


in which this query is extremely important. While feature extraction can certainly be conducted on a static
sensor network, it is worthwhile pointing out that it can also be used as a mechanism for non-uniform sensor
deployment. If we know where the interesting features are in the operational environment, it may be possible
to move or deploy additional sensors to these feature regions in order to get finer grained information.

Wireless sensor networks are often unattended, autonomous systems with severe energy constraints and
low-end individual nodes with limited reliability. In such conditions, self-organizing, energy-efficient, fault-
tolerant algorithms are required for network operation. These design themes will guide the solution proposed
in this paper to the problem of feature extraction.

We begin with a short introduction to some of the prior work in the area of wireless sensor networks, before
proceeding to discuss the feature extraction problem and our solution in greater detail.

1.1 Wireless Sensor Networks

A number of independent efforts have been made in recent years to develop the hardware and software
architectures needed for wireless sensing. Of particular note are UC Berkeley’s Smart Dust Motes [18],
TinyOS [17], and the PicoRadio [22] project; the Wireless Integrated Network Sensors (WINS) project [21]
and PC-104 based sensors [11] developed at UCLA; and the µAMPS project at MIT [20]. The challenges
and design principles involved in networking these devices are discussed in a number of recent works [1, 4,
19, 21, 45].

Self-configuration and self-organizing mechanisms are needed because of the requirement of unattended
operation in uncertain, dynamic environments. Some attention has been given to developing localized,
distributed, self-configuration mechanisms in sensor networks [12, 31] and studying conditions under which
they are feasible [35].

Sensor networks are characterized by severe energy constraints because the nodes will operate with finite
battery resources. The energy concerns can be addressed by engineering design at all layers. Some of the
energy concerns are being addressed at the hardware and architecture level [18, 32, 36]. At the physical
layer, there is now a significant body of work on minimizing energy costs by adjusting the transmit powers of
nodes while achieving global network properties such as connectivity [37, 38, 43, 40, 42, 41, 39]. At the link
layer, some of the work has focused on energy-efficient medium access schemes suitable for sensor networks
[13, 23, 26, 46]. At the networking layer, meta-naming of data and data-aggregation during routing has been
proposed and analyzed as a significant means for energy savings [2, 9, 10, 15, 16]. At the application layer,
it has been recognized that energy savings can be obtained by pushing computation within the network in
the form of localized and distributed algorithms [4, 33, 34].

One of the main advantages of the distributed computing paradigm is that it adds a new dimension of
robustness and reliability to computing. Computations done by clusters of independent processors need
not be sensitive to the failure of a small portion of the network. Wireless sensor networks are an example
of large scale distributed computing systems where fault-tolerance is important. For large scale sensor
networks to be economically feasible, the individual nodes necessarily have to be low-end inexpensive devices.
Such devices are likely to exhibit unreliable behavior. Therefore it’s important to guarantee that faulty
behavior of individual components does not affect the overall system behavior. Some of the early work in
the area of distributed sensor networks focuses on reliable routing with arbitrary network topologies [28, 29],
characterizing sensor fault modalities [5, 6], tolerating faults while performing sensor integration [30], and
tolerating faults while ensuring sensor coverage [27]. A mechanism for detecting crash faults in wireless
sensor networks is described in [44]. There has been little prior work in the literature on detecting and
correcting faults in sensor measurements in an application-specific context.

Thus, the major challenges in sensor networks are the need for unattended autonomous operation, energy
efficiency, and fault-tolerance. We will propose a solution to the problem of feature extraction that address
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all these challenges. We now discuss this canonical problem and present the component steps in its solution.

1.2 Feature Recognition and Extraction

Consider a wireless network of sensors placed in an operational environment. We wish to task this network
to identify the regions in the network that contain interesting features. For example, if the sensors monitor
chemical concentrations, then we want to extract the region of the network in which these concentrations
are unusually high. This could be true for other sensing modalities as well (high/low temperature regions,
high/low acoustic regions etc.). It is assumed that each sensor knows its own geographical location, either
through GPS, or through RF-based beacons [47].

It is helpful to treat the trivial centralized solution to the feature recognition problem first in order to
understand the shortcomings of such an approach. We could have all nodes report their individual sensor
measurements, along with their geographical location directly to a central monitoring node. The processing
to determine the feature regions can then be performed centrally. While conceptually simple, this scheme
does not scale well with the size of the network due to the communication bottlenecks and energy expenses
associated with such a centralized scheme. Hence, we would like a solution in which the nodes in a feature
region organize themselves and perform some local processing to determine the extent of the region. This is
the approach we will take.

Under ideal conditions, even with the requirement of a distributed, self-organized approach, the problem is
not straightforward to solve. However, if we take into account the possibility of sensor measurement faults,
there is an additional layer of complexity. If we have unreliable sensors, can they decide on their own if their
sensor measurement truly indicates a high “feature” value, or if it is a faulty measurement? In general, this
is a difficult question. What if we know that the sensor measurements in the operation region are spatially
correlated (since many environmental phenomena are) while sensor faults are uncorrelated? As we establish
in this paper, we can exploit such a problem structure to give us a distributed, localized algorithm to mitigate
the effect of errors in sensor measurements.

Figure 1 shows a sample scenario. In this situation, we have a grid of sensors in some operational area.
There is a feature region with unusually high chemical concentrations. Some of the sensors shown are faulty,
in that they report erroneous readings.

We can decompose the process of extracting features in a sensor network into multiple steps, as follows:

1. Determining feature readings: In general, we can think of the sensors measurements as a real number.
Assume we are interested in features that correspond to high readings. Now, the sensors need to know what
measurement constitutes a feature. Although some work has been done on systems that learn the normal
conditions over time so that they can recognize unusual feature readings [48], we consider this issue beyond
the scope of this paper. We will instead make the reasonable assumption that a threshold that enables nodes
to determine whether their reading corresponds to a feature has been specified with the query, or otherwise
made available to the nodes during deployment.

