
A Lightweight Protocol for Data Integrity in Sensor
Networks

Arjan Durresi, Vamsi Paruchuri, Rajgopal Kannan, S.S. Iyengar
Department of Computer Science, Louisiana State University

Baton Rouge, LA 70803, USA,
{durresi, paruchuri, rkannan, iyengar }@csc.lsu.edu

Abstract

In this paper, we present a novel lightweight protocol for data
integrity in wireless sensor networks. Our protocol is based
on leapfrog strategy in which each cluster head verifies if its
previous node has preserved the integrity of the packet using
the secret key it shares with two hop uptree node. The proposed
protocol is simple. The analysis and simulation results show
that the protocol needs very few header bits, as low as three
bits, thus resulting in negligible bandwidth overhead; the
protocol poses very low computational overhead, it needs
to compute just a hash as compared to multiple complex
operations required by any cryptographic implementation for
verifying authenticity.

1. INTODUCTION

Wireless sensor networks have recently emerged as a critically
important disruptive technology resulting from the fusion of
wireless communications and embedded computing technolo-
gies [1], [2], [3], [4], [5], [6]. In the future we envision
thousands to millions of small sensors form self-organizing
wireless networks. Potential applications include monitoring
remote on inhospitable locations, target tracking in battlefields,
disaster relief networks, early fire detection in forests, and
environmental monitoring.

Security is a crucial part of the architectures for sensornet.
Sensor networks are vulnerable to a vast number of security
threats [7], [8], [9], [10] with variable application-specific
attack mechanisms and variable impact on the network. Due
to their nature and operational resource constraints sensor
networks are vulnerable to various types of attacks. While
designing the new network architecture for future sensors
networks, the research community has a unique chance to
integrate security and privacy since the beginning as a fun-
damental part of the architecture. As shown by the Internet
example, security cannot be implemented properly as patches
to an existing network architecture, rather security mechanisms
must developed as part of an integral security framework.

Wireless networks, in general, are more vulnerable to secu-
rity attacks than wired networks, due to the broadcast nature
of the transmission medium. Furthermore, wireless sensor
networks have an additional vulnerability because nodes are
often placed in a hostile or dangerous environment where they

are not physically protected. Note that security issues in ad-
hoc networks are similar to those in sensor networks and have
been well enumerated in the literature [11], but the defense
mechanisms developed for ad-hoc networks are not directly
applicable to sensor networks. For example, some ad-hoc
network security mechanisms for authentication and secure
routing are based on public key cryptography [8], [12], [13],
[14], [15], [16], [17], [18] which is too expensive for sensor
nodes. Similarly, security solutions for ad-hoc networks based
on symmetric key cryptography have been proposed [19], [20],
[21], [22]. They are too expensive in terms of node state
overhead and are designed to find and establish routes between
any pair of nodes-a mode of communication not prevalent
in sensor networks. The authors in [23], [24] consider the
problem of minimizing the effect of misbehaving or selfish
nodes through punishment, reporting, and holding grudges.
The application of these techniques to sensor networks is
promising, but these protocols are vulnerable to blackmailers.

There are several recent research efforts exploring different
aspects of sensornet security, for example key management, se-
cure multicast communication, authentication and anonymous
routing [25]. Among the original sensornet security solutions,
SPINS [26] presents two building block security mechanisms
for use in sensor networks, SNEP and µ-TESLA. SNEP
provides confidentiality and authentication between nodes and
the sink, and µ-TESLA provides authenticated broadcast.

Sensor networks are expected to consist of hundreds to
thousand of nodes dispersed in hostile environments. It is
clearly impractical to monitor and protect each individual node
from physical or logical attack. An enemy can easily alter
existing data or even inject spurious data in the sensornet by
capturing or insert new malicious nodes into the network. A
key technical challenge is to detect such activity by distin-
guishing fake/altered data from the correct one and identifying
the malicious nodes. In data-centric sensor networks, data is
typically aggregated for energy-efficiency [27]. Since sensor
networks are highly unstructured, both routing and aggregation
of data occurs in an ad-hoc manner depending on current
resource distributions and current (localized) sensing activ-
ity. It is therefore extremely difficult to identify vulnerable
nodes/network zones apriori. Therefore there is a need to
develop a broad spectrum of dynamic defense mechanisms
for detecting such malicious behavior.

