
REAL-TIME COMPUTING: MEETING THE CLIENT'S DEMAND FOR DATA
ACCESS VIA THE INTERNET

S. Sitharama Iyengar and Brian E. Pangburn

Abstract. With the tremendous growth
of the Internet, many companies are feeling
pressure from their clients to provide real-
time access to data. A flashy, static web site
is no longer enough to satisfy those who
demand 24-hour access to dynamic data
including billing, personal profiles, and
financial statements. We will give an
overview of the process for putting data
online - from analyzing existing
shortcomings to methods for Internet
database connectivity and developing online
calculation engines. Finally, we will
discuss some trends in data mining and
present ideas for developing a distributed
data mining system.

1. Existing Data Formats. Before
considering new applications for corporate
data, an analysis of current in-house
technology is crucial. Many companies do
not utilize a structured database. Data files
may be in independent ASCII or binary files
that can only be utilized by the software that
created them. Others may be in
spreadsheets or outdated database systems
that are not suitable for new technology. In
recent years, database systems have been
developed that are both powerful and robust.
They provide a layer of abstraction that
allows for separate management of
applications and data. These systems are
usually multi-user, secure, scalable, and
better suited for recovery. Modern
databases also open the door to cutting edge
technology in data analysis via data mining,
and data communications via Internet
connectivity .

Once a decision has been made to
upgrade database technology, it is important
to restructure data. A careful analysis will

reveal existing redundancies and potential
for optimization. A good design will take
full advantage of relationships that exist
among data and allow for growth. For some
introductory material on database design,
see Date [1].

2. Data Security. When organizing and
structuring data into a modern database,
security must be considered. Not only is it
important to protect a company's internal
data, but also to protect the privacy of it's
clients. For a small database that will only
be used by a select few, it may be enough to
add a simple password to the login interface.
However, for most enterprises, user-level
security and encryption are the minimum.
User-level security refers to creating a list of
users each of whom has a password which
allows access to appropriate components of
the database. The actions that a given user
can perform on his/her "view" of the
database can also be restricted. For
example, a systems administrator would
have permission to perform any action on
any component of the system whereas new
data entry personnel might only have
permission to read/write certain tables
containing less sensitive data. Encryption
adds an additional level of security by
making data unreadable to applications
outside of the database system.

When considering sharing a database
outside of a closed network such as on the
Internet, other security factors must be
considered. First of all, the local network
must be protected. Any form of open
connection to the Internet is subject to attach
by hackers. For example, InsWeb, a
company serving the insurance industry,
estimates that they receive "at least five or

six serious break-in attempts per day." [2]
Firewalls can be implemented to protect a
local network by limiting the access
privileges of outsiders. The second
consideration is the security of data passed
outside of the firewall. Any data sent from
the client to a server including password
information is subject to interception.
Additionally, data returned by the server to a
client is also at risk. Secure Hypertext
Transfer Protocol (https), digital signatures,
and encryption keys can all be used to
combat piracy of data en route. Another
option is to employ a third party service to
handle access to corporate networks and
sensitive data. With security requirements
ever changing, an outside specialist may be
the safest solution.

3. Client Views and Date Sensitivity.
Once general security is in place, the
appropriateness of data should be evaluated.
It should go without saying that a client
should only be allowed access to their own
data, but there is also a subjective aspect.
Sending a client too much information can
be dangerous. For example, a set of internal
calculation codes are likely to raise more
questions than they answer. Data should be
presented in a clear and concise manner so
that a client is only presented with what they
are seeking. By carefully selecting what
data is sent, less bandwidth will be
consumed and response times should be
faster. As much filtering as possible should
be done on the server-side.

A lot of data is also date-sensitive.
Especially when dealing with financial
statements or billing, software systems may
only update a database daily, weekly,
monthly, or even less frequently. Clients
should probably not be given access to data
while it is being calculated or updated.
Reports should always be clear about the
effective date for a given report. If real-time

calculations are being done, there must be
verification that a request date is valid.

4. Client and Server Platform
Considerations. To allow as many users as
possible to retrieve their information online,
client and server platforms must be
addressed. A server should be able to
handle requests from Macintosh, UNIX, and
Windows based web browsers at a bare
minimum. One of the best ways to
accomplish this is by sending all requests
and returning all data in HTML format. For
example, a client might enter name,
password, and request information from
their browser. This data can be embedded in
HTML statements and passed as a request to
the server. The server then interprets the
HTML, processes the request, and returns
data in HTML format to the client. On the
client-side, access speed is also a major
consideration. While it is tempting to put
together a fancy interface, clients with low
connection speeds may quickly become
frustrated waiting for a site to load.