2. Disambiguating “features” from faulty sensor readings: As we indicated before, a challenging task is to
disambiguate features from faults in the sensor readings, since an unusually high reading could potentially
correspond to both. Conversely, a faulty node may report a low measurement even though it is in a feature
region. We will present in section 2 probabilistic decoding mechanisms that exploit the fact that sensor
faults are likely to be stochastically uncorrelated, while features are likely to be spatially correlated. In
analyzing these schemes, we will show that the impact of faults can be reduced by as much as 85-95% even
for reasonably high fault rates.

3. Feature clustering: Once the sensors have determined that they do indeed belong to the feature region,
we would like to have them self-organize into a cluster. In section 3 we propose a clustering algorithm that
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Figure 1: Sample scenario: a distributed sensor network with uncorrelated sensor faults (denoted as ‘x’)
deployed in an environment with a single feature region (dashed circle)

develops intra-cluster routing paths and elects a cluster head that would be responsible for collecting the
data for the feature region and routing it to the central data sink.

4. Aggregation/Compression of feature information: Finally, a useful additional step would be to aggregate
the data by compressing it in some manner. Sending such a compressed version would save energy resources.
We discuss this issue in section 4.

Finally, we will present our conclusions in section 5.

2 Fault-recognition

Without loss of generality, we will assume a model in which a particularly large value is considered unusual,
while the normal reading is typically a low value. If we allow for faulty sensors, sometimes such an unusual
reading could be the result of a sensor fault, rather than an indication of the feature. We assume environments
in which features are typically spread out geographically over multiple contiguous sensors. In such a scenario,
we can disambiguate faults from features by examining the correlation in the reading of nearby sensors.

Let the real situation at the sensor node be modelled by a binary variable Ti. This variable Ti = 0 if the
ground truth is that the node is a normal region, and Ti = 1 if the ground truth is that the node is in a
“feature” region. We map the real output of the sensor into an abstract binary variable Si. This variable
Si = 0 if the sensor measurement indicates a normal value, and a Si = 1 if it measures an unusual value.

There are thus four possible scenarios: Si = 0, Ti = 0 (sensor correctly reports a normal reading), Si = 0, Ti =
1 (sensor faultily reports a normal reading), Si = 1, Ti = 1 (sensor correctly reports an unusual/feature
reading), and Si = 1, Ti = 0 (sensor faultily reports an unusual reading). While each node is aware of the
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Figure 2: Converting noisy, real-valued, sensor measurements into binary readings

value of Si, in the presence of a significant probability of a faulty reading, it can happen that Si 6= Ti. We
describe below a Bayesian fault-recognition algorithm to determine an estimate Ri of the true reading Ti

after obtaining information about the sensor readings of neighboring sensors.

In our discussions, we will make one simplifying assumption: the sensor fault probability p is uncorrelated
and symmetric. In other words,

P (Si = 0|Ti = 1) = P (Si = 1|Ti = 0) = p (1)

Figure 2 shows how the binary model can result from placing a threshold on the real-valued readings of
sensors. Let mn be the mean normal reading and mf the mean feature reading for a sensor. A reasonable
threshold for distinguishing between the two possibilities would be 0.5(mn +mf ). If the errors due to sensor
faults and the fluctuations in the environment can be modelled by Gaussian distributions with mean 0 and
a standard deviation σ, then we get an overlap between the regions as shown in figure 2. In this case the
fault probability p would indeed be symmetric and can be evaluated using the tail probability of a Gaussian,
the Q-function, as follows:

p = Q

(
(0.5(mf + mn)−mn)

σ

)
= Q

(
mf −mn

2σ

)
(2)

We know that the Q-function decreases monotonically. Hence (2) tells us that the fault probability is higher
when (mf −mn) is low (when the mean normal and feature readings are not sufficiently distinguishable) or
when the standard deviation σ of the real-valued errors in the sensor readings is high.
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We also wish to model the spatial correlation of feature values. Let each node i have N neighbors (excluding
itself). Let’s say the evidence Ei(a, k) is that k of the neighboring sensors report the same binary reading a
as node i , while N − k of them report the reading ¬a, then we can decode according to the following rule:

P (Ri = a|Ei(a, k)) =
k

N
(3)

Thus we have that each sensor considers that its environmental reality is likely to be that of the average of its
neighbors. More sophisticated models are possible, but this model commends itself as a robust mechanism
for unforseen environments.

Now, the task for each sensor is to determine a value for Ri given information about its own sensor reading
Si and the evidence Ei(a, k) regarding the readings of its neighbors. The following Bayesian calculations
provide the answer:

P (Ri = a|Si = b, Ei(a, k)) =
P (Ri = a, Si = b|Ei(a, k))

P (Si = b|Ei(a, k))

=
P (Si = b|Ri = a)P (Ri = a|Ei(a, k))

P (Si = b|Ri = a)P (Ri = a|Ei(a, k)) + P (Si = b|Ri = ¬a)P (Ri = ¬a|Ei(a, k))

≈ P (Si = b|Ti = a)P (Ri = a|Ei(a, k))
P (Si = b|Ti = a)P (Ri = a|Ei(a, k)) + P (Si = b|Ti = ¬a)P (Ri = ¬a|Ei(a, k))

(4)

Where the last relation follows from the fact that Ri is meant to be an estimate of Ti. Thus we have for the
two cases (b = a), (b = ¬a):

Paak = P (Ri = a|Si = a,Ei(a, k)) =
(1− p) k

N

(1− p) k
N + p(1− k

N )

=
(1− p)k

(1− p)k + p(N − k)
(5)

P (Ri = ¬a|Si = a,Ei(a, k)) = 1− P (Ri = a|Si = a,Ei(a, k))

=
p(N − k)

(1− p)k + p(N − k)
(6)

Equations (5), (6) show the statistic with which the sensor node can now make a decision about whether or
not to disregard its own sensor reading Si in the face of the evidence Ei(a, k) from its neighbors.

