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Abstract — We define the problem of maximal sen-
sor integrity placement, that of locating sensors in n-
dimensional grids with minimal vulnerabilty to enemy
attack or sensor faults. We show a polynomial time al-
gorithm for computing sensor integrity exists for sen-
sors with unbounded ranges deployed over a 1-D grid
of points. We then present an Integer Linear Program-
ming (ILP) formulation for computing sensor integrity
for unbounded range sensors over higher dimension
grids.
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1 Introduction

Distributed, real-time sensor networks are essential
for effective surveillance in the digitized battlefield and
for environmental monitoring. In recent years there
have been a number of significant advances in the field
of algorithms for effective surveillance using such dis-
tributed sensor networks. These advances have ranged
from the development of faster algorithms, to the dis-
covery of certain natural problems for which the algo-
rithms fall into the NP-Complete classification.

An important issue in the design of these networks
is the optimal placement of sensors in the surveillance
zone, also described as the sensor field. In general, the
surveillance zone or deployment area for the sensors
can be viewed as an n- dimensional grid with sensors
being placed at some of these grid points. Sensors can
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vary in their monitoring ranges and coverage capabili-
ties of grid points, and have correspondingly different
costs. Sensors can either be static or mobile depend-
ing on the goals of the overlying application collecting
sensor data.

Previous research in distributed sensor networking
has largely focused on efficient sensor communication
[7, 3] and sensor fusion [1, 6] for a given sensor field
architecture. With the increasing prevalence of sen-
sor based field operations, research on efficient sen-
sor deployment strategies becomes correspondingly im-
portant. There are several important problems to be
solved in this area, given the constraints on sensor ca-
pabilities and costs. For example, one can consider
optimal sensor deployment strategies that minimize
the cost while satisfying mandated surveillance accu-
racy parameters. Alternatively, sensors can be placed
in such a way as to simplify target location. Re-
cently, Chakrabarthy, Iyengar et. al. [2], presented
a systematic theory that leads to novel sensor deploy-
ment strategies for effective surveillance and target lo-
cation.They provide coding-theoretic bounds on the
number of sensors and present methods for determin-
ing their placement in the sensor field.

As research on sensor deployment strategies picks
up, issues related to the reliability of different strate-
gies also become important. In a battlefield environ-
ment, for example, one can naturally expect sensors
to be vulnerable to enemy attacks. To the best of our
knowledge, there has been no previous work done on
the idea of quantifying the vulnerability of different
placement schemes. In [2], optimal sensor deployment
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is considered only in the context of coverage and cost
constraints and has been treated independent of the
concept of reliability. A brute force approach to mini-
mizing grid vulnerability is by maximizing coverage of
sensitive grid points. However, this will unnecessar-
ily increase the deployment cost resulting in inefficient
utilization of sensor resources, or will reduce the avail-
ability of sensors in other locations. As yet, there is
no formal framework in the literature relating optimal
sensor placement to vulnerability.

In this paper, we propose for the first time the con-
cept of sensor placement under mazimal sensor in-
tegrity. This notion requires locating sensors in n-
dimensional grids with minimal vulnerability. Sen-
sor integrity is a measure of the vulnerability of any
sensor placement strategy to enemy attack or sensor
faults. Our concept of sensor integrity can be bet-
ter understood from a game-theoretic viewpoint: for a
given sensor placement strategy that satisfies our cov-
erage and cost constraints, the opponent considers a
best-response in terms of maximally reducing (dam-
aging) our coverage, at his/her minimal cost. In a
simple two-move sequential game, our optimal sensor
placement strategy will be the one that maximizes the
best-response cost of the opponent. This would corre-
spond to a sub-game perfect Nash equilibrium in game
theoretic terms [8]. For a simultaneous move game,
the techniques used in [5] can be applied. In a more
general, multiple sequential move game, our objective
is to determine a set of sequential sensor placement
strategies that maximize the best-response costs of the
opponent, while assuming limited availability (to us)
of replacement sensors. Multiple-move games can also
be considered in the context of mobile sensors with
the object of minimizing mobile sensor travel costs
in successive placement strategies, or damage repair
times in the case of quickly reconfigurable and reliable
networks. Note that mobility naturally enhances sen-
sor performance and survivability, since mobile sensors
can patrol a wide area, can be repositioned for better
surveillance, and can even be concealed if vulnerable.

