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Abstract - A new computing paradigm which uti- 
lizes mobile agents t o  carry out collaborative target 
classification in distributed sensor networks is  pre- 
sented in this paper. Instead of each sensor sending 
local classification results t o  a processing center where 
the fusion process is taken place, a mobile agent is  dis- 
patched f rom the processing center and the fusion pro- 
cess is executed at each sensor node. The advantage 
of using mobile agent is that it achieves progressive 
accuracy and is task-adaptive. To improve the accu- 
racy of classification, we implement Behavior Knowl- 
edge Space method f o r  multi-modality jhsion. W e  also 
modified the classical k-nearest-neighbor method t o  be 
adaptive t o  collaborative classification in a distributed 
network of sensor nodes. Experimental results based 
o n  a field demo are presented at the end of the paper. 

Keywords: target classification, sensor fusion, multi- 
modality fusion, mobile agent, distributed sensor net- 
work. 

1 Introduction 
In recent years, distributed sensor networks (DSNs) 

have spurred great research interest due to the rela- 
tively low cost of sensors, the availability of high speed 
communication networks, and the increased computa- 
tional capability [l]. DSNs can be deployed in a wide 
variety of military and civilian applications, where 
multi-target detection, classification, and tracking are 
typical ones. 

The use of DSNs has many advantages over single 
sensor deployment structure, which can be addressed 
from four fundamental aspect: the redundancy, com- 
plementarity, timeliness and cost of the information 
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Redundancy: When each sensor in a sensor net- 
work captures the same features of an environment 
with different fidelity, they can provide redundant in- 
formation of the environment. The fusion among mul- 
tiple sensor information will reduce the overall uncer- 
tainty of the system and thus improve the accuracy. 
Furthermore, the use of DSNs can also avoid systems 
being vulnerable to a single component failure [3]. 

Complementarity: Complementary sensor net- 
works may give a representation of data over a large 
area, or provide several aspects of the same phe- 
nomenon that can be used together for studying one 
event which is otherwise impossible to perceive using 
individual sensor [2, 31. If the measured features are 
considered as dimensions of a feature space, then the 
sensor network provides complementary information 
when each sensor is only able to  provide a subset of 
the features, i.e., sensors do not depend on each other 
directly. 

Timeliness: By fusing the information from multi- 
ple sensors, it is possible to achieve higher processing 
speed. This is due to  either the actual speed of opera- 
tion of each sensor or the processing parallelism of the 
fusion algorithm [2]. 

Cost: The advance in sensor technology and MEMS 
fabrication allows better, cheaper, and smaller sensors 
to be used and has caused the use of large amount of 
sensors in a DSN economically feasible. 

Even though the deployment of DSNs has many 
advantages over traditional single sensor architecture, 
there are several technical challenges that must be 
overcome before DSNs can be used for today's increas- 
ingly complex information gathering tasks [4]. These 
tasks are usually time-critical, cover a large geograph- 
ical area, and require reliable delivery of accurate in- 
formation for their completion. Another important as- 
pect is the issue of energy consumption since the energy 
reserved at each sensor is limited and each operation of 
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sensors consumes certain amount of energy. Further- 
more, sensors in DSNs typically communicate through 
wireless network where the communication bandwidth 
is much lower than for wired communication while data 
volumes being transferred are much larger than single 
sensor deployment. Unreliable network connection and 
data faulty are also more possible since the environ- 
ment is more unreliable. All of these issues bring new 
challenges to the design of DSNs. 

In classical DSNs, it is assumed that all the local sen- 
sors communicate their data to a central processor that 
performs data processing tasks, called the process- 
ing element. This kind of structure is referred to  as 
the client/server model that supports many distributed 
systems, such as remote procedure calling, common 
object request broker architecture [4]. However, the 
client/server model has several drawbacks that has lim- 
ited its usage, including the heavy network traffic, the 
strong dependence on a healthy network connection, 
and its inflexibility in dealing with the environmental 
change [4]. 

In our previous paper [4], we proposed an improved 
DSN architecture using mobile agent which is referred 
to as mobile-agent-based DSN (MADSN). MADSN 
adopts a new computation paradigm that data stay at 
the local site, while the processing task (code) is moved 
to  the data sites. By transmitting the computation en- 
gine instead of data, MADSN offers several important 
benefits, including reduced network bandwidth, better 
network scalability, extendibility, and stability. 

