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Abstract 

 
In recent years, the increasing sophistication of 

detection and tracking systems with multiple 
sensors has generated a great deal of interest in the 
development of new computational structures and 
strategies. The design of such spatially distributed 
systems involves the integration of solutions to the 
problems in data-association, hypothesis testing, 
data fusion, etc. More importantly, the design of 
efficient algorithms for these problems becomes an 
important issue as numerous distributed 
computational framework models are developed. In 
this paper, we present a survey of the recent 
research work conducted on the distributed sensor 
networks (DSNs) ranging from multi-sensor fusion 
methods, through target location, complexities of 
sensor deployment, probabilistic optimal 
surveillance to mobile agent based DSN (MADSN). 
 
1. Introduction 
 

The study of systems with multiple sensors has 
been an active area of research since early 90s. A 
great deal of effort has been devoted to the 
information integration in distributed sensor 
networks. Recent advances in sensor technology 
make it possible to use many duplicate sensors of 
the same type in both military and civilian 
applications, especially when the environment is 
harsh, unreliable, or even adversarial, to insure 
increased fault tolerance. 

Thus, integrating and utilizing the data collected 
from a great number of spatially distributed sensors 
in the most effective way has brought new 
challenges to all the aspects of DSNs like network 
architectures, computation paradigms, data fusion 
methods, and sensor deployment schemes etc. The 
design of tracking and surveillance systems with 
sophisticated demands involves the integration of 

solutions obtained by solving sub-problems in data-
association and fusion, hypothesis testing, effective 
computational strategies, etc. 

The rest of this article is organized as follows: 
In Section 2, the distributed sensor networks and 
issues related to the process of distributed sensing 
are briefly described. Two types of traditional 
architectures for DSNs are discussed in Section 3 
as well as a versatile architecture combining both 
characteristics. Section 4 is devoted to an overview 
of the recent research work on DSNs, which is also 
the focus of this paper. A variety of DSNs related 
issues are discussed such as multi-sensor fusion 
methods, target location, computational 
complexities of sensor deployments, probabilistic 
optimal surveillance, and mobile agent based DSN 
(MADSN) etc. A conclusion of this paper is drawn 
in Section 5. 
 
2. What is a distributed sensor 
network? 
 

A distributed sensor network (DSN) consists of 
a set of geographically distributed intelligent 
sensors, which are designed to collect 
measurements (acoustic, seismic, and infrared etc.) 
from the environment. The data collected from 
each local sensor are processed by its associated 
processing element (PE) into abstract sensor 
estimates. The processed results are then 
transmitted through an interconnected 
communication network and integrated with the 
information gathered from other parts of the 
network according to some data fusion strategy. 
The integrated information is used to derive 
appropriate inferences about the environment for a 
certain civilian or military application. 

A group of neighboring sensors that are 
commanded by the same PE forms a cluster. A unit 
consisting of a PE and all its associated sensors is 
termed as a node. Each PE in the DSN performs 
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tracking function using the data from its governing 
cluster and communicates with other PEs to arrive 
at a better estimate. The interconnection between 
the PEs (nodes) is determined by the DSN 
architecture, which is discussed in Section 3. 
 
3. Distributed sensor network 
architectures 
 
3.1 Two types of traditional architectures 
 

With regard to the design of a DSN, the search 
for an efficient, fault-tolerant architecture is a very 
important task because the performance of a DSN 
is critically dependent on its interconnection 
topology. Two types of traditional network 
architectures are shown in Figure 1, namely the 
committee organization and the hierarchical 
organization, which have been discussed by 
Wesson et. al. in [1]. 

 
Figure 1. Committee organization and 

hierarchical organization 
 

In a committee organization, each node is 
autonomous and connected to some or all of the 
other nodes so that the local information can be 
broadcasted between any two of the connected 
nodes. This organization solves the problem by 
sharing individual perspectives, which refine and 
ultimately integrate local interpretations into a 
unified group consensus. The completely 
connected network, which belongs to this 
organizational category, is one of the architectures 
extensively used in practice. Nevertheless, this 
architecture has caused a heavy communication 

burden because )( 2NO  interconnections are 

required in such a network with N  nodes. 
Moreover, since the nodes share data during 
integration process, the final estimate obtained 
tends to be biased. 