In this paper, we propose a new lightweight security proto-

col to provide data integrity. Data integrity is the assurance
that the data received by the destination is the same as
generated by the source. Data Integrity ensures that data is
unchanged from its source and has not been accidentally or
maliciously altered. Integrity attacks modify content without
the knowledge or permission of the owner. The key advantages
of the protocol are: 1) The protocol is simple; 2) it needs
very few bits in the header (as low as three bits). This results
in negligible bandwidth overhead; 3) the protocol poses very
less computational overhead (it needs to compute just a hash
as compared to multiple complex operations required by any
cryptographic implementation for verifying authenticity).

The rest of the paper is organized as follows: Section
2 describes current network security trends specially for
data integrity. Section 3 describes our protocol for providing
integrity. In Section 4 we present the communication and
computational overhead imposed by our protocol and analyze
the performance. Finally, we conclude in Section 5.

2. RELATED WORK

Data integrity is the assurance that the data received by the
destination is the same as that generated by the source and has
not been accidentally or maliciously altered enroute. Integrity
attacks modify content without the knowledge or permission
of the owner.

The security community has paid vast attention to confi-
dentiality issues, which are solved through encryption of data
transmissions such as email or encrypting files in storage.
While encryption has been possible for decades, this security
technique lags in implementation in sensor networks due to
complex key management and low processing and memory
capabilities of sensor networks. Asymmetric cryptographic
techniques might not be possible at all in sensor networks [26].
Symmetric cryptographic techniques though implementable,
still consume lot of energy. The issue of denial of service
attacks began to be solved through better intrusion detection,
high-speed reaction mechanisms, redundancy, fault tolerance,
better disaster planning and system reconstitution.

Integrity mechanisms have been part of the computer secu-
rity professional’s arsenal in many forms. The simplest method
is called CRC or a Cyclic Redundancy Check. The contents of
the file are XORed with another set of (random) data and the
results create an integrity key. When the reverse CRC process
is run, and if the integrity key doesn’t match the original, the
file has been corrupted in some form and cannot be trusted.

A stronger integrity method is called Message Authentica-
tion Code (MAC) [28], a cryptographic technique that is based
on the Data Encryption Standard. Again, a key is generated
when the file is ’sealed’. Upon decoding, the key must match
if the files are to be trusted. MAC is based on a secret key
shared between the communicating parties, i.e., source and
destination. Key distribution in sensor networks is an on going
research issue [29], [30], [31].

Though, cryptographic techniques can ensure complete se-
curity, they are very computational intensive and consume lot
of energy. Moreover, in many scenarios, all security issues

need not be addressed. For instance, consider a sensor network
deployed for intrusion detection. Once a sensor S detects
an intruder, it sends an alert message to the base station.
Encrypting the alert message need not essentially prevent
someone from realizing the contents of the message itself. For
another scenario, consider a sensor network deployed to detect
fires by monitoring the temperature. Once the base station gets
a packet from a sensor that has a temperature reading greater
than some threshold, a warning might be issued. In these cases,
it is more important that message integrity is ensured than
message secrecy.

3. DATA INTEGRITY-LIGHTWEIGHT NETWORK LAYER

SECURITY

We present a lightweight algorithm to preserve the integrity
of messages in a sensor network even in presence of compro-
mised nodes. Our protocol prevents compromised nodes from
changing the contents of a packet. Our mechanism can be used
upon any other security protocol with slight modifications. Our
mechanism can be modified to work even with as low as three
bits. Even with just three bits in header, a compromised node
could send only a few packets (less than 10 packets in 99.9%
of cases) before being detected.

Our schemes add little or no overhead to the node’s critical
forwarding path. In fact, the only invariant that we can depend
on is that a packet from the attacker must traverse all of the
nodes between it and the victim.

A. Assumptions

We assume a sensor network that is logically represented as a
set of clusters. Several protocols have been proposed to effi-
ciently divide the network into clusters and elect cluster heads
[32], [33], [34]. The cluster heads form a d-hop dominating
set. A node either becomes a cluster head, or is at most d hops
from a cluster head. Cluster heads form a virtual backbone and
may be used to route packets for nodes in their cluster. The
value of d is a parameter of the network. We assume that
multiple malicious nodes might be present in the network and
the nodes would not collaborate with each other.