It is likely that the problem of computing minimal
sensor integrity for a particular sensor deployment is
NP-Complete in the general case of sensors with ar-
bitrary ranges covering grid points. In this paper, we
show that a polynomial time algorithm exists for com-
puting sensor integrity for unbounded range sensors
deployed over a 1-D grid. We then present an Inte-
ger Linear Programming (ILP) formulation for com-
puting sensor integrity for unbounded range sensors
over higher dimensional grids.

2  Sensor Integrity

We begin by defining the problem of sensor integrity
and then describe our results on its computational
complexity. Let P* = {P,...,Px} be the set of all
possible sensor placement strategies in the given sen-
sor deployment domain. Sy is the set of sensors placed
under strategy P with Gj the resulting set of grid
points covered by S. U; C Gy, is the set of grid points
left uncovered by loss of or faults in sensor set S; C Sk.
B : G — RT is a benefit function representing the ad-
vantage to the opponent of uncovering grid points with
C : S, = R™T, the corresponding sensor removal cost
function. Then the optimal sensor placement strategy
that maximizes the sensor integrity is defined as:

rr}l)a*.x{Pk € P*| Min {0, Z; C(s)—
SESI

> Blg)}vsi € 25}, (1)

g€l

The inside term represents the sensor integrity of the
particular placement strategy. The outside term seeks
to select the strategy with the maximum sensor in-
tegrity.

In this paper, we assume that sensor placement has
been apriori determined using some independent algo-
rithm, for example, one that considers cost and cover-
age constraints [2]. We consider the problem of find-
ing the sensor integrity for a given sensor placement
strategy. Our result on determining optimal sensor
placement for maximal integrity will be presented in
a future version of this paper. We denote the optimal
sensor set to be removed by the enemy for minimal re-
maining integrity by Sopt, with Gopt the corresponding
set of uncovered grid points.

3 Sensor Integrity on a Linear
Grid

While the sensor integrity gives us a very elegant way
to judge the reliability of a sensor placement in a hostile
environment, computationally it is not an easy prob-
lem to handle. We believe that the general problem for
computing sensor integrity remains NP-complete. The
reason of our belief is the similarity of the problem with
0-1 knapsack problem [4]. However, this problem may
be polynomial for lower dimensions.

We consider the problem of computing sen-

sor integrity on a linear grid of N points
G = {P,...,P,...,Py} covered by a set
S = {S1,---,Sk,---,Su} of M sensors. While

the general problem on higher dimensional grids is
probably NP-complete, we shall show a polynomial
time algorithm to this instance. Our intuition towards
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the existence of such a solution is based on the
following observations: Consider an arbitrary grid
point P;. Let P, and P;" represent the left and
right neighboring points of P; respectively, and let
SPi be the set of sensors covering P;. A traditional
divide and conquer approach, where we compute
optimal solutions from Py to P, and P;' to Py before
accounting for P; is not feasible, as this would entail
assigning different costs to sensors in S¥i on both
sides. However, we note that removing P; and S
from G and S simultaneously disconnects both sets.
While it is not trivial to compute the overall optimal
solution from the optimal solutions on either side, we
can observe the following:

Lemma 1 Any optimal solution in which point P; is
uncovered will have value

P; § :
Topt — 7—opt - C
s€SPi

where Topf" is the minimum value of the optimal solu-

tion computed from S—S* and G— P;.

Proof: We must remove S%i to uncover P; and Topt

must be optimal by definition. [

Lemma 2 The overall optimal solutions over S and
G are related to the individual optimal solutions as fol-
lows:

Min ;ea{T, pt}

Topt =
Gopt = {P| pt—TOpt}

Sopt = {USPj |Pj € Gopt}'

We expect that 7, can be computed using Lemma 1
and Lemma 2 in polynomial time. This is because
removing P; from G and SP from S disconnects both
sets, leading to two smaller subproblems. Note that
this property is unique to and can be exploited in linear
grids, as can be seen by considering a point and its
incident sensors in a 2-D grid.

While Lemma 2 can provide a polynomial time so-
lution, we expect that this approach will be Q(M N?2).
We therefore present another solution with much lower
complexity. First we describe some results to reduce
some of the processing, by eliminating unnecessary sen-
sors and grid points not contributing to the optimal so-
lution. Consider an arbitrary sensor S, = [Pg,, Pg,].