In a hierarchical organization, the nodes are 
placed at different levels and each node can only 
communicate with its parent and child nodes. At 
each level, individual nodes receive information 
from the nodes below them, integrate the 
information according to their position in the 
hierarchy and report upwards the integrated and 
abstracted versions of their results. The node at the 
highest level, called the commander makes 
appropriate decisions based on the received 

information and may order its subordinates to 
adjust some previous results based on the final 
result that it generates. In contrast to the committee 
organization, this network requires only )(NO  

interconnections in a network with N  nodes. 
However, the communication problems are more 
complicated here than in the committee 
organization. The results are unbiased since the 
nodes at a level are not connected to one another, 
but errors may accumulate as the estimate moves 
up the hierarchy. 

From the above discussion, it is clear that both 
the committee and hierarchical organization have 
disadvantages hence the design of a DSN cannot be 
based on either of them alone. A mixed structure 
having the merits of both the types of architectures 
is desirable. The JIK network, proposed in [2, 3] 
has such a structure that the nodes in the JIK 
network are organized as many complete binary 
trees while the roots of which are completely 
connected. Figure 2 shows a JIK network with 12 
nodes. 

 
Figure 2. JIK network with 12 nodes 

 
3.2 A versatile architecture 
 

The JIK network has also some disadvantages. 
For example, integration errors of the lower nodes 
accumulate as the information goes up the 
hierarchy, thus making it difficult to identify the 
faulty component of the network. This problem can 
be solved by interconnecting the nodes at every 
level of the JIK network as a de Bruijn network. 
This new versatile architecture is proposed in [4] 
and referred to as the binary multi-level de Bruijn 
network (BMD). The BMD has shown several fault 
tolerant properties so that using them as a basis in 
the network makes the network tolerant to node or 
link failures. Since nodes at every level are 
interconnected, the BMD network facilitates 
comparison of abstract estimates at the same level 
to eliminate any errors in these estimates and 
identify the faulty component during the process of 
sensor integration. 
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4. Overview of the recent research 
efforts in DSNs 
 
4.1 Fault-tolerant interval integration 
methods 
 

Recent advances in sensor technology have led 
to better, cheaper and smaller sensors. These 
advances beget more complex tactical deployment 
of sensors. Such deployment requires new and 
sophisticated techniques for fault-tolerant 
integration of sensor information. 

It has been demonstrated that redundancy in 
interval-valued sensors can be used to provide error 
tolerance [5]. Sensor averaging by Marzullo’s 
method exhibits an irregular behavior in the sense 
that a sight difference in the input may produce a 
quite different output. In other words, the sensor 
averaging process is not stable. This behavior was 
formalized in [6] as violation of Lipschitz condition 
with respect to a certain metric on intervals. A 
general integration model has been developed to 
improve the results by combining interval estimates 
of sensor outputs into a best intersection estimate 
of outputs. Recently Schimd etc. presented a new 
fault tolerant interval intersection function with the 
same worst-case behavior as the Marzullo function 
but satisfying Lipschitz condition. However, 
Schimd-Schossmaier function gives the output 
intervals that are sub-optimal in some cases. 

A new fault-tolerant interval integration method 
is proposed in [7] which performs better than 
Schmid-Schossmaier function by narrowing down 
the region containing the true value of the state 
measured by the sensors. The proposed function 
satisfies local Lipschitz condition, tolerates failures 
of the interval valued sensors up to a certain 
number and has the better performance than 
existing fault tolerant interval integration functions. 
[7] gives a detailed analysis of how this function 
yields a narrow interval, which is an accurate 
estimation of the true value. A comparison of this 
new function with the existing fault-tolerant 
interval integration functions is also given in the 
paper. 

Brooks-Iyengar hybrid algorithm is presented in 
[8]. The hybrid algorithm makes a weighted 
average of the mid-points of the regions found by 
the sensor fusion algorithm. The hybrid algorithm 
allows for increased precision, but does not 
sacrifice accuracy in the process. The algorithm 
allows distributed systems to converge towards an 
answer within precisely defined accuracy bound. 
Using this algorithm distributed computing 
applications can be developed that are truly robust. 
 
4.2 Coding Theory Framework for Target 
Location 
 

Target location is an important problem in 
sensor networks. If the sensor field is represented 
by a two or three-dimensional grid of points, target 
location refers to the problem of pinpointing a 
target at a grid point at any time point. 
Alternatively, target location can be simplified 
considerably if the sensors are strategically placed 
in such a way that every grid point in the 
surveillance region is covered by a unique subset of 
sensors. In this way, the set of sensors reporting the 
detection of a target at time t uniquely identify the 
grid location for the target at time t. 