Each node could incorporate randomization and announce if its sensor reading is correct with probability
Paak. We will refer to this as the randomized decision scheme.

An alternative is a threshold decision scheme, which uses a threshold 0 < Θ < 1 as follows: if P (Ri = a|Si =
a,Ei(a, k)) > Θ, then Ri is set to a, adn the sensor believes that its sensor reading is correct. If the metric
is less than the threshold, then node i decides that its sensor reading is faulty and sets Ri to ¬a.

The detailed steps of both schemes are depicted in table 1, along with the optimal threshold decision scheme
which we will discuss later in the analysis. It should be noted that with either the randomized decision scheme

6



Randomized Decision Scheme
1. Obtain the sensor readings Sj of all Ni neighbors of node i.
2. Determine ki, the number of node i’s neighbors j with Sj = Si.

3. Calculate Paak = (1−p)ki

(1−p)ki+p(Ni−ki)
.

4. Generate a random number u ∈ (0, 1).
5. If u < Paak, set Ri = Si else set Ri = ¬Si.

Threshold Decision Scheme
1. Obtain the sensor readings Sj of all Ni neighbors of node i.
2. Determine ki, the number of node i’s neighbors j with Sj = Si.

3. Calculate Paak = (1−p)ki

(1−p)ki+p(Ni−ki)
.

4. If Paak > Θ, set Ri = Si, else set Ri = ¬Si.

Optimal Threshold Decision Scheme
1. Obtain the sensor readings Sj of all Ni neighbors of node i.
2. Determine ki, the number of node i’s neighbors j with Sj = Si.
3. If ki ≥ 0.5Ni, set Ri = Si, else set Ri = ¬Si.

Table 1: Decision Schemes for Fault Recognition

or the threshold decision scheme, the relations in 5 and 6 permit the node to also indicate its confidence in
the assertion that Ri = a.

We now proceed with an analysis of these decoding mechanisms for recognizing and correcting faulty sensor
measurements.

2.1 Analysis of Fault-recognition algorithm

In order to simplify the analysis of the Bayesian fault-recognition mechanisms, we will make the assumption
that for all N neighbors of node i, the ground truth is the same. In other words, if node i is in a feature
region, so are all its neighbors; and if i is not in a feature region, neither are any of its neighbors. This
assumption is valid everywhere except at nodes which lie on the boundary of a feature region. For sensor
networks with high density, this is a reasonable assumption as the number of such boundary nodes will be
relatively small. We will first present results for the randomized decision scheme.

Let gk be the probability that exactly k of node i’s N neighbors are not faulty. This probability is the same
irrespective of the value of Ti. This can be readily verified:

gk =
(

N

k

)
P (Si = 0|Ti = 0)kP (Si = 1|Ti = 0)(N−k)

=
(

N

k

)
P (Si = 1|Ti = 1)kP (Si = 0|Ti = 0)(N−k)

=
(

N

k

)
(1− p)kp(N−k) (7)

With binary values possible for the three variables corresponding to the ground truth Ti, the sensor measure-
ment Si, and the decoded message Ri, there are eight possible combinations. The conditional probabilities
corresponding to these combinations are useful metrics in analyzing the performance of this fault-recognition
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Symbol Definition
n Total number of deployed nodes.
nf Number of nodes in the feature region.
no Number of other nodes = n− nf .
N The number of neighbors of each node
Ti The binary variable indicating the ground truth at node i.
Si The binary variable indicating the sensor reading. Sensor is faulty ⇐⇒ Si = ¬Ti.
Ri The binary variable with the decoded value. Decoding is correct ⇐⇒ Ri = Ti

Ei(a, k) The event that k of node i’s N neighbors have the same sensor reading a.
Paak The conditional probablility P (Ri = a|Si = a,Ei(a, k)).

p The (symmetric) fault probability P (Si = 1|Ti = 0) = P (Si = 0|Ti = 1).
gk The probability that k of node i’s N neighbors are not faulty.
Θ The decision threshold
α The average number of errors after decoding
β The average number of errors corrected
γ The average number of errors uncorrected
δ The average number of new errors introduced

Table 2: Summary of Notation

algorithm.

Consider first the probability P (Ri = 0|Si = 0, Ti = 0). This is the probability that the algorithm estimates
that there is no feature reading when the sensor is not faulty and indicates that there is no feature.

P (Ri = 0|Si = 0, Ti = 0) =
N∑

k=0

P (Ri = 0|Si = 0, Ti = 0, Ei(0, k)) =
N∑

k=0

Paakgk (8)

In a similar manner, we can derive the following expressions for all these conditional probabilities:

P (Ri = a|Si = a, Ti = a) = 1− P (Ri = ¬a|Si = a, Ti = a) =
N∑

k=0

Paakgk (9)

P (Ri = ¬a|Si = ¬a, Ti = a) = 1− P (Ri = a|Si = ¬a, Ti = a) =
N∑

k=0

PaakgN−k (10)

These metrics suffice to answer questions such as the expected number of decoding errors α, obtained by
marginalizing over values for Si.

α = P (Ri = 1|Ti = 0)no + P (Ri = 0|Ti = 0)nf

= (1−
N∑

k=0

Paak(gk − gN−k))n (11)

The reduction in the average number of errors is therefore (np− α)/np.

We can also now talk meaningfully about β, the average number of sensor faults corrected by the Bayesian
fault-recognition algorithm. The conditional probabilities in equations (9) and (10) tell us about this metric:
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Figure 3: Metrics for the Bayesian fault-recognition algorithm with randomized decision scheme (N = 4)

Figure 4: Metrics for the Bayesian fault-recognition algorithm with optimal threshold decision scheme (N=4)

9



β = (1−
N∑

k=0

PaakgN−k)np (12)

A related metric is γ, the average number of faults uncorrected:

γ = (
N∑

k=0

PaakgN−k)np (13)

The Bayesian fault-recognition algorithm has one setback - while it can help us correct sensor faults, it may
introduce new errors if the evidence from neighboring sensors is faulty. This effect can be captured by the
metric δ, the average number of new errors introduced by the algorithm:

δ = P (Ri = 1|Si = 0, Ti = 0)(1− p)no + P (Ri = 0|Si = 1, Ti = 1)(1− p)nf

= (1−
N∑

k=0

Paakgk)(1− p)n (14)

These metrics are shown in figure 3 with respect to the sensor fault probability p. While it can be seen that
for p < 0.1 (10% of the nodes being faulty on average), over 75% of the faults can be corrected. However,
the number of new errors introduced δ is seen to increase steadily with the fault-rate and starts to affect the
overall reduction in errors significantly after about p = 0.1.