B. The protocol

We propose an effective mechanism to prevent compromised
router nodes from modifying the contents of a packet. Our
mechanism can work even with as low as three bits as
we illustrate later in this section. With just three bits, a
compromised router could send few packets (less than 10
packets in 99.9% of cases) before being detected. We first
present a generalized version of our mechanism in which we
assume the available header space to be 2t + 1 bits. Later in
the section, we examine the different choices of t.

We divide the (2t + 1)-bit header space into three fields a
t-bit One-hop Neighbor Authentication Field (ONAF), a t-bit
Two-hop Neighbor Authentication field (TNAF) and a 1-bit
flag field as shown in Table 1.

Our scheme is based on a lightweight strategy. We define
for each cluster head x the set N(x), which contains the nodes

TABLE 1: HEADER SPACE ALLOCATION FOR DIFFERENT FIELDS FOR

AUTHENTICATION PURPOSE

ONAF TNAF Flag
4 bits 4 bits 1 bit

in G that are neighboring cluster heads of x (which does not
include the x itself). That is,

N(x) = y : (x, y) ∈ E and y �= x

The security of our scheme is derived from a secret key
k(x) that is shared by all the cluster heads in N(x), but not
by x itself. This key is created in a setup phase and distributed
securely to all the members of N(x). Note, in addition, that
y ∈ N(x) if and only if x ∈ N(y).

When a cluster head s wishes to send a packet P to be
forwarded by a neighboring cluster head, x, it sets the above
fields as follows:

ONAF = h[P, k(x)]

Flag = 0

where h is a cryptographic keyed-hash function that is
collision resistant using a key. s and d are the source and
destination addresses present in the packet P and the T is
the marking in the packet used for traceback and set by the
underlying traceback mechanism being used. When the cluster
head x receives a packet P from one of its neighbors y, it
verifies the authenticity of the packet as follows:

Node x computes h[P, k(y)] and compares it with TNAF.

• If the are same, then x does the following operations:

TNAF ← ONAF

ONAF ← h[P, k(z)]

z being the cluster head to which the packet is being
forwarded by x

Flag = 1

to indicate that it is not the originator of the packet.
• If the values are different, and if the Flag is not set

to 0 then immediately x can decide that y has been
compromised.

• If Flag is set to 0, then x definitely marks the packet.

The protocol follows a leap frog approach. Each cluster
head verifies if the packet was modified by previous node by
checking the hash value of the packet generated by the up tree
node that is two hops far away from it. If the verification fails,
the previous node has either originated the packet (which is
indicated by the flag) or has modified the packet.

4. ANALYSIS AND RESULTS

In this section, we analyze the overhead (bandwidth and
computational) and the performance of our protocol.

A. Bandwidth Overhead

We present some simulation results on number of header bits
the protocol needs. A node malicious y can successfully escape
from being detected with a probability of 1/2t. When t = 4,
this probability is 1/16, and the node will be discovered with
a probability of 15/16. The probability of y passing this test
for more than three packets is less than 0.00025. That is, in
more than 99.97% of cases, y will be discovered even before it
could modify three packets. To generalize, the probability that
a node can change and send p packets without being detected
is (1/2t)p. Figure 1 illustrates this for different values of t and
p. It should be noted that even with t = 1, 99.6% of times, a
malicious node will be detected even before it can change 8
packets. In Figure 2 it is shown the required size of the header
field (t) so as to detect a malicious node before modifying a
given number of packets with a given probability. It could be
noted that even with a modest total header space of 5 bits, a
node would be detected even before it is able to modify four
packets.

Once a cluster head discovers one of its neighbors as
compromised, it can report it to the base station for further
action and also broadcast the entire network alerting all nodes
about this node.

Fig. 1: Probability a node can change p

B. Computational Overhead

As explained earlier, our mechanism is quite effective even
with just three bits. The hash function generates a keyed hash
value on source and destination addresses and all other fields
being marked by the underlying mechanism. Thus, the hash
function operates over an input of 70 bits apart from the key
itself and at each node at most two such hash values will be
generated for each packet. Hence, computing the hash values
hardly poses any processing or computational overhead on the
node.

C. Future work

The protocol we presented is a lightweight protocol that
ensures end-to-end data integrity of a packet. When data
aggregation protocols are being implemented in the network,
then a node that is receiving an aggregated packet might no
longer be able to verify the integrity. We will investigate this
case and enhance our protocol. A simple technique might be
to forward the aggregated packet along with the packets from

Fig. 2: Probability of detecting a malicious node for a given number packets

which the aggregated packet was generated to the next base
station, which verifies that the aggregation has properly taken
place. Then, the original packets can be discarded and only
the aggregated packet can be forwarded on.