The sensor placement problem for target 
location is closely related to the alarm placement 
problem described in [9], which shows that the 
alarm placement problem is NP-complete for 
arbitrary graphs. It is shown in [10] that a coding 
theory framework can be used to efficiently 
determine sensor placement for target location in a 
sensor field with a restricted topology, i.e. a set of 
grid points. The sensor locations correspond to 
codewords of an identifying code constructed over 
the grid points in the sensor field. Such coding 
frameworks are often used in computing systems, 
e.g. for error control and more recently for resource 
placement in multicomputers. 

Figure 3. Sensor deployment for target location 
 
In [10], the identifying code problem is stated as 

an optimal covering of vertices in an undirected 
graph G such that any vertex in G can be uniquely 
identified by examining the vertices that cover it. 
As shown in Figure 3, a circle (or a ball in 3-dim) 
of radius r centered on a vertex v is defined as the 
set of vertices that are at distance at most r from v. 
The vertex v is then said to cover itself and every 
other vertex in the circle with center v. The grid 
points in the sensor field correspond to the vertices 
in the graph G, while the centers of the circles 
correspond to the grid points where sensors are 
placed. The unique identification of a vertex in G 
corresponds to the unique location of a target by 
the sensors in the sensor field. Each sensor at a grid 
point can detect a target at grid points that are 
adjacent to it. 

Coding-theoretic bounds on the number of 
sensors for target location under some certain 

 

Sensor at grid point 

r 

v
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conditions are provided in [10] as well as their 
proofs. The methods for determining their 
placement schemes in the sensor field by way of 
coding theory are presented in the paper. The paper 
also shows that sensor placement for single targets 
provide asymptotically complete (unambiguous) 
location of multiple targets. 
 
4.3 Computational complexities of sensor 
deployments 
 

The sensor deployment problems are 
generalized in [11] and their computational 
complexities are discussed as well. By specifying 
different goals and constraint conditions, the sensor 
deployment problems are categorized into different 
deployment paradigms such as probabilistic 
deployment with investment limit (denoted as 
PROBABILISTIC-DEPLOYMENT), minimum 
sensor set for target coverage (denoted as 
MINIMUM-COVERAGE), and deployment for 
integrity etc. A formal NP-completeness proof is 
given for the first two of these deployment 
paradigms. 

PROBABILISTIC-DEPLOYMENT: In this 
deployment paradigm, the objective is to achieve 
the maximum detection probability under the 
constraint of the maximum investment limit. In 
other words, the whole surveillance region needs to 
be covered as much as possible while the total 
deployment expense does not exceed the given cost 
budget. The deployment expense is considered as 
the cost incurred only by purchasing the sensors to 
be deployed. 

Since the PROBABILISTIC-DEPLOYMENT 
problem is apparently related with the 
KNAPSACK problem, it is shown to be NP-
complete by reducing the KNAPSACK problem to 
a special case, wherein each sensor monitors a 
detection area with a specified probability without 
overlapping with any other sensors. The 
KNAPSACK problem is considered as follows: 

Given a set U  of n  items such that for each 

Uu ∈ , we have size +∈ Zus )(  and the value 
+∈ Zuv )( , does there exist a subset UV ∈  of 

exactly k  items such that Bus
Vu

≤∑
∈

)(  and 

Kuv
Vu

≥∑
∈

)(  for given B  and K . 

Note that in the above exactly k  items are 
required as opposed to unrestricted value in usual 
KNAPSACK problem, and both the problems are 
polynomially equivalent since nk ≤  and the input 
for either problem instance has at least n  items. In 
the same vein, the decision version of the 
PROBABILISTIC-DEPLOYMENT problem asks 

for a deployment consisting of exactly k  sensors 
to be deployed. 

This problem is reduced to the 
PROBABILISTIC-DEPLOYMENT problem such 
that only one sensor of each type is given, i.e. 

1...21 ==== nqqq , and each sensor tS  

monitors a small area (compared with the whole 
arbitrarily large surveillance region) of size )(tr  

and when two sensors are located in the same site 
only one of them detects the target (i.e. suitable 
conditional probabilities are zero). For this special 
case, to maximize the detection probability, each 
deployment site is occupied by no more than one 
sensor. Furthermore, under the uniform prior 
distribution of target in surveillance region 
combined with the non-overlapping sensor 
detection area, the probability of detection is 
simply the average to the probability of detection 
of the deployed sensors. With regard to a sensor 
deployment scheme ℜ  deploys k  sensors, the 
detection probability is 