Let us now consider the threshold decision scheme. The following theorem tells us that we can view the
threshold scheme from an alternate perspective.

Theorem 1 The decision threshold scheme with Θ is equivalent to picking a integer kmin such that node
i decodes to a value Ri = Si = a if and only if at least kmin of its N neighbors report the same sensor
measurement a.

Proof Recall that in this scheme, Ri = a ⇐⇒ Paak > Θ. It suffices to show that Paak increases monotoni-
cally with k, since in this case, for each Θ, there is some kmin beyond which Ri is always set to a. We can
rewrite equation (5) as follows:

Paak =
(1− p)k

k(1− 2p) + pN
(15)

The monotonicity can be shown by taking the derivative of this with respect to a continuous version of the
variable k:

⇒ d(Paak)
dk

=
p(1− p)N

(k(1− 2p) + pN)2
> 0 (16)

Specifically, kmin is given by the following expression, derived by relating equation (15) to the parameter Θ:
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kmin =
⌈

pNΘ
1− p− (1− 2p)Θ

⌉
(17)

�

The first question this previous theorem allows us to answer is how the metrics described in equations (8)-
(14) change for the decision threshold scheme. In this scheme, we have that if k ≥ kmin of its neighbors also
read the same value a, the node i decides on Ri = a. Thus, we can replace Paak in equations (8)-(14) with a
step function Uk, which is 1 for k ≥ kmin and 0 otherwise. This is equivalent to eliminating the Paak term
and summing only terms with k ≥ kmin. Thus for the decision threshold scheme we have that:

P (Ri = a|Si = a, Ti = a) = 1− P (Ri = ¬a|Si = a, Ti = a) =
N∑

k=kmin

gk (18)

P (Ri = ¬a|Si = ¬a, Ti = a) = 1− P (Ri = a|Si = ¬a, Ti = a) =
N∑

k=kmin

gN−k (19)

α = (1−
N∑

k=kmin

(gk − gN−k))n (20)

β = (1−
N∑

k=kmin

gN−k)np (21)

γ = (
N∑

k=kmin

gN−k)np (22)

δ = (1−
N∑

k=kmin

gk)(1− p)n (23)

The following is a strong result about the optimal threshold decision scheme.

Theorem 2 The optimum threshold value which minimizes α, the average number of errors after decoding,
is Θ∗ = (1− p). This threshold value corresponds to k∗min = 0.5N .

Proof As the goal is to find the kmin and Θ which minimize α, it is helpful to start with the definition of α.
From equation (23), we have that:

α = (1−
N∑

k=kmin

(gk − gN−k))n

= (1−
N∑

k=kmin

(
N

k

)
((1− p)kp(N−k) − pk(1− p)(N−k)))n (24)

We examine the behavior of the expression in the summand:
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((1− p)kp(N−k) − pk(1− p)(N−k)) = pk(1− p)k(p(N−2k) − (1− p)(N−2k)) (25)

For p < 0.5, this expression is negative for N > 2k, zero for N = 2k, and positive for N < 2k. In the
expression for α, as we vary kmin by decreasing it by one at a time from N , we get additional terms with
negative contributions while kmin > 0.5N , and positive contributions once kmin < 0.5N . It follows that α
achieves a minimum when kmin = k∗min = 0.5N .

To determine what value of Θ this corresponds to, we can utilize equation (17). We have that

pNΘ∗

1− p− (1− 2p)Θ∗
= 0.5N

⇒ pΘ∗ = 0.5(1− p− (1− 2p)Θ∗)
⇒ Θ∗(p− p + 0.5) = 0.5(1− p)

⇒ Θ∗ = (1− p) (26)

�

The above theorem says that the best policy for each node (in terms of minimizing α, the average number of
errors after decoding) is to accept its own sensor reading if and only if at least half of its neighbors have the
same reading. This means that the sensor nodes can perform an optimal decision without even having to
estimate the value of p. This makes the optimal-threshold decision scheme presented in table 1 an extremely
feasible mechanism for minimizing the effect of uncorrelated sensor faults.

2.2 Simulation Results

We conducted some experiments to test the performance of the fault-recognition algorithms. The scenario
consists of n = 1024 nodes placed in a 32 × 32 square grid of unit area. The communication radius R
determines which neighbors each node can communicate with. R is set to 1√

n−1
, so that each node can only

communicate with its immediate neighbor in each cardinal direction. All sensors are binary: they report
a ‘0’ to indicate no feature and a ‘1’ to indicate that there is a feature. The faults are modelled by the
uncorrelated, symmetric, Bernoulli random variable. Thus each node has an independent probability p of
reporting a ‘0’ as a ‘1’ or vice versa. We model correlated features by having l single point-sources placed in
the area, and assuming that all nodes within radius S of each point-source have a ground truth reading of
1, i.e. detect a feature if they are not faulty. For the scenario for which the simulation results are presented
here, l = 1, S = 0.15.

We now describe the simulation results. The most significant way in which the simulations differ from
the theoretical analysis that we have presented thus far is that the theoretical analysis ignored edge and
boundary effects. This can play a role because at the edge of the deployed network, the number of neighbors
per node is less than that in the interior, and also the nodes at the edge of a feature region are more likely
to erroneously determine their reading if their neighbors provide conflicting information. Such boundary
nodes are the most likely sites of new errors introduced by the fault-recognition algorithms presented above.
In general, because of this, we would expect the number of newly introduced errors to be higher than that
predicted by the analysis.

Figure 5 shows a snapshot of the results of a sample simulation run. The sensor nodes are depicted by
dots; the nodes indicated with bold dots are part of the circular feature region. An ‘x’ indicates a faulty
node (before the fault-recognition algorithm), while an ‘o’ indicates a node with erroneous readings after
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Figure 5: A snapshot of the simulator showing the errors before and after fault-recognition with optimal
threshold (p = 0.1)

fault-recognition. Thus nodes with both an ‘x’ and ‘o’ are nodes whose errors were not corrected, while node
with an ‘x’ but no ‘o’ are nodes whose errors were corrected, and nodes with no ‘x’, but an ‘o’ are nodes
where new error has been introduced by the fault recognition algorithm. Most of the remaining errors are
concentrated on the boundaries of the feature region.

Figures 6, 7, and 8, show the important performance measures for the fault recognition algorithm with the
optimal threshold decision scheme from both the simulation as well as the theoretical equations. The key
conclusion from these plots is that the simulation matches the theoretical predictions closely in all respects
except the statistic of newly introduced errors, where understandably the border effects in the simulation
result in higher values. More concretely, these figures show that well over 85% - 95% of the faults can be
corrected even when the fault rate is as high as 10% of the entire network.

Figure 9 illustrates the performance of the threshold decision scheme with respect to the threshold value Θ.
Again, the simulation and theoretical predictions are in close agreement. The optimal value of the threshold
Θ is indeed found to correspond to a kmin of 0.5N .

3 Self-organized Feature Clustering

Once the feature nodes have been identified by the fault-recognition algorithm, we would like to have these
nodes self-organize into clusters and elect cluster heads to enable local information processing. We propose
to achieve this by combining a distributed election leader algorithm [7] with a distance-vector routing [8]
mechanism. The combination is an algorithm in which the immediate neighbors of the leader get the correct
information first, then the neighbors of these neighbors, and so on until all nodes within the cluster obtain
a path to the same cluster leader. We now give details of this clustering algorithm.
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Figure 6: Normalized number of errors corrected and uncorrected with the optimal threshold decision scheme

Figure 7: Normalized number of new errors introduced with the optimal threshold decision scheme
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Figure 8: Normalized reduction in average number of errors for the optimal threshold decision scheme

Figure 9: Normalized reduction in average number of errors with respect to the threshold value in the
threshold decision scheme (p = 0.25, Θ∗ = 1− p = 0.75)
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Only nodes which have a feature reading participate in this mechanism. As with most leader election
algorithms, it is assumed that each node i within the cluster has a unique ID value IDi that can be used
to determine the cluster head (typically the lowest ID number node is elected, though this can be modified
for some other metric easily). One useful way in which unique ID’s can be chosen is to base their value on
the geographical location of the nodes, particularly on their distance to the central monitoring node. This
is likely to result in the cluster head being close to the data sink.

Each node i maintains a 3-tuple (LIDi, Ki, NHi). The field LIDi is the lowest ID number seen to date by
node i; Ki is the number of hops from i to the node with lowest ID; and NHi is the next hop from i towards
the lowest ID node. Initially, for all i, LIDi = IDi,Ki = 0 and the NHi field is left blank.

3.1 Description of feature clustering algorithm:

1. Do the following if and only if Ri = 1, i.e. if i is a feature node.

2. if i has an previously uncommunicated value for (LIDi, Ki, NHi), communicate this to
all neighbors

3. i examines any tuples received from neighbors j and updates information as follows:

if LIDj < LIDi then
LIDi = LIDj

Ki = Kj+1
NHi = j

else if LIDj == LIDi then
if Kj < Ki − 1

Ki = Kj + 1
NHi = j

endif
endif

3.2 Analysis of the feature clustering algorithm

Correctness and complexity of algorithm:

We first consider the synchronous version of the feature clustering algorithm (an assumption that can be
relaxed). The algorithm proceeds in multiple rounds. Each node sends at most one message at each round.
The following theorem tells us about the correctness and complexity:

Theorem 3 If D is the diameter of the cluster (i.e. the maximum hop distance between any pair of nodes
in the feature region) the algorithm is guaranteed to converge in at most D steps, and each node issues no
more than D messages. At the termination of the feature clustering algorithm, for all i, LIDi = min

j
(IDj),

and the entries Ki and NHi are consistent with the shortest path between node i and the elected leader node
l which has IDl = LIDi.

Proof: Given synchronous operation, it is easiest to prove this by induction.

Base case: Consider the node l which has the lowest ID, i.e. the node which should be elected the leader at
the end of the process. It is easy to see that at the end of the first round, all nodes i within one hop of S
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update their table so that LIDi = IDl, Ki = 1, and NHi = l. From this point on, these entries are frozen,
i.e. will never change.

Induction hypothesis: Assume that at the end of the tth round all nodes i that are exactly t hops away from
the node l have just updated their table so that LIDi = IDl, Ki = t, and NHi = j, where Kj = t− 1. It is
clear that these entries are frozen, as per the description of the algorithm.

Induction step: Any node i that is exactly t + 1 hops away from l must neighbor some nodes J which are
t hops away from l. At the end of round (t + 1), i hears from nodes in J since they have had a change in
their entry at time step t. From the first j ∈ J that i hears from, it updates its values so that LIDi = IDl,
Ki = t + 1, NHi = j. This entry is henceforth frozen.

Thus, since all nodes are at most distance D from the source l, all nodes will have their entries frozen in at
most D steps, at which point the algorithm terminates. Further, since each node only issues at most one
message in each round, no node issues more than D messages.

�

Synchronization Requirements: If we have perfect synchronization of the clocks of all nodes, then they
all can have a common idea of when each round is supposed to begin and end. The algorithm can also be
carried out with only a limited degree of synchrony if we require that all nodes transmit at each step.