Lemma 3 If C(S) — Z B(P,
i=DBp
The optimal solution must be computed from S—Sj, and

G_[PBmPEk]‘

We are now ready for our main result, which
computes sensor integrity by exploiting the order
among sensors. Consider any set of sensors S =
{51, 8S3,...Sk} ordered as Pg, < Pg, ... < Pg,. For
sensor Sy, let S, denote the latest sensor in S such that
Py € [PB,, Pg,]. p =0 if there is no such sensor. No-
tation 77 (F;) represents the optimal value of the sensor
integrity when considering only grid points in [Py, Pj]
and sensors! from Sy, S5 ...S,. 7°(P,) is defined to be
0 for all P;. Then we have,

) >0 then Sk & Sopt-

Theorem 1 The sensor integrity for set S is given by

Tl’gEk = min (0,
Pg,
Z B(j ) 2)

= Ekl

TP(PEk) (PEk 1)+C Sk

Proof: Let S,pt be the optimal subset of sensors to
be removed. Consider sensor Sy, the last element of S.
If Sk, & Sopt then points [Pg,, Pg,] remain covered in
the optimal solution which must be 77(Pp ) by defini-

tion. Conversely, if Sy € Sopy then points [PF _ , P, ]
are uncovered exclusively by removing Sj. This con-
Pg,
tributes C(Sk) — Z B(j) to the optimal value of
J ng 1

sensor integrity. The remaining contribution to the op-
timal must be 7%~ (Pg,_,) since S}, is no longer con-
sidered. -

For a given sensor set S = {Si,...,Su} and grid
points G = {P,..., Py}, the sensor integrity is given
by 5L .- Note that once ™ ., is available Sop and
Gopt can be computed by backtracking. We summarize
the algorithm below.

Algorithm MIN_SENSOR_INTEGRITY

Input: Linear array G = (P, P,...Pn) of grid
points; Benefit function B : G — Rt ; Set S =
{51,S52,...,Sm} of sensors covering G where S =
[P, ---Pg,),Pp, € G,Pg, € G,1 <k <M ; A sensor
cost function C' : S — R™T.

Output: (Minimum) Value V = C(Sopt) — B(Gopt);
Optimal set of uncovered points Gopt; Optimal set of
removed sensors Sopt-

INote that sensors are not assigned partial costs, even if only
part of their ranges are uncovered.
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Procedure:

1. Preprocessing:

e Sort S in non-decreasing order of right end
points. S’ = (S1,52,...,S5;) is the resulting
sorted list.

oS = 8 — {8},VS; such that C(S;) >
E;
> B(P)). Let |S| = M.
Jj=B;

* VSy: compute X* = {|J Pg }, where Py €
[PB,,Pr,], k+1 <1< m. Sort X* in non-
decreasing order.

X’“:X’“UPEk.

o {Vie X* | i< Pg,_,}: compute
Sk =

e VSy: compute I such that

k-1 lfPI;k >PE;C_1

0 if P < Min {Pp,}
1<p<k-1

Max {p | ng €S, = [PBP7PEP]}
otherwise 1<p<k-1

2. Processing:

I() =3¢ ;
For k =1 tom DO
{
I, =1y, U Sk ; /* Add S, to set of sensors con-
sidered */
For each point 4 in X*¥ DO
{
(0 ifk=0,
min {o, i (Pg,), 7% (i) + C(Sk)}
if i < Ep_1,
8@) =< Min {0,7%*(Py, ),
Tk_l(PEk—1) + C(Sk)
- Z;:P};ﬁk_l B(j)}
| otherwise.
}

3. Minimal Sensor Integrity: = 7™ (Ey).

Theorem 2 Algorithm MAX SENSOR_INTEGRITY
is O(NM).

4 Sensor Integrity for Higher
Dimensional Grids

In the previous section, we presented a polynomial
time algorithm for computing sensor integrity on a 1-
D grid. While the problem remains open for lower
dimensions, we present an integer linear programming
(ILP) formulation for 2-D grid, which can be extended
to higher dimensions as well.