∑
=

∈=∈ℜ
k

t
t trTSP

k
RTP

1

)}(|{
1

}|{ . Given 

an instance of KNAPSACK problem, each Uu ∈  

is mapped to a sensor uS  such that its cost and 

value are given by )()( usuw =  and 

∑
∈

=∈

Ua

u av

uv
urTSP

)(

)(
)}(|{ . Then the sensor 

cost bound is specified as BQ =  and the 

detection probability as 
∑
∈

=

Ua

avk

K
A

)(
. Given a 

solution to the KNAPSACK problem, a solution to 
the PROBABILISTIC-DEPLOYMENT problem 
exists by just placing the sensors corresponding to 
the members of V  on non-overlapping grid points. 
Given a solution to the sensor deployment problem, 
the solutions to the KNAPSACK problem can be 
obtained by choosing the items corresponding to 
the deployed sensors. The first condition ensures 

that Bus
Vu

≤∑
∈

)( . The second condition ensures 

that: 

∑∑ ∑

∑

∈
=

∈

=

=≥=

∈=∈ℜ

Ua

k

t
Ua

k

t
t

avk

K
A

av

tv

k

trTSP
k

RTP

)()(

)(1

)}(|{
1

}|{

1

1  

which in turn ensures that Kuv
Vu

≥∑
∈

)( . 

MINIMUM-COVERAGE: In this deployment 
paradigm, the objective is to completely cover 
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some set T  of targets by a minimum size of set S  
of sensors in a surveillance region R . Its 
corresponding decision problem is defined as 
follows: Given some set T  of targets in a 
surveillance region R , determine whether some 
set S  of sensors can completely cover all the 
targets. It is shown that even the restricted version 
of MINIMUM-COVERAGE problem remains NP-
complete. The proof directly follows [12]. 

In the restricted version, a finite surveillance 
region R  is divided into a number of uniform 
contiguous square cells of unit size. Any target is 
only located at a corner of one cell. The detection 
area of a sensor is a disc of some size centering at 
the sensor’s location. In other words, each sensor 
has isotropic detection ability. The sensor’s 
location can be anywhere within the surveillance 
region. 

It is first shown that MINIMUM-COVERAGE 
belongs to NP. For an instance of the problem, a 
successful deployment scheme can be always used 
as a certificate. The verifying algorithm simply 
checks if every target is located within some 
sensor’s detection area, and the number of 
deployed sensors doesn’t exceed the size of the 
given sensor set. Obviously, this process can be 
done in polynomial time. The OPTIMAIL-
COVERAGE is shown to be NP-hard by finding a 
polynomial-time reduction algorithm from 3-SAT 
to MINIMUM-COVERAGE, i.e. 

COVERAGEOPTIMALSAT P −≤−3 . The 

proof details will not be given here. 
 
4.4 Optimal sensor deployment using 
genetic algorithm 
 

As shown in the previous section, the 
PROBABILISTIC-DEPLOYMENT problem is 
NP-complete, which rules out any polynomial-time 
solution unless P = NP. A sub-optimal solution is 
presented in [13] based on a genetic algorithm, 
which starts with a set of initial solutions and 
continues to produce better solutions through 
random optimization until a satisfactory solution is 
obtained. To use the genetic algorithm, the 
PROBABILISTIC-DEPLOYMENT problem is 
reduced to a simpler version by restricting the two-
dimensional surveillance region and modeling the 
sensors as follows. It is worth being pointed out 
that the same method can be easily extended and 
applied to a three-dimensional case. 

A two-dimensional surveillance region is 
divided into a number of uniform contiguous 
rectangular cells with identical dimensions. Each 
cell of R is indexed by a pair ),( ji , and ),( jiC  

denotes the corresponding rectangular region. This 
planar surveillance region R is monitored by 

placing a set of sensors in it to detect a target T if 
located somewhere in the region.  

A sensor is specified by its instantaneous 
detection probability for detecting a target at each 
point within its detection region. The integrated 
detection probability of a sensor for a region can be 
computed by integrating its instantaneous detection 
probability for detecting a target as the target gets 
close to the sensor, passes near the sensor, and then 
leaves it behind further and further. Given the 

detection probability density function )(xp
kS  for 

a sensor of type k , its detection probability 

)},(|{ jiCxSP k ∈  for each cell ),( jiC  is 

given by 

∫
∈

=∈
),(

)()},(|{
jiCx

Sk dxxpjiCxSP
k

. 