In order to relax the synchronization assumption, we require each node in the feature region to send the
initial value of its entry to all its neighbors within a finite time T of the start of the clustering algorithm
(which can be defined as the time when the feature extraction query is received by all nodes in the cluster).
Thereafter, we require each node to wait until it has heard from all its neighbors before calculating and
sending its updated values to all its neighbors and proceeding to the next round, and to take no more than
time T2 between the time it has heard from all its neighbors and the time it has calculated and if necessary,
sent the updated values to all its neighbors. In this case, all nodes send the first step values to all their
neighbors by time T , the second step values by time T + T2, and so on. Thus even if they are not all
synchronized to the same clock value, they can synchronize their behavior to the level of a step by relying
their internal clocks alone. Since we now require all nodes to send information at each step, they must all be
aware of a bound on D and the value of T and T2 so that they can safely terminate the algorithm at time
T + (D − 1)T2.

3.3 Illustration

This proposed clustering mechanism is best explained by an illustration. In figure 10, we see a single run
of this algorithm in a feature region containing five nodes labelled with relevant IDs. Note that all nearby
sensor nodes that do not have feature readings (shown in dashed lines) do not participate. As the algorithm
progresses, the shaded nodes have obtained the correct information and do not change values thereafter.
The progress of these shaded nodes shows the clustering algorithm’s characteristic of having the correct
information spreading outward from a single node level by level.

At the conclusion of this cluster formation mechanism we have a spanning tree whereby each node can pass
information on to the cluster head. Figure 11 shows a snapshot from the simulator depicting the intra-cluster
spanning tree and election of cluster head in the feature region for our sample scenario.

Note the distributed, self-organizing, nature of the entire process - no central commands need to be issued
to determine the cluster head for each region and to perform the intra-cluster routing setup. The entire
process can be triggered automatically when the feature readings are determined. The algorithm is highly
robust to the addition of new nodes to the feature region: any new node i initially advertises its tuple to
be (i, 0, -), and the neighbors of this node which are in the feature region would respond by with their
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current values. If the new node is not going to be the new cluster leader (because its ID number is not low
enough), then no additional messages need to be exchanged. If the new node should be the cluster leader,
then the clustering algorithm starts afresh in the entire region. It is assumed that complete node failures
are rare in the network, but it should be noted that some form of refresh mechanism is required to ensure
that the intra-cluster routing information does not become stale. Another approach could be the use of link
reversal mechanisms to deal with such failures in the presence of extreme dynamics [49]. Finally, we note
that the clustering algorithm can be conducted in parallel throughout the network, resulting in the formation
of multiple independent clusters simultaneously in separate feature regions.

4 Data Aggregation Mechanisms

As we mentioned before, energy conservation is necessary to extend the lifetime of wireless sensor networks
because they are unattended and may have limited battery resources. Cross-layer optimizations can provide
the needed savings.

One cross-layer methodology that has found to be particularly useful is in-network processing, which combines
application and networking layers. The intermediate nodes, which act as routers in the multi-hop network,
are also permitted to read the packets and process their application-level contents. Such techniques were first
developed to allow for greater networking flexibility in Active Networks [53] and router-assist for internet
multicast [52]. In sensor networks, the form of in-network processing which is useful for energy conservation
is data aggregation. The basic idea behind data aggregation is simple: data coming from multiple sources
enroute to the same destination can be combined. This eliminates redundant communication within the
network, a significant source of the energy expenditure.

Directed Diffusion is an example of a data-centric routing protocol for sensor networks that incorporates
data-aggregation explicitly in its functioning [2]. Experimental and analytical results on data-centric routing
suggest that significant energy savings can be obtained using aggregation techniques [14, 9, 3]. [10] discusses
the implementation of aggregation for optimizing responses to database-type queries in sensor networks.
Most previous work has dealt with exact aggregation mechanisms such as duplicate suppression, min, max,
sum, and count. We will discuss here some data-aggregation techniques appropriate to the feature extraction
problem, including some approximate aggregation schemes.

The following are some pieces of information the central monitoring node may query for:

• the location of the feature region(s)

• the readings of each individual node in the feature region

• min/max/average reading in the feature region

Different forms of aggregation may be suitable depending on the query. We focus on the location query. This
query says “describe the location of the feature region.” The first thing to note is that this is a query that
lends itself to both exact and inexact answers. On the one hand we can report the full detailed information
of the locations of the nodes in the feature region; on the other hand we can give an approximate parametric
description that loosely describes a geometric shape containing all nodes in the feature region.

Let us assume that each node knows the x and y-coordinates for its own location. We also assume that all
packets have a fixed header size H, and use B bits to represent each coordinate of a location. Let k refer to
the total number of sources, i.e. nodes in the feature region, d the distance in hops from the cluster-head to
the sink, and di, the shortest distance between the cluster-head and the ith node in the feature region. The
following are some aggregation options that can be pursued:

18



No Aggregation (NA): If no aggregation mechanism is employed, then each of the k node will send 2B
bits of location information (to indicate its x-coordinate and y-coordinate) plus a header of size H along a
total d + di hops. Thus the energy cost of this scheme in terms of the total number of bits transmitted in
this case λNA will be

λNA = (2B + H)(kd +
∑

di) (27)

Header Aggregation (HA): In this scheme, all nodes in the feature region send their location information
in separate packets through the intra-cluster routing tree to the cluster-head. The cluster-head then combines
all these packets without any modification into one large packet. This scheme can provide modest savings
in cost, particularly if the header size in each packet is comparable in size to the data. The total number of
bits transmitted in this case, λHA is given by:

λHA = 2B(kd +
∑

di) + H(d +
∑

di) (28)

Header Aggregation with Lossless Compression (HAC): An additional level of savings can be ob-
tained in the header aggregation scheme, if the cluster-head compresses the information it obtains from all
nodes in the feature region before sending it on. For exact location information about each node to be
preserved, a lossless source-coding scheme such as the Lempel-Ziv algorithm may be used. Assuming the
original data can be compressed by a factor of ρ ≤ 1, we have that the total number of bits transmitted in
this case is

λHAC = 2B(kdρ +
∑

di) + H(d +
∑

di) (29)

Rectangular Approximate Aggregation (RA): The previous schemes all focus on sending the exact
location details about each node in the feature region. However, if it suffices to know the approximate location
and extent of the feature region, significant reduction can be obtained by combining the information into a
geometric shape such as the rectangle which contains the nodes in the feature region. The cluster-head collects
(x,y) coordinates for all such nodes, and first computes the 4-tuple [XMIN, Y MIN, XMAX,Y MAX] from
the collected values. It then calculates the length of the diagonal DIAG, which is simply the Euclidean
distance between (XMIN, Y MIN) and (XMAX, Y MAX).

