. The number of
dimensions was kept relatively small to allow the use of the
exhaustive search algorithm for verifying the global mini-
mum.

For both cases, SA succeeded in finding the global mini-

its answer within minutes instead of hours. While these

results are positive, it should be noted that this algorithm is
not guaranteed to provide the globally optimal answer.

The GA approach found the global minimum only for
Example 4, however its solution for Example 5 is very
close to the global minimum, This algorithm was more
computationally intensive than the SA algorithm, and there
is no clear criteria for stopping the GA., This approach does
have two positive characteristics: it is less computationally
expensive than the exhaustive search method, and the elite
reproduction scheme gorarantees that the cost of the best
answers will be monotonically decreasing.

Figure 9 shows the run times of the three approaches for
problems consisting of seven, eight and nine components.
The graph shows the number of second required versus the
number of components considered. All tests were run on a
60 MHz Pentium system. The exponential growth rate of
exhaustive search makes it impractical for problems of
large size. SA was the fastest approach in our tests running
in minutes instead of hours. The growth rate for GAs was
fairly low, however, indicating that it may be reasonable
for large problems.

system configurations made up of individual components

Table 4 Parameters and costs for Example 5.

c.1 G2 c.3 C.4 C.5 C.6 c.7 C.8 c.g c. 10 c.11

Fallure rate 0.05 0.10 0.15 0.3 0.01 0.20 0.03 0.13 0.01 0.09 0.12
Repair rate 0.30 0.39 0.50 0,95 0.30 0.97 0.15 0.59 " 0.07 0.42 ¢.62
Unit cost 17.80 10.00 8.00 7.00 53.00 12.¢0 14.00 10,75 18.50 11.00 12.60
Solo contig. 9 15 19 21 3 13 11 i3 9 13 H
Solo cost 160.20 150.00 152,00 147.00 159.00 156.00 154.00 139.76 166.50 143.00 138.60
Min. config. 0 vj 0 0 0 0 0 1 0 4 6
Min. cost 130.35

GA config. 0 0 0 0 0 o 0 o 0 5 6
GA cost 130.80

SA config. o 0 0 ¢ 0 0 0 1 ¢ 4 6
SA cost 130.35
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Fig. 9 Run times of exhaustive search, SA and GAs for problems
with 7, 8 and 8 component typss.

and relying on fault masking. They verify that the system
will fulfill dependability constraints as long as component
failures are statistically independent. Examples were given
to illustrate how this methodology can be put into practice
and result in cost savings.

Note that Example 4 has provided savings of approxi-
mately 20% compared to the lowest cost solo configuration.
This is a sizable improvement. The dual problem of the
problem studied here, maximizing system reliability within
fixed cost or weight bounds, is equally important and can
easily be solved by switching the cost function and con-
straint functions proposed. For large scale applications us-
ing redundant sensors improvement of 10% or more in
weight or doliars results in considerable savings.

For small scale problems the exhaustive search method
is preferable, since it is guaranteed to find the lowest cost
combination of systems components. This paper has shown
that both GAs and SA are viable approaches to finding
optimal, or near optimal configurations for large scale prob-
lems. In these tests, SA performed remarkably well and
appears to be the methodology best suited to solving the
problem. A reasonable approach would be to use GAs as a
secondary approach to verify the results found by the simu-
lated annealing algorithm. '

Tt should be noted, however, that GAs and SA both have
drawbacks. Both are relatively insensitive to the presence
of local minima in the search space. This insensitivity is
partially obtained by the creative application of nondeter-

§ .. answers found by the algorithms will vary from case to

case, It is impossible to know how tong theaigorithms will——— — gefising i robories systems,* in Highly Rednndant Sersing #rRobots = ~ - — — - -

need to find the global minima, if they ever find the global
minima.

GAs are sensitive to the reproduction strategy chosen,
including mutation rates and how elements are chosen for
crossover. SA is sensitive to the cooling schedule, which
includes the initial temperature and the rate of decrease of
temperature. The quality of the answers found and the
amount of time needed to find reasonable answers are di-
Tectly dependent on the reproduction strategy of a GA and
the cooling schedule of an SA approach. Both the repro-
duction strategy and cooling schedule must be found
through a process of trial and error, For neither is there a
Buaraniee that a particular strategy or schedule will be ap-
Propriate for all cases encountered. In spite of this, our
fesearch has shown that both can be applied effectively as
heuristics for solving this problem.

It is interesting to note that SA appears to work better
than GAs on this problem. This supports a supposition

= Made by Hooker™® that SA works best on problem spaces
o
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containing narrow and deep basins of attraction such as the
one shown in Figure 8.

For many applications, engineers should loosen the as-
sumptions used in defining these methods. One assumption
taken is that the sensors share the same coverage of the area
being sensed. This will most often not be the case. Con-
figurations can be derived that cover a given region but
where individual sensors cover a small portion of the re-
gion, by changing the constraints used fo reflect this re-

quirement.

It has been assumed that component failures are statisti-
cally independent. Sensors of the same type will be sensi-
tive to the same type of interference, where sensors of an-

‘other type may not be sensitive to that particular noise. This

factor would tend to favor building systems using many
different types of components, and the cost function can be
modified to refiect this.

Another factor to be considered is that real time systems
have specific time constraints. For this reason, it would
often be preferable to have systerns using a smaller number
of components to reduce the amount of bandwidth needed
for reading and comparing the inputs from the individual
components. This can be implemented as either a constraint
or a part of the cost function.
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