A Gaussian function is used to formulate the 
measure of the continuous cumulative detection 
probability, which is defined by: 

],0[

,}|,,{
2

2

2

,

k

kS

kk

S

SSk

d

eATSP

∈

=∈ ∗
−

τ
ατ α

τ

τ  

where, }|,,{ ,τατ
kk SSk ATSP ∈  is a measure 

of integrated detection probability at the distance of 
τ  to the target from the sensor. 

kSα  is a 

coefficient parameter that determines the sensor 
detection quality. Distance τ  is in the range 
between 0 and the maximum detection distance 

kSd . 

A sensor deployment is a function ℜ  from the 
cells of R to },...,2,1,{ qε  such that ),( jiℜ  is the 

type of sensor deployed at the cell ),( ji ; and 

ε=ℜ ),( ji  indicates no sensor is deployed, i.e. 

0)( =εw . The cost of a sensor deployment ℜ  is 

the sum of cost of all the sensors deployed in 

region R , which is given by: 

∑
∈

ℜ=ℜ
RjiC

jiwCost
),(

)),(()(  

The detection probability of ℜ , given by 
}|{ RTP ∈ℜ , is the probability that a target T 

located somewhere in region R will be detected by 
at least one deployed sensor. It is evaluated by 
computing the sum of all the local detection 
probabilities in the surveillance region as follows: 

∑∑
−

=

−

=
∈∗∈ℜ=∈ℜ

1

0

1

0

)},({)},(|{}|{
m

i

n

j

jiCTPjiCTPRTP

Based on the assumption that the location of the 
target has a uniform distribution in the surveillance 
region, the probability of target T appearing in a 
cell ),( jiC  is given by: 

)/(1)},({ nmjiCTP ∗=∈  

Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN�02) 
1087-4089/02 $17.00 © 2002 IEEE 



6

Finally, the detection probability, which actually 
is the objective function for the genetic algorithm, 
has the following formula after substituting the 
above expression for the occurrence probability of 
target T in a cell: 

∑∑
−

=

−

=

∗∈ℜ=∈ℜ
1

0

1

0

)/()},(|{}|{
m

i

n

j

nmjiCTPRTP

with the constraint: QCost ≤ℜ)( . 

Genetic algorithm is a computational model that 
simulates the process of genetic selection and 
natural elimination in biologic evolution. It has 
been frequently used to solve the combinatorial and 
non-linear optimization problems with complicated 
constraints or non-differentiable objective 
functions. The computation of genetic algorithm is 
an iterative process towards achieving the global 
optimality. During the iterations, candidate 
solutions are retained and ranked according to their 
quality. A fitness value (calculated based on 
objective function) is used to screen out unqualified 
solutions. Genetic operations of crossover, 
mutation, translocation, inversion, addition and 
deletion are then performed on those qualified 
solutions to create new candidate solutions of the 
next generation. The above process is carried out 
repeatedly until certain convergence condition is 
met. 

In the above sensor deployment problem for a 
surveillance region, a candidate solution can be 
represented by a two-dimensional matrix of sensor 
ID’s. Therefore, an alternative of the classical 
genetic algorithm is used in the algorithm 
development, which adopts a two-dimensional 
numeric encoding scheme, instead of the 
conventional binary sequence, to make up the 
chromosomes. To illustrate that genetic algorithm 
solution performs favorably in solving the sensor 
deployment problem, two experimental tests are 
conducted in [13], one of which is shown in Figure 
4.  

 
Figure 4. Test result for a surveillance region 

with 10 * 10 cells 

The above figure shows that there are three 
types of sensors with different detection properties 
available for being chosen among. The investment 

limit is set to be 1500 unit expense and the 
maximum generation number is set to be 300 as 
shown in the upper data part of Figure 4. In each 
cell, a detection probability is given for evaluation. 
The right-hand side of Figure 4 shows the 
optimization process curve. After 300 generations 
of optimization, an acceptable deployment scheme 
is achieved with detection probability of 96.88% in 
the surveillance region within the investment 
budget. 
 
4.5 Mobile Agent Based DSN 
 

An improved DSN architecture using mobile 
agents (MADSN) is designed in [14] to meet the 
new challenges brought to the current DSN, such as 
larger data volume, lower communication 
bandwidth, and more unreliable environment, etc. 

As shown in Figure 5, in traditional DSNs, data 
are collected by individual sensors, and then 
transmitted to a higher-level processing element, 
which performs sensor fusion. During this process, 
large amounts of data are moved around the 
network, as is the typical scenario in the 
client/server paradigm. MADSN adopts a new 
computation paradigm: data stay at the local site, 
while the integration process (executable code) is 
carried by mobile agents and moved to the data 
sites. 