In this paper, we develop a mobile-agent-based sen- 
sor fusion algorithm for collaborative target classifi- 
cation. Sec. 2 introduces the target classification algo- 
rithm used in each local node. Sec. 3 presents the algo- 
rithm design of multi-modality fusion between acoustic 
and seismic channels and its implementation by mobile 
agent among distributed sensor nodes. Sec. 4 provides 
the experimental results based on data collected in a 
field demo. 

Power spectral density (PSD) 

2 Target classification algorithm 

Wavelet analysis 

Target detection, classification, and tracking are all 
typical applications of DSNs. Our discussion in this 
section concentrates on ground vehicle classification 
which uses unattended ground sensors at the local site. 
Both the acoustic and seismic signals are commonly 
used in battlefield surveillance due to their simplic- 
ity and the easy deployment of microphones and geo- 
phones. On the other hand, they are also strongly non- 
stationary because of the interference by many factors 
such as the speed of the target, noise from various mov- 
ing parts and frictions, and environmental effects [5]. 
Therefore, it is crucial to extract representative and 
robust features in order to classify targets correctly. 

Feature vector (26 elements) , I 

I Feature nomalization, principal component analysis (PCA) I 
I 

Features for classification 

Figure 1: Block diagram of the feature extraction pro- 
cedure. 

The feature vectors include 26 elements that are de- 
rived from the power spectral density (PSD) and the 
wavelet coefficients of the time series data. PSD de- 
scribes the energy distribution of the signal in the fre- 
quency domain. We derive 4 elements of the feature 
vector by calculating the high-order shape statistics 
and another 4 elements by calculating the amplitude 
statistics of the PSD. These features provide statistical 
measurements of local spectral energy content over the 
signal bands. Shape statistics is defined as: 

1 .  N 
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where S = xzl C( i ) ,  C( i )  is the PSD magnitude for 
the ith frequency bin, and N is the number of the 
frequency bins. 

Amplitude statistics is defined as: 

- C(i )  
i=l 

N Amplitude: pamp - 

Stan. dev.: uamp = c ( C ( i )  - pamp)2 
i= 1 

The peak locations of the PSD represent dominant 
frequencies of the time series signal. They indicate the 
frequencies of the vibration of vehicles, and are suit- 
able features for representing and classifying different 
targets. In our approach, we choose the frequency lo- 
cations of the 3 highest peaks and their corresponding 
magnitudes as 6 elements of the feature vector. 

The other 12 elements of the feature vector are de- 
rived from the wavelet coefficients of the time series 
signal. Wavelet transform is a solid time-frequency do- 
main signal analysis method which is designed to  ana- 
lyze non-stationary signals. After the wavelet trans- 
formation using Daubchies wavelets as the mother 
wavelet, we can get totally four levels of wavelet co- 
efficients. The elements of the feature vector include 
the average, the standard derivation and the energy of 
these four levels of wavelet coefficients. 

2.2 Classifier design 
After feature extraction, an important step is to 

choose the classifier which will be used to categorize 
the target into specified classes based on the proper- 
ties of both the specific problem and the derived fea- 
ture vector. In this project, k-Nearest-Neighbor (kNN) 
algorithm is chosen as the classifier. The basic idea for 
kNN is to look into a neighborhood of the test data 
for k samples. If within that neighborhood, more sam- 
ples lie in class i than any other classes, we assign the 
unknown test as belonging to class i. 

~ 
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3 Fusion methods 
As larger amount of sensors are deployed to  form 

distributed sensor arrays, it is important to develop 
a robust and fault tolerant data fusion technique in 
order to handle uncertainty of sensor outputs. There 
are totally three levels of data fusion in our approach 
for target classification: 1) Temporal fusion of clas- 
sification results from 1-second data samples over a 
detection event; 2) multi-modality fusion of the classi- 
fication results from the acoustic and seismic signals; 
3) distributed sensor fusion. The hierarchical structure 
of these three levels of data fusion is shown in Figure 
2. 

Figure 2: The hierarchical structure of three levels of 
data fusion. 

3.1 Temporal fusion 
In the terminology of target detection and classifica- 

tion, the duration of time that the sensors can detect 
a target passing by is called an event. In this sense, 
the objective of temporal fusion is to fuse all the 1- 
second local classification results that are correspond- 
ing to one event in order to give the event classification 
result. Since the signals detected at different time can 
be considered as independent, majority voting is used 
to do the fusion. 

3.2 Multi-modality fusion between the 
acoustic and seismic channels 

Since both the acoustic and seismic signals captured 
at each sensor node give the information of the whole 
scenario of the targets, the classifiers using either the 
acoustic or seismic signal can be considered as being 
trained over the whole feature space, and are thereby 
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Table 1: A possible BKS look-up table. 

1 

considered as competitive rather than complementary, 
which is a typical case of classifier fusion technique. 
The classifiers can also be considered as independent 
without loss of generality since the signals are captured 
through independent devices. In this sense, we can im- 
plement some simple classifier fusion algorithm to per- 
form the multi-modality fusion on each sensor node in 
order to  improve the overall accuracy. We choose to  
use the Behavior-Knowledge Space (BKS) method [7] 
as a 2-class fusion algorithm that combines the classi- 
fication results from the acoustic and seismic signals. 

Suppose SI,. . . , SL are the crisp class labels assigned 
to z by classifiers D1, . . . , DL respectively. Then every 
possible combination of class labels is an index to a cell 
in a look-up table with each entry one of the following: 
a single class label which is the one that is most ofter 
encountered among all the training samples belonging 
to this cell; no label which means there are no training 
samples give the respective combination of class labels; 
or a set of tied class labels which is the case that 
more than one class have the same highest number 
of training samples in this cell. A 2-classifier fusion 
example using BKS algorithm is shown as follow. 

Example: Let the number of classes c = 3, the 
number of classifiers L = 2, and the number of testing 
samples N = 100. A possible BKS look-up table is 
displayed in Table 1 [7]. 

3.3 Distributed sensor fusion 
After carrying out both the temporal fusion and 

multi-modality fusion at the local site, it is very impor- 
tant to fuse the results from different sensor nodes in 
order to handle uncertainty and faulty sensor readout. 
This section fist reviews the original multi-resolution 
integration (MFU) algorithm proposed for DSNs. A 
modified MRI algorithm is then described in order to 
take advantage of the mobile agent to  implement MFU 
distributively and to  achieve better network scalability 
and fault tolerance. 

~ 
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Figure 3: The overlap function for a set of 7 sensors. 

3.3.1 Original MRI algorithm 
The original MRI algorithm was proposed by 

Prasad, Iyengar and Fkio in 1994 [8].  The basic idea 
consists of constructing a simple overlap function from 
the outputs of the sensors in a cluster and resolving this 
function at various successively h e r  scales of resolu- 
tion to  isolate the region over which the correct sensor 
lie [4, 51. Each sensor in a cluster measures the same 
parameters. It is possible that some of them are faulty. 
Hence it is desirable to make use of this redundancy of 
the readings in the cluster to obtain a correct estimate 
of the parameters being observed. 

Let sensors SI,. . . , SN feed into a fusion processor 
P. Let the abstract interval estimate of Sj be Ij  (1 5 
j 5 N )  which is a bounded and connected subset of 
the real number [aj ,  bj] .  The characteristic function xj 
of the j t h  sensor Sj is defined as: 

The overlap function of N sensors is defined as 
n(z) = xj(z). Figure 3 illustrates the overlap 
function for a set of 7 sensors. 

Multi-resolution analysis provides a hierarchical 
framework for interpreting the overlap function. Given 
a sequence of increasing resolutions, at each resolution, 
MFU picks the crest which is a region in the overlap 
function with the highest peak and the widest spread, 
and resolve only the crest in the next finer resolution 
level. 

N 

3.3.2 Mobile-agent-based collaborative sensor 
fusion 

In a distributed sensor network, since each sensor 
transfers its readout to  a central processing center 
where the fusion task is performed, with the increasing 
amount of sensors, the network traffic increases dra- 
matically. In order to handle this problem, mobile- 
agent-based fusion paradigm is used. 

In an MADSN, the mobile agents migrate among 
the sensor network and collect readouts. Each mobile 
agent carries a partially integrated overlap function 



which is accumulated into a final version at the process- 
ing element after all the mobile agents return. Since 
the carriage of partially integrated overlap function in 
its finest resolution counteracts the advantages of the 
mobile agent, the original MRI algorithm is modified 
so that MRI is applied before accumulating the over- 
lap function. We use a 1-D array, wz, to serve as an 
appropriate data structure to represent the partially 
integrated overlap function at a specific resolution re- 
quirement. The coarser the resolution, the smaller the 
data buffer. The implementation of the mobile-agent- 
based fusion with 3 sensors is illustrated in Figure 4. 

(a) Stage 1. (b) Stage 2. 

(c) Stage 3. (d) Stage 4. 

Figure 4: Mobile-agent-based multiple sensor fusion. 

Suppose there are totally 3 sensor nodes and the 
mobile agent starts from node 1, carrying the over- 
lap function of classification generated by node 1 to 
node 2 (Figure 4 (a)). With a combination of overlap 
functions CR1-and CR2, at node 2, the mobile agent 
can generate a partially integrated confidence range 
(CR12) as shown in Figure 4 (b). From node 2, the 
mobile agent continues its itinerary to node 3, carry- 
ing the partially integrated result (Figure 4 (c)). At 
node 3, using a combination of the partially integrated 
result (CR12) and the local overlap function of node 
3 (CR3), another partially integrated result (CR123) 
can be derived (Figure 4 (d)). If CR123 achieves the 
required accuracy, then the classification task can be 
terminated., Otherwise, the mobile agent needs to con- 
tinue its migration. The advantage of using mobile- 
agent-based paradigm is that it provides progressive 
accuracy. When the accuracy requirement has been 
reached, the mobile agent can return to the process- 
ing center immediately without finishing the scheduled 
route. 

4 Experiments and results 
In order to test the performance of the target clas- 

sification and fusion schemes described above, we use 
the data set provided by DARPA SensIT (Sensor In- 
formation Technology) program in a field demo (SI- 
TEX02) held at 29 Palms, California in' November, 
2001. The node positions in the distributed sensor 
network is shown in Figure 5. A subset of sensors 
are chosen. A training set and a test set are generated 
by dividing the whole data set into three partitions, 
two are used as the training set and the other one is 
the test set. 

Following the procedures discussed in Sections 2 and 
3, firstly, features are extracted from the signals cap- 
tured by the microphone and geophone on each local 
sensor. Local target classification is then performed. 
There are three levels of fusion in our scheme: tempo- 
ral fusion, multi-modality fusion, and distributed sen- 
sor fusion. 

In our experiment, signals from one event are gen- 
erated by one class of target, including AAV, Dragon 
Wagon (DW) and HMMWV. Each event is divided into 
about 10 1-second segments. The performance evalua- 
tion for the three types of targets are shown in Figure 
6. In each figure, the solid line indicates the classifi- 
cation accuracy using the acoustic signal and the dash 
line indicates the result using the seismic signal. The 
first data point along the z-axis is the average classifi- 
cation accuracy using 1-second segments. The second 
point indicates the accuracy after performing tempo- 
ral fusion over one event using majority voting. The 
third point shows the accuracy by performing multi- 
modality fusion to  combine the acoustic and seismic 
classification results using BKS. The last point is the 
accuracy using mobile-agent-based multi-sensor fusion 
in a cluster of 3 sensors. 

PAV DW HMMWV 
1 ,  1 ,  I 11 I 

1 808nllk/ 6 0 6  , ~1~ 
5 
l o 4  0 4  0 4  

0 2  0 2  0 2  

..$ 
1sec event a+s MADSN ISBC event at6 MADSN 1sec went ats MADSN 

Figure 6: Performance evaluation of different classifica- 
tion schemes for AAV, DW, and HMMWV. Solid line: 
acoustic signal; Dash line: seismic signal; lsec: aver- 
aged accuracy over one event using 1-second segments; 
event: temporal fusion result within one event; a+s: 
multi-modality fusion result; MADSN: multi-sensor fu- 
sion result using mobile agent. 

From Figure 6, we observe that, in general, the tem- 
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(a) Center (b) Emt-Wmt 

Figure 5: Node positions of SITEX02 field demo. 

poral fusion results are better than the 1-second clas- 
sification results, the multi-modality fusion results are 
better than the event fusion results, and the multi- 
sensor fusion results are better than the multi-modality 
fusion results. That is, the hierarchical fusion scheme 
improves the classification accuracy steadily. Even 
though sometimes either the acoustic signals or the 
seismic signals can perform better than another, the 
multi-modality fusion results are mostly better than 
using either signal. In another word, acoustic classi- 
fication and seismic classification results can compen- 
sate each other. For all the three targets, the multi- 
sensor fusion accuracy are always the highest. 

5 Conclusion 
In this paper, we present a hierarchical fusion scheme 

for collaborative target classification in a distributed 
sensor network. The scheme includes three levels of 
fusion: temporal fusion based on 1-second segments 
within the same event using majority voting, multi- 
modality fusion using BKS with results from both the 
acoustic and seismic signal classification, multi-sensor 
fusion using mobile agents with the modified kNN al- 
gorithm. The experimental results show a steady in- 
crease in the classification accuracy across the three 
levels. The multi-sensor fusion accuracy is always the 
highest which shows the importance of the use of dis- 
tributed sensor networks. Mobile-agent-based compu- 
tation presents a new paradigm to support fusion in 
DSNs. 
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