On the server-side, the two major
considerations are functionality and
capacity. If using a third party to host the
web site, the outside server must be
compatible with the database system. Often
a special type of web server is required
along with software to communicate with
the data files. Not only must the server be
compatible, but also the third party must
allow for the installation of the associated
software. If the site hosting is to be done in-
house, then security and bandwidth become
the major considerations. Once security is
addressed, adequate communication
hardware is needed to handle web traffic.
Even web sites published on closed
networks or "intranets" can face enormous
traffic. For example, Chrysler Corp.
estimates that their employee Intranet
receives between 800,000 and 1 million hits
each week. [3] "Popular WWW sites such

as Lycos and AltaVista receive three to ten
million accesses a day." [4] If a site is
performing dynamic activities including
database transactions, it will require even
more bandwidth and can quickly become
bogged down by high traffic.

5. Methods of Database Connectivity.
The next step in making a database
accessible via the Internet is to connect it to
a web site. Database connectivity refers to
the ability to connect a database to some
outside source. Traditionally, this has meant
an interface with some programming
language. Connecting a database to a
remote web browser adds a new level of
complexity.

To address the issue of database
connectivity as a whole, Microsoft has
developed the Universal Data Access
(UDA) model. This model provides a
system of software components that allow
platform independent communications
among relational databases, spreadsheets,
and indexed-sequential files. Instead of
trying to create the ultimate database format
to consolidate every possible data type,
UDA attempts to create the ultimate
interface to unify communication among
different data formats. The model consists
of a system level interface called OLE DB
and an application level interface called
ADO. A programming language can
interface at either level, but ADO provides a
higher level of abstraction for database
functionality.

The Remote Data Service (RDS)
component of UDA specifically addresses
remote data access via the Internet. It
supports OLE DB and ADO while allowing
for inconsistent or even absent server
connections. By shifting a set of data and
operations to the client machine,
manipulations can be done without a
persistent connection. Data can later be

uploaded to the server for resynchronization.
[5]

For the task of deploying an existing
database on the Internet, Microsoft also
introduced Active Server Pages (ASP)
technology, which is a combination of an
ActiveX scripting language and their Active
Data Objects (ADO) model. While limiting
the choice for a web server, ASP can use
pure HTML to communicate with the client
– solving the problem of compatibility with
the client’s web browser. ASP also helps to
ease the burden of multiple connections.
The server can be instructed to maintain a
minimum number of connections to the
database and then use those connections as
requests are made. This helps to minimize
the additional overhead required to initiate
and terminate connections. Additionally,
ASP works well with the platform
independent JAVA. Some of the server
constraints can even be overcome thanks to
the development of third party ASP clones
for other platforms. [6]

Various plug-ins and controls are
available that can simplify many
connectivity issues, but most are platform
dependant and some require additional
licensing. There are also other methods
including CGI scripting that can be used for
database communication, but they are more
limited in function.

6. Software Development. Once
database, security, platform, and
connectivity issues have been addressed,
web site software development can be
considered. The web interface can make the
difference as to whether or not a system
provides “value added” to the client. A
standard, user-friendly screen is a must and
it has to be obvious what the user needs to
do with little or no instruction. There is a lot
of web site development software on the
market now and the biggest problem again
becomes platform or browser dependency.

Based on the nature of the data, a
decision must be made regarding whether a
static or dynamic data file will be used, and
if any calculations are to be done on the
client or server-side. A static data file is a
snapshot of a database that is available for
browsing. This is effective for data that
does not change very often. The client can
view, but not modify data and the entire data
file must be re-posted when it is modified on
the server-side.

The location for a calculation engine is
somewhat subjective and several factors
must be considered. If calculations are to be
done on the client machine, the user must
either download the engine at runtime or
obtain the program through some other
means. Downloading at runtime insures that
the user has the latest version of the code,
but platform issues and download time can
be major obstacles. The following table lists
some of the issues to consider:

Factor Location of
Code

Very Large Calculation
Engine

Server

Platform Dependant Code Server
Aggregate Record

Calculations
Server

Large Input Set with Small
Output Set

Server

Small Input Set with Large
Output Set

Client

Small Output Set Either
Heavy Load on Server Client
Distributed Data Sets Client

Many Iterations / Scenarios Client

If calculations are going to be kept on
the server, the client-side user interface can
probably be written in HTML and a
scripting language such as CGI or VBScript.
However, if a full application with
calculations is going to be deployed on the
client's machine, software will need to be

written. Unless the client base is small and
there will be no cross-platforming, JAVA is
probably the best solution.

While requiring the developer to have
knowledge of object oriented programming,
JAVA can be used to develop both stand-
alone local applications and Internet applets
that are platform independent. JAVA code
is compiled into bytecode which can then be
downloaded to any machine with a JAVA
interpreter. Once loaded onto the user’s
machine, these applets are secure and
capable of database connectivity. Recently,
just-in-time compilers (JIT) have been
developed for some systems to compile
bytecode into native code after download for
faster execution. [7]

We will now look at a project currently
being developed which will allow client
companies to update their employees'
retirement contributions, and produce
participant benefit statements via the
Internet. This project stems from the long
turnaround times required to produce client
statements without an automated data feed.
Traditionally, statements have been
generated using the following process:

1. Client's payroll department sends
hardcopy of contribution information
to retirement plan Administrator

2. Administrator updates contribution
and investment performance
information and produces benefit
statements

3. Statements are mailed back to client
and distributed to employees

The process usually takes close to two
weeks and puts a tremendous burden on the
Administrator's data entry personnel at the
end of each quarter.