Figure 5. Comparison between traditional 
server/client system and mobile agent based 

DSN 
Generally speaking, mobile agents are programs 

that can be dispatched from one computer and 
transported to a remote computer for execution. 
While arriving at the remote site, they present their 
credentials and obtain access to local services and 
data to collect needed information or perform 
certain actions and then return with results. 
Although there are advantages and disadvantages 
of using mobile agents, the successful application 
areas of mobile agents have been extended from E-
commerce, to parallel processing and military 
situation awareness, etc. 

Three technical issues associated with MADSN 
are discussed in [14]: mobile agent routing, data 
integration, and optimum performance. 

Mobile agent routing: Once a mobile agent is 
dispatched from the starting node, an itinerary 
needs to be decided on the fly for the mobile agent 
to travel along. The quality of the itineraries 
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planned for mobile agents has a significant impact 
on the performance of MADSN. 

Local closest first (LCF) and global closest first 
(GCF) are two representative algorithms used to 
solve the routing problem. Both algorithms start at 
the same sensor node closest to cluster center. To 
determine the next node in the itinerary, LCF 
searches for the next node with the shortest 
distance to the current node, while GCF searches 
for the closet node to the cluster center. GCF 
algorithm is a relatively simple and fast search 
method but suffers from poor performance. 
Moreover, under the extreme case where the n 
sensor nodes form two clusters centered at the two 
ends of the diameter of the service area of the 
mobile agent, the itinerary planned by GCF can 
result in redundant fluctuation between these two 
clusters. As is the case for GCF algorithm, the 
performance of LCF algorithm also depends 
significantly on the network structure. 

Essentially, the search for optimal itinerary of 
mobile agent can be formalized as a general 
combinatorial optimization problem consisting of 
an objective function and a constraint condition. In 
[15], a method based on genetic algorithm is 
described to solve the optimal itinerary problem for 
MADSN. 

Data integration: At each sensor site, it must be 
determined what kind of data processing should be 
conducted and what integration results should be 
carried with the mobile agent. 

In a distributed sensor network, all readouts 
from the sensor nodes are sent to their 
corresponding processing elements (PEs), where 
the overlap function at the finest resolution is first 
generated, and the multi-resolution analysis 
procedure is then applied to find the crest at the 
desired resolution. In a mobile agent based DSN, it 
is the mobile agents that migrate among the sensor 
nodes and collect readouts. Therefore, mobile 
agents always carry a partially integrated overlap 
function, which is accumulated into a final version 
at the PE after all the mobile agents return. The 
basic multi-resolution integration (MRI) algorithm 
is improved for MADSN by applying MRI before 
accumulating the overlap function to avoid heavy 
data transmission. 

Optimum performance: Although the case study 
given in [14] shows that MADSN saves 91.25% of 
data transfer time compared to DSN while 
obtaining the same interval integration results, this 
does not necessarily mean that MADSN always 
performs better than DSN since MADSN also 
introduces overhead, such as the agent creation and 
dispatch time, the time spent for itinerary planning, 
etc. The performance comparisons between DSN 
and MADSN with respect to different parameters 
such as the number of agents, agent and file access 
overhead ratio, network transfer rate, the number of 
nodes, etc. are discussed in detail in [14]. 

 
5. Conclusions and future work 
 

The issues of and approaches to the problems of 
multi-sensor integration presented in this paper 
demonstrate the wide scope of present research 
efforts in this area. The effective use of multi-
sensor systems requires the solutions of various 
problems relating to sensor models, sensor 
deployment schemes, the architecture of the sensor 
network, the cost of information translation, and 
the fault tolerance of the network, etc. 

So far, very little basic research has been done 
on the fundamental mathematical problems that 
need to be solved in order to provide a systematic 
approach to distributed sensor network system 
design. Major issues include optimal distribution of 
sensors, tradeoff between communication 
bandwidth and storage, maximization of system 
reliability and flexibility. The following areas of 
research (but not limited) will need more attention 
in the coming years: 

(1) Evolution of sensor networks from stability 
point of view. This includes algorithms for sensor 
operator decomposition, subspace decomposition, 
function space decomposition, and domain 
decomposition. Techniques for abstracting global 
data exchanges to transform back to physical 
variables must be explored: 

(2) Distributed image reconstruction procedures 
must be developed for displaying multiple source 
locations as an energy intensity map. 

(3) A distributed operating system kernel for 
efficient synthesis must be developed. 
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