Let us assume that there is a m X n grid with a
sensor placement. In such case, we can extend the cost
function of the sensors as follows:

Cost of destroying the sensor
if there is a sensor at grid (i, j),
0 otherwise

Ci,j) =

Further, there is a benefit function B(i,j) for each
point of the grid. The benifit function describes the
benefit to the enemy if the grid point (,5) is not cov-

Max (0,{p | i € [PB,,Pg,]}), 1<p< kerefd by any sensor.

In addition, given the sensor placement, there is a
0-1 function called coverage function, Cov(i, ), that
describes whether a particular point in the grid is cov-
ered by any sensor at all. The formal definition of the
coverage function is given below,

N J1 if there is a sensor covering (4, j),
Cov(i, j) = { 0 otherwise

Note that given the sensor placement and information
about the ranges of the sensors, Cov(i, j) is known and
therefore will not be considered as variables in the final
integer linear programming formulation.

For notational convenience, we introduce another 0-
1 function Covers((i,j), (p,q)) called the sensor spe-
cific coverage function which describes whether the
grid point (7, j) is covered by a sensor located at grid
point (p, ).

1
if a sensor at (p, q)
covers (1, ),

0  otherwise

Covers((i, j), (p,q)) =

Note that the sensor specific coverage function is
also known. Further, the general coverage function
Cou(i,j) may be expressed in terms of the sensor spe-
cific coverage function as follow.

Cou(i,j) = max Covers((i,7), (9, q))-
p,q

For the final integer linear programming formula-
tion, we need the following two sets of 0-1 variables.
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The first set of variables describe the set of sensors
those may be destroyed by the enemy in a least prof-
itable way. By ’least profitable’ we mean that the cost
of such destruction minus the benefit obtained from the
destruction will be maximum possible or equal to the
sensor integrity of that particular sensor placement.
For our purpose, i.e., for computing the sensor integrity
of the sensor placement, this is the set of variables we
are naturally interested. Let us call these variables
D(i, 7). The formal definition of this set of variables is
given below.

1
if a sensor at grid (4, 7)
is to be destroyed,

0  otherwise

There are mn such variables.

In addition, we are interested in a set of mn artificial
variables. These set of variables describes whether a
particular is covered after destruction of the sensors
described by D(i,j). While these are not indepen-
dent variables in the sense that given D(i, j) and sen-
sor data, this information is uniquely defined, for the
sake of ease of ILP formulation, we shall treat them
as independent variables. Further, we shall provide
necessary constraints so that these variables may not
assume any value inconsistent with D(i,j). We call
these set of variables DCou(i,j). The formal defini-
tion of DCou(i, j) is,

1
if there is no sensor covering (i, j)
after destruction,

0  otherwise

DCouv(i,j) =

To make sure that after destruction, the set of de-
stroyed sensors gives us the sensor integrity, we choose
the objective function of our ILP as

max Y C(i,5)D(i,§) — Y _ B(i,j)DCov(i, )-
(%,9) (4.4)

Clearly, a set of consistent values maximizing the ob-
jective function will give the sensor integrity.

The objective function is to be maximized subject
to the following constraints.

1. The standard 0-1 constraint
D(i,j) € {0,1},DCouv(i,j) € {0,1},

foralli=1,....mand j=1,...,n

2. A sensor may be destroyed only if there is sensor
at that point. Hence,

foralli=1,....mand j=1,...,n

3. If there is a sensor covering (4, 7) after destruction,
then DCou(i, j) will have to be 0.

DCou(i, j) < Covers((i, j), (p, ) D(p, ),

forl<i,p<mand1<j,q<n

4. If there is no sensor covering (i,j) after destruc-
tion, then DCov(%,7) will have to be 1.

DCou(i,j) > ) Covers((i, j), (»,4)) D(p, )

(p,9)

=" Covers((i, ), (p,q)) + 1, Vi, j.

(p,9)

Now the sensor integrity of that particular sensor
placement may be approximated by using well known
heuristics to solve the 0-1 ILP.

5 Conclusions

In this paper, we have defined the concept of sensor
integrity as applied to sensor grids. We have shown
the existence of a polynomial time algorithm for com-
puting sensor integrity, given unbounded range sensors
deployed over a 1-D grid. We then describe an Inte-
ger Linear Programming (ILP) formulation for com-
puting sensor integrity for unbounded range sensors
over higher dimensional grids.
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