The cluster-head then sends the 3-tuple [XMIN, Y MIN, DIAG] (which suffices to reconstruct the enclosing
rectangle) on to the central monitoring node. Since only 3B bits of information need to be sent from the
cluster-head to the central monitoring node, the number of bits transmitted in this scheme is given as

λRA = 2B
∑

di + 3Bd + H(d +
∑

di) (30)

Circular Approximate Aggregation (CA): This scheme is similar to the rectangular approximate ag-
gregation, except that the cluster-head instead computes the center and radius of the smallest circle which
encloses all nodes in the feature region, represented as the 3-tuple [XMID, Y MID,RADIUS]. The com-
putation of this circle, known as the Minimum Enclosing Circle problem, has a long history dating back to
the mid 19th century when the first simple O(n3) algorithms were proposed. A series of new algorithms in
the 70s brought the complexity of this computation down to O(nlogn). A landmark result in computational
geometry was the development of ingenious prune-and-search linear programming techniques by Megiddo
and Dyer [50, 51] which allows this minimum enclosing circle to be computed in O(n) time. Since only three
parameters requiring 3B bits need to be sent from the cluster-head, the number of bits transmitted in this
scheme is given as
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Scheme Bits Used Savings Response Quality
No aggregation (NA) 221544 0% Exact

Header Aggregation (HA) 117544 46.9 % Exact
HA with Compression (HAC) 100648 54.6 % Exact
Rectangular Aggregation (RA) 34984 84.2 % Tight rect. approximation

Circular Aggregation (CA) 34984 84.2% Tight circ. approximation
Stepwise Rectangular Aggregation (SRA) 9240 95.8% Tight rect. approximation

Stepwise Circular Aggregation (SCA) 9240 95.8% Loose circ. approximation

Table 3: Comparison of various aggregation schemes for sample simulated scenario

λCA = 2B
∑

di + 3Bd + H(d +
∑

di) (31)

Step-wise Rectangular Aggregation (SRA): If we permit each node within the cluster to aggregate the
information coming from all downstream nodes, we can get further gains with the rectangular aggregation
scheme. The idea here is simple, each node maintains the 4-tuple [XMIN,XMAX,Y MIN, Y MAX] and
the correspondingly computed 3-tuple [XMIN,XMAX,DIAG]. To begin, leaf nodes send this information
upstream in the form of the 3-tuple. From this point on, nodes wait to collect this information from all their
downstream nodes, and compute the value of the rectangle that contains themselves and all their downstream
nodes. They then send the corresponding 3-tuple upstream. This is illustrated in figure 12. Since exactly
3B bits are sent at each hop, we have that the energy cost of this scheme is

λSRA = 3B(k + d− 1) + H(d +
∑

di) (32)

It is important to note that the final information obtained by the central monitoring node is the same in the
case of RA as well as SRA aggregation schemes. In both cases, it obtains the coordinates of the smallest
rectangle enclosing the feature nodes.

Step-wise Circular Aggregation (SCA): This scheme is similar to the SRA. Each node sends the 3-tuple
[XMID, Y MID,RADIUS] upstream. This tuple is used to describe the center and radius of the smallest
circular region that includes the intersection of the circular regions of its descendant nodes as well as its own
location. As this information makes it way upstream, the final result which the cluster head obtains are the
coordinates for the center as well as the radius of a circular region which contains all the nodes in the feature
region. However, it is important to note that the approximation can become less and less accurate as the
information makes its way upstream. Specifically the circular region that the cluster-head obtains with this
scheme is in general an overestimate of the minimum enclosing circle. As a 3-tuple is used at each hop, the
total number of bits expended by this method is again:

λSCA = 3B(k + d− 1) + H(d +
∑

di) (33)

Table 3 shows a comparison of the above schemes on the sample simulation scenario of figures 1, 5, and 11.
In this simulation the values for the size parameters were H = 40 and B = 16. For HAC, the compression
ratio was set to a typical value of ρ = 0.8. The number of nodes in the cluster is k = 66, the distance between
the cluster-head and the central monitoring node is d = 40, and the sum of the intra-cluster distances was
evaluated to be

∑
di = 437. We can see that since the header size is comparable to the size of the data

contents, even header aggregation can reduce the energy costs by nearly half in this case. As noted before,
the first three schemes all provide exact information about the location of each individual node, while the
remaining schemes provide some form of approximation. Both the RA and CA schemes result in nearly 85%
energy savings in this scenario, the additional gains coming chiefly due to the reduction of data being sent
from from the cluster-head to the central monitoring node. Both approximations are tight, in the sense that
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they provide the coordinates of the minimum enclosing rectangle and circle respectively. For applications
where the feature is likely to be approximately circular in shape (for example if the chemical concentrations
in the environment diffuse uniformly in all directions), the circular approximation may be closer to the
real situation. However, when we consider the two step-wise approximate aggregation schemes, the SRA
scheme is better since it still provides the minimal enclosing rectangle with significant savings (95% in this
scenario), whereas the SCA scheme (which incurs the same costs) can result in a loose overestimate of the
region containing all the nodes. Overall, we can conclude the SRA scheme is a robust, reasonably tight
approximate aggregation algorithm which provides the most energy gains for this application.