5. CONCLUSIONS

In this paper, we presented a novel lightweight strategy
to ensure data integrity. Our protocol is based on leapfrog
strategy in which each cluster head verifies if its previous
node has preserved the integrity of the packet using the secret
key it shares with two hop uptree node. The key advantages
of the protocol include: the protocol is simple; it needs
very few header bits, as low as three bits, thus resulting in
negligible bandwidth overhead; the protocol poses very low
computational overhead, it needs to compute just a hash as
compared to multiple complex operations required by any
cryptographic implementation for verifying authenticity. We
also discussed the performance of the protocol.

ACKNOWLEDGMENTS

This work was supported in part by the NSF under Grants
CNS # 0413187.

REFERENCES

[1] I.F. Akyldiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, “Wireless
Sensor Networks: A Survey,” Computer Networks, Vol. 38, No. 4, pp.
393-422, March 2002.

[2] D. Estrin and R. Govindan, “Next Century Challenges: Scalable Coor-
dination in Sensor Networks,” in Proc. ACM/IEEE Conf. Mobicom’99,
pp. 263–270, Aug. 1999.

[3] H. Abelson et. al., “Embedding the Internet: Amorphous Computing,”
in Communications of ACM, Vol. 43, No. 5, pp. 74–82, May 2000.

[4] G. Borriello, R. Want, “Embedding the Internet: Embedded Computation
Meets the World Wide Web,” in Communications of ACM, Vol. 43, No.
5, pp. 59–66, May 2000.

[5] G. J. Pottie, W. J. Kaiser, “Embedding the Internet:Wireless Integrated
Network Sensors ,” in Communications of ACM, Vol. 43, No. 5, pp.
51–58, May 2000.

[6] G. S. Sukhatme, M. J. Mataric, “Embedding the Internet: Embedding
Robots into the Internet ,” in Communications of ACM, Vol. 43, No. 5,
pp. 67–73, May 2000.

[7] A. Wood and J. Stankovic, “Denial of Service in Sensor Networks,”
IEEE Computer, pp. 54–62, October 2002.

[8] L. Zhou and Z. Haas, “Securing Ad-Hoc Networks, IEEE Network
Magazine, Vol. 13, No. 6, pp. 24-30, 1999.

[9] NAI Lab , www.nai.com/nai labs/asp set/crypto/ crypt senseit.asp

[10] A. Perrig, R. Szewczyk, V. Wen, A. Woo,, ”Security for
SmartDust Sensor Network” http://www.cs.berkeley.edu/ vwen/classes
/f2000/cs261/project/sensor security.html .

[11] F. Stajano and R. J. Anderson, ”The resurrecting duckling: Security
issues for ad-hoc wireless networks”, in Seventh International Security
Protocols Workshop, 1999, pp. 172–194.

[12] J. Hubaux, L. Buttyan, S. Capkun, ”The quest for security in mobile ad
hoc networks”, in Proceedings of the ACM Symposium on Mobile Ad
Hoc Networking and Computing (MobiHOC 2001), 2001.

[13] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, ”Providing robust and
ubiquitous security support for mobile ad-hoc networks, in ICNP, 2001,
pp. 251-260.

[14] M. G. Zapata, ”Secure ad-hoc on-demand distance
vector (SAODV) routing”, IETF MANET Mailing List,
Message-ID: 3BC17B40.BBF52E09@nokia.com, Available at
ftp://manet.itd.nrl.navy.mil/pub/manet/2001-10.mail, October 8, 2001.

[15] H. Luo, P. Zefros, J. Kong, S. Lu, and L. Zhang, ”Self-securing ad
hoc wireless networks”, in Seventh IEEE Symposium on Computers and
Communications (ISCC 02), 2002.

[16] J. Binkley and W. Trost, ”Authenticated ad hoc routing at the link layer
for mobile systems”, Wireless Networks, vol. 7, no. 2, pp. 139-145, 2001.

[17] B. Dahill, B. N. Levine, E. Royer, and C. Shields, ”A secure routing
protocol for ad-hoc networks”, Electrical Engineering and Computer
Science, University of Michigan, Tech. Rep. UM-CS-2001-037, August
2001.