The system being developed will
significantly reduce the burden on data entry
personnel and increase turn around time.
Using a JAVA applet, the client will be able
to:

1. Download the JAVA applet and/or
any updates

2. Establish a secure connection to the
Administrator's database

3. Enter the desired reporting period
4. Update the contribution information

for each employee while the starting
balances and investment information
for the desired reporting period are
downloaded as a background process

5. Calculate the new account balances
and create the associated benefit
statements

Using this approach, the Administrator
remains in full control of the investment
performance data while the burden of data
entry distributed among all of the clients.
The client controls the timing of the
statements and distribution to the
participants. Since the payout liability falls
on the client for these particular types of
retirement plans, there is little risk of
tampering with contribution amounts. All
statements would contain caveats and
regular audits of the contribution data would
be performed by the Administrator.

7. A Model for Distributed Data
Mining. In recent years data mining has
come to the forefront of database
technology. Moxon defines data mining as
"a set of techniques used in an automated
approach to exhaustively explore and bring
to the surface complex relationships in very
large datasets." [8] The basic idea is to
deploy a set of algorithms on a datafile and
let them analyze the data without user
intervention. This shifts the workload to the
computer and allows for a level of analysis
that would be impossible for a human. Data
mining can be applied to any field with a
significant bank of data to reveal patterns in
everything from weather to purchasing.

Data mining uses techniques including
neural nets, decision trees, genetic

algorithms, nearest neighbor, and rule
induction for data analysis. [9] The
traditional approach is to start with a large,
centralized data store or warehouse, set up
parameters for the desired type of analysis,
allow the calculation engine to analyze the
data, and then extract the results to a report.
Companies are relying on data mining more
and more due to the huge increases in stored
information. [8,9] With technology like
UDA emerging, and increases in distributed
data sources, the future of data mining may
shift to distributed analysis.

Not only could a single company with
distributed data reveal trends in their own
data, but also combine data from a wide
variety of outside sources for enhanced
modeling. Since a single data source may
be massive, there is no way that a client-side
analysis tool could download all the data for
local analysis. Instead, there would
probably be multiple levels of analysis and
sampling. For example, a request could be
sent to several server-side data mining
engines to return a particular set of
demographical correlations. These results
could then be merged and re-mined locally
to find trends across the different data
sources. Another approach would be to
bypass server-side mining and sample the
larger datasets so that all analysis could be
done locally on merged data subsets.

Today, some companies strip their data
files of proprietary or secure information
and sell them to solicitors or analysts. In the
near future, anyone on the Internet may be
able to pay for access time on web sites that
link to different data repositories, and utilize
local and remote mining tools to perform
research. As communication speeds
increase and data access evolves, distributed
data mining may become as simple as using
a search engine.

Conclusion. We have given a broad
overview of several areas related to putting

data online. There are many benefits to
structuring corporate data including
increased security and greater analytical
power. Both companies and clients can
benefit from real-time, remote data access.
Clients can even be enticed into sharing data
entry workloads. If filtered carefully,
sharing corporate data with those outside of
the existing client base may also prove
profitable as long as proprietary information
is protected.

REFERENCES

[1] Date, C. J. An Introduction to Database
Systems, 6th ed. Addison-Wesley
Publishing Company, Inc., Reading,
MA, 1995.

[2] West, Diane. Web Security: Still A
Wild And Woolly World. National
Underwriter (January 26, 1998), pp. 7,
10.

[3] Quinn, Richard D. Net gains keep firms
on pace with demand for self-service.
Employee Benefit News (February
1998), pp. 44-46.

[4] Andresen, D., Yang, T., and Ibarra, O.
Toward a Scalable Distributed WWW
Server on Workstation Clusters.
Journal of Parallel and Distributed
Computing, Academic Press, 1997.

[5] OLE DB/ADO: Making Universal Data
Access a Reality, Microsoft
Corporation, 1997. Accessible at
http://www.microsoft.com/data/ado/sig
mod98.htm.

[6] Litwin, Paul. Publishing Active Server
Pages. Smart Access (August 1997),
pp. 1, 3-8.

[7] Morgan, Bryan, et al. Visual J++ 1.1
UNLEASHED, 2nd ed. Sams.net
Publishing, Indianapolis, IN, 1997.

[8] Moxon, Bruce. Defining Data Mining.
DBMS Data Warehouse Supplement,
August 1996. Accessible at

http://www.dbmsmag.com/9608d53.ht
ml.

[9] An Introduction to Data Mining, Pilot
Software, Inc., 1997. Accessible at
http://www.pilotsw.com/dmpaper/dmin
dex.htm.