One additional fact that should be pointed out about the approximate aggregation schemes is that because
they provide information about enclosing regions, they are somewhat robust to faults in the boundary of
the feature region. Since most of the faults that remain after the fault-correction algorithms we described
in section 2 are likely to be on the boundaries, this is a beneficial property of the approximate aggregation
schemes.

It’s also insightful to look at the limiting behavior of the energy gains. An upper-bound on the energy gains
is obtained if we let d tend to infinity (when the feature region is really far away from the central monitoring
node).

Theorem 4 If max(di) and k are fixed then

lim
d→∞

1− λSRA

λNA
= 1− (3B + H)

(2B + H)k
(34)

Proof: From equations (27) and (32), we get that

λSRA

λNA
=

3B(k + d− 1) + H(d +
∑

di)
(2B + H)(kd +

∑
di)

(35)

⇒ lim
d→∞

λSRA

λNA
=

(3B + H)d + 3B(k − 1) + H
∑

di

(2B + H)kd + (2B + H)
∑

di
(36)

⇒ lim
d→∞

λSRA

λNA
=

(3B + H)d + o(1)
(2B + H)kd + o(1)

(37)

⇒ lim
d→∞

1− λSRA

λNA
= 1− (3B + H)

(2B + H)k
(38)

�

Theorem 4 represents an upper bound on the gains that can be obtained with SRA. For the sample scenario
that we studied, if we let d →∞, we get a gain of (1− 88/(72 · 66))100 = 98.2%, which is close to the 95.8%
achieved in the simulation for d = 40.

The above schemes can be generalized for other queries sent to the feature nodes. For detailed and exact
information such as IDs or readings of all nodes in the feature region, approximate schemes are invalid. Thus
the HA and HAC schemes are the most appropiate. For queries which require a single number to be sent
back, such as query asking for the min/max/average feature reading, a suitable approach is to perform in-
cluster aggregation. The information could either be aggregated at the cluster-head after receiving all inputs
directly from each node in the cluster, or in a stepwise manner throughout the cluster. The cluster-head
then sends this single number on to the central monitoring node. The energy gains through these schemes
would be quite comparable to those obtained for the feature-location query with the RA and SRA schemes,
respectively.
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5 Conclusions

With recent advances in technology it has become feasible to consider the deployment of large-scale wireless
sensor networks that can provide high-quality environmental monitoring for a range of applications. In this
paper we developed a multi-stage solution to a canonical task in such networks – the extraction of information
about regions in the environment with identifiable features.

In such networks involving thousands of unattended, low-cost, low-capability devices, reliability, self-organization,
and energy-efficiency are paramount concerns. Our solution effectively addresses all these concerns, and il-
lustrates the design principles for this emerging space of application-specific networks.

One of the most difficult challenge is that of distinguishing between faulty sensor measurements and unusual
environmental conditions. To our knowledge, this is the first paper to propose a solution to the fault-feature
disambiguation problem in sensor networks. Our proposed solution, in the form of Bayesian fault-recognition
algorithms, exploits the notion that measurement errors due to faulty equipment are likely to be uncorrelated,
while environmental conditions are spatially correlated.

We presented two Bayesian algorithms, the randomized decision scheme and the threshold decision scheme
and derived analytical expressions for their performance. Our analysis showed that the threshold decision
scheme has better performance in terms of the minimization of errors. We also derived the optimal setting for
the threshold decision scheme for the average-correlation model. The proposed algorithm has the additional
advantage of being completely distributed and localized - each node only needs to obtain information from
neighboring sensors in order to make its decisions. The theoretical and simulation results show that with
the optimal threshold decision scheme, faults can be reduced by as much as 85 to 95% for fault rates as high
as 10%.

We then presented a distributed mechanism for nodes in a feature region to self-organize into a cluster. The
proposed mechanism combines shortest-path routing techniques with a leader-election mechanism. The final
result of the clustering algorithm is the election of a cluster-head and the formation of a minimum spanning
tree connecting all the other nodes to the cluster-head.

This cluster is then used as a precursor for in-network processing when information about the feature region
is extracted back to the central monitoring node. We presented and analyzed a number of distinct data-
aggregation mechanisms to provide energy savings by the elimination of redundant information. We showed
that one of these schemes, the stepwise rectangular approximation scheme has the advantage of being robust
to boundary-errors in the fault recognition algorithm, providing a tight approximation of the feature region,
and resulting in order-of-magnitude savings in energy costs. For the simulated scenario, for example, this
saving was over 95%.

There are a number of directions in which this work can be extended. The most promising is the extension
of our work on fault-recognition and fault-tolerance in sensor networks. We have dealt with a binary fault-
feature disambiguation problem here. This could be generalized to a notion of the correction of real-valued
sensor measurement errors: nodes in a sensor network should be able to exploit the spatial correlation of
environmental readings to correct for the noise in their readings. Another related direction is to consider
dynamic sensor faults where the same nodes need not always be faulty. Much of the work presented here can
also be easily extended to dynamic feature recognition to deal with environmental phenomena that change
location / shape over time. We would also like to see the algorithms proposed in this paper implemented
and validated on real sensor network hardware in the near future.
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Figure 10: An illustration of the proposed algorithm for feature cluster formation. (a)-(d) show the message
exchanges and table updates during the algorithm, and (e) shows the final feature-cluster that is formed.
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Figure 11: A simulator snapshot depicting the intra-cluster routing tree within the feature region along with
the elected cluster head. The dashed rectangle on the bottom represents the rectangular approximation of
the feature region that can be represented compactly. Note that the rectangular approximation is highly
robust to faults and decoding errors of nodes on the border of the feature region.
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Figure 12: Illustration of the stepwise rectangular approximate aggregation (SRA) scheme. The 4-tuples
represent the lower-left and upper-right x and y coordinates for the corresponding rectangle. The 3-tuples
are the [XMIN, Y MIN, DIAG] representations that are communicated at each transmission upstream.
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