[18] J. Kong, H. Luo, K. Xu, D. L. Gu, M. Gerla, and S. Lu, ”Adaptive
security for multi-layer ad-hoc networks”, Special Issue of Wireless
Communications and Mobile Computing, Wiley Interscience Press,
2002.

[19] Y.-C. Hu, D. B. Johnson, and A. Perrig, ”SEAD: Secure efficient distance
vector routing for mobile wireless ad hoc networks”, in Proceedings of
the 4th IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA 2002), June 2002, pp. 313.

[20] Y.-C. Hu, A. Perrig, and D. B. Johnson, Ariadne: ”A secure on-demand
routing protocol for ad hoc networks”, Department of Computer Science,
Rice University, Tech. Rep. TR01-383, December 2001.

[21] S. Basagni, K. Herrin, E. Rosti, and D. Bruschi, ”Secure pebblenets,
in ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc 2001), October 2001, pp. 156-163.

[22] P. Papadimitratos and Z. Haas, ”Secure routing for mobile ad hoc
networks”, in SCS Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS 2002), January 2002.

[23] S. Marti, T. J. Giuli, K. Lai, and M. Baker, ”Mitigating routing
misbehavior in mobile ad hoc networks, in Sixth annual ACM/IEEE
Internation Conference on Mobile Computing and Networking, 2000,
pp. 255-265.

[24] S. Buchegger and J.-Y. L. Boudec, ”Nodes bearing grudges: Towards
routing security, fairness, and robustness in mobile ad hoc networks”, in
Proceedings of the Tenth Euromicro Workshop on Parallel, Distributed
and Network-based Processing. Canary Islands, Spain: IEEE Computer
Society, January 2002, pp. 403-410.

[25] J. Kong, Xiaoyan Hong, Mario Gerla, ” An Anonymous On Demand
Routing Protocol with Untraceable Routes for Mobile Ad-hoc Net-
works”, UCLA Computer Science Department Technical Report 030020

[26] A.Perrig, R.Szewczyk, V.Wen, D.Culler and J.D. Tygar, ”Spins: Security
Protocols for Sensor Networks”, Proc. of 7th Int’l Conf. on Mobile
Computing and Networks, July 2001.

[27] B. Krishnamachari, D. Estrin, S. Wicker, “Modeling Data-Centric
Routing in Wireless Sensor Networks,” in Wireless Sensor Network
Applications WSNA 2002, June 2002.

[28] RFC 2104, “HMAC: Keyed-Hashing for Message Authentication,”
http://www.ietf.org/rfc/rfc2104.tx

[29] D. Liu and P. Ning, ”Establishing Pairwise Keys in Distributed Sensor
Networks,” 10th ACM Conference on Computer and Communications
Security (CCS ’03), Washington D.C., October, 2003.

[30] Wenliang Du , Jing Deng , Yunghsiang S. Han , Pramod K. Varsh-
ney,“A pairwise key pre-distribution scheme for wireless sensor net-
works,”Proceedings of the 10th ACM conference on Computer and
communication security, October 27-30, 2003, Washington D.C., USA

[31] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient Security Mechanisms
for Large-Scale Distributed Sensor Networks. Proc. of the 10th ACM
Conference on Computer and Communications Security (CCS ’03),
Washington D.C., October, 2003

[32] S. Bandyopadhyay and E. Coyle , ”An Energy-Efficient Hierarchical
Clustering Algorithm for Wireless Sensor Networks, in Proceedings”,
of IEEE INFOCOM 2003, April 2003.

[33] A. D. Amis, R. Prakash, T. H. P. Vuong and D. T. Huynh, ”Max-Min
D-Cluster Formation in Wireless Ad Hoc Networks”, in Proceedings of
IEEE INFOCOM 2000, March 2000.

[34] Hongwei Zhang, Anish Arora, ”GS3: Scalable Self-configuration and
Self-healing in Wireless Sensor Networks”, Computer Networks (Else-
vier), 43(4):459-480, November 15, 2003.

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004
	brhs73:
	pagenumber73: 73
	blhs73:
	pagenumber74: 74
	brhs74:
	brhs75:
	pagenumber75: 75
	pagenumber76: 76
	brhs76:
	brhs77:
	pagenumber77: 77
	pagenumber78: 78
	brhs78:

