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Abstract 
 

Scalable Reliable Multicast Protocols have been 
the subject of much research in recent years.  We 
propose a new protocol that groups receivers for 
error recovery into fixed-size groups, thus 
reducing their processing requirement to O(1).  
This means that, regardless of the size of the 
multicast session, the processing requirements for 
receivers remains constant.  The processing 
requirement on the sender is tunable according to 
its processing capabilities and/or the expected 
multicast session size.  The concept of Local 
Recovery is then applied which further improves 
the processing requirements, especially on the 
sender.  The processing requirements on both the 
sender and the receiver are analytically studied, 
and compared with another same-class protocol. 
 
Keywords: Reliable multicast, retransmission 
scoping, receiver grouping. 
 
1. Introduction 
 

Internet Multicasting refers to the delivery of 
data packets from a source (sender) to a set of 
destinations (receivers), rather than just a single 
destination [1].  Data packets can be sent from the 
sender to each receiver separately, but that would 
be wasteful of network bandwidth and of the 
sender's processing power.  Instead, using 
multicasting, network routers perform replication 
of data when necessary to eventually reach all 

destinations.  The sender in this case only sends 
out one copy of the data.  The receivers, 
collectively, make up a multicast group. 

The area of reliable multicast transport protocols 
has been a very active research area of the past few 
years.  Many applications such as shared 
whiteboard, file replication and update, stock quote 
dissemination, web cache update, among others, 
require reliable multicast.  Many researchers have 
been attempting to create one generic protocol that 
will be suitable for all applications. It has been 
realized, however, that there is no one protocol that 
serves this purpose.  Applications must have 
greater control over the segmentation and framing 
of data units.   
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Fig. 1. Retransmission Scoping Problem 
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On the other hand, there has been a flood of new 
multicast protocols, each trying to serve a different 
multicasting need or trying to improve on an 
existing protocol. However, one major problem to 
overcome with all protocols is the retransmission 
scoping problem [5] as depicted in Fig. 1. This has 
to do with the unnecessary processing overhead 
that is imposed on a receiver that has already 
received a packet correctly.  The problem in 
reliable multicast is how to scope retransmissions 
so as to shield receivers and the links leading to 
them form loss recovery due to other receivers [5]. 

In this paper we focus on processing 
requirements at the receivers and at the sender, 
with the conjecture that network bandwidth will 
keep outgrowing processing speeds for the next 
few years.  Therefore, we devise new schemes for 
congestion control in multicast enabled internets 
that minimize processing requirements on 
receivers (which constitute the bulk of the 
network) as well as reduce or tune those 
requirements on senders.  We devise a new 
approach to error recovery in negative 
acknowledgement (NACK)-based multicast 
transport protocols, and then we combine it with 
the well-known approach of Local Recovery to 
achieve even greater reduction in processing 
requirements. 
 
2.   Related Work 

 
Several reliable multicast protocols and 

architectures have been proposed.  One of the 
leading protocols is (scalable reliable mult icast) 
SRM [2], which is NACK-based. SRM suffers 
from the unwanted redundant packets sent to 
receivers due to the fact that retransmissions are 
multicast to the whole group, which is wasteful of 
bandwidth and receiver processing power. The 
concept of local recovery helps SRM reduce global 
retransmissions by isolating domains of loss, but 
the local groups can themselves suffer from the 
same global problem should the size of the 
multicast session grow too large.  Other protocols 
like LBRM [4] and RMTP [8] (and others like [3]) 
use a hierarchical approach with designated 
receivers to supply repairs to lower-level receivers.  
But the placement of such designated receivers and 
their processing requirements are not fully studied. 

The first analytical attempt in [9] and [10] to 
study the performance of reliable multicast 
protocols paved the way for researchers in this 
area.  In [9], the performance of two fundamental 
classes of reliable multicast protocols were 
compared, namely, the sender-initiated and the 
receiver-initiated classes.  Many other protocols 
were designed that belonged to neither category.  
In effect, two more categories were added by [7], 
namely the ring-based protocols and the tree-
based protocols.  The analysis and results can be 
found in [11] and will be skipped here for space 
limitations. 
 
3.   Protocols and System Model 
 
A. System Model 
 

This model consists of one sender S multicasting 
a continuous stream of packets to R receivers.  The 
model could possibly be extended to have R 
receivers where any receiver has an equal chance 
of being a sender itself.  For our model we assume: 
• All loss events at all receivers for all 

transmissions are mutually independent; 
• The probability of packet loss, p, is 

independent of the receiver; 
• ACKs (positive acknowledgments) and 

NACKs (negative acknowledgments) are never 
lost and these packets (referred to as control 
packets) are typically small; 

• Processing requirements at the hosts are more 
important than network bandwidth in 
determining the throughput of reliable 
multicast protocols. 

 
B. Protocol Description 
 

Receiver Grouping is a process that randomly 
groups n receivers for the purpose of packet loss 
recovery.  In the global mode of the protocol, S 
acts as a Match Maker and, upon request, groups n 
receivers with each other, (n-1) of which had been 
waiting to be grouped in a queue at S.  While in the  
queue, these receivers will recover lost packets 
from S. 

The new protocol proposed in this paper [6], 
called the K protocol, tries to achieve optimal 
processing requirements on both the sender and the 
receivers without incurring heavy additional 
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bandwidth.  It utilizes a new and efficient error 
recovery scheme.  The protocol exhibits the 
following properties: 
• It utilizes a receiver-initiated loss recovery 

scheme; 
• It is NACK-based; 
• The sender is generally not involved in the 

recovery of lost packets, unless no other 
receiver can provide the missing packets; 

• It introduces the concept of receiver grouping.  
A variation of this protocol uses local receiver 
grouping in order to reduce congestion further 
on the network. 

The K protocol exhibits the following behavior: 
• Upon joining a multicast group (session), a 

receiver Ri initially pairs up with the sender S 
until a group G of n receivers is formed; 

• Receiver Ri informs S that it is looking for a 
group; 

• S saves the address of Ri in a queue and waits 
until enough receivers request grouping; 

• Upon receiving a request for grouping, S 
checks if it has (n-1) receivers waiting for 
grouping.  If so, then S informs Ri and all other 
(n-1) receivers in the queue that all of them are 
going to be buddies in the same group for the 
purpose of error recovery.  At that moment, Ri  
drops its pairing with S and groups with its 
new buddies in G.  If there are no receivers 
waiting for grouping, S behaves as in the 
previous step; 

• All receivers in G now use point-to-point 
(peer-to-peer) communication for error 
correction in a NACK-based fashion (as 
opposed to multicasting their NACKs).  When 
group members detect lost packets, they use 
one of several possible group recovery 
schemes (see section E).  The schemes work in 
such a way that all n receivers will end up 
having the missing packet.  If at least one 
member has it, then S should not be bothered 
and all members should recover their loss from 
that one receiver.  Only if none of the receivers 
in G has a missing packet does S get consulted; 

• Upon leaving a multicast session, a receiver 
informs its group members that it intends to 
leave.  The group members then break the 
group and act as if is they have just joined the 
session, i.e. they pair with S until enough 
members are found to form a new group; 

• If some receiver in a group is not responding, 
then its buddies in the group can detect this 
either by polling it periodically, or by expiring 
timeouts, in which case they behave as in the 
previous step; 

• If a receiver Ri has been dropped (dumped) by 
its group members, then upon reestablishing a 
contact with any of the former members, Ri is 
informed that it needs to find another group. Ri 
then behaves as if it's joining anew. 

 
C. Observations  
 

We observe the following properties for the K 
protocol: 
• S acts as a match maker in forming G; 
• Protocol K is stateless with respect to 

grouping, i.e. it keeps no record of which 
receivers are grouped with each other at any 
point in time.  Statelessness is very important 
to have; otherwise, it would be very costly in 
terms of memory requirements for a server to 
remember all groups.  In addition, that 
information will become stale very quickly due 
to the dynamic nature of receivers joining and 
leaving a multicast session; 

• Unless there are delays in processing 
groupings, for example due to insufficient 
processing power, no more than (n-1) receivers 
should pair with S at any point in time, since 
they will end up being grouped with each 
other; 

• If R, the total number of receivers, is a 
multiple of n, then R/n groups will be formed 
with no leftover receivers.  Otherwise we will 
have at most (R mod n) receivers paired with S 
at any point in time. 

It is worthy to note that all receivers are required 
to group under K and it is assumed that none of 
them are incapable of doing so. 
 
D. Example  
 

The operation of the K protocol is depicted in 
Fig. 1.  In this example, there is one sender S and 
seven receivers, R1 through R7. The requests for 
grouping randomly arrive at S from R2, R4, R1, 
R6, R3, R5 and R7 respectively in that order.  The 
resulting groupings are shown in the figure.  
Receivers R3 through R7 lose the packet/segment 
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and request repairs from their buddies in the group.  
In group (R2, R4, R1), R4 did not have the packet 
so it recovered it from R4.  All receivers in the 
group (R6, R3, R5) lost the segment, so one of 
them (R5 in this case) recovered the segment from 
S and supplied it to all others.  Note that since       
7 mod 3 = 1, only one receiver (the last to request 
grouping), namely R7, did not find a group, so it 
paired with S for error recovery, awaiting a group. 

 

 
 
 
 
 
E. Group Recovery Schemes 
 

Receivers in a group of size n can deploy several 
error recovery schemes, but some can be more 
efficient than others, especially when a large 
number of receivers in the group did not receive a 
multicast packet. However, since the number of 
receivers in a group is constant, even a total 
ordering on the sending of NACKs and 
retransmissions, an O(n2) operation, would not 
pose a severe threat on the processing load of the 
receivers in a group. Three recovery schemes can 
be found in [6], each with its advantages and 
disadvantages. 

F. Effect of Grouping on Sender 
 

The grouping operation involves the reception of 
n messages from n receivers, the storage of the 
addresses of (n - 1) receivers until they get 
grouped, and the sending of n messages to all n 
receivers informing them that they are to form a 
group.  Message sizes in this operation are very 
small and the storage needed is insignificant.  At 
most, (n - 1) additional storage buffers are needed 
on the server to store the addresses of (n - 1) 
receivers waiting to be grouped; once the nth 
receiver requests grouping, all (n - 1) buffers are 
released. In addition, grouping is generally a one-
time operation for each group of n receivers for the 
life of a multicast session, provided the receivers 
remain healthy for the duration of the session.  
Therefore, in the best case, grouping only requires 
the sender to process a total of 2R messages during 
the life of the session.  In the worst case, all 
receivers join the session simultaneously - an 
unlikely scenario - in which case S receives R 
requests for grouping and is then expected to 
perform R/n grouping operations.  In reality, 
receivers dynamically join/leave multicast sessions 
at different points in time, although a surge could 
be expected at the beginning of a multicast session. 

 
4.   Processing Cost Analysis  

 
In order to understand the improvements 

achieved with the K protocol, we now analyze the 
processing requirements on receivers as well as on 
the sender.  We follow the same analysis and use 
the same notation presented in [10] and [9].  The 
notation used in the processing cost analysis is 
described in Table 1. 
 
A. The Receiver 
 

In order to analyze the processing requirements 
at a receiver Ri, we must first consider the 
following facts: 

• Ri only receives NACKs from its buddies in 
the group, which amount to at most (n - 1) 
NACKs; 

• Ri supplies its (n - 1) buddies with missing 
packets via point-to-point communication, at 
most (n - 1) times per packet transmission or 
loss; 

Fig. 2. Example of the operation of K 
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• A receiver asks S for a lost packet only if 
none of its buddies in the group have it.  
This takes place at most once per packet 
transmission/loss. 

In doing performance analysis at the receiver we 
must consider the time it takes each receiver to do 
the following: 

• obtain data from higher layers; 
• process NACK from (n - 1) buddies; 
• send (n - 1) NACKs to its buddies or to S if 

none have the packet; 
• process received packet from buddies (at 

most (n - 1) times) or from S (once); 
• send packet to buddies (at most (n - 1) 

times). 
Therefore, the expected processing time at the 
receiver can be expressed as the sum of the above 
times to get 
 

YK = Yf + (n - 1)Yn + (n - 1)Xn +  
(n - 1)Yp + (n - 1)Xp. 

 
Taking the expectation of YK we get 
 
  E[YK ] = E[Yf ] + E[(n - 1)]E[Yn ] +  

    E[(n - 1)]E[Xn ] + E[(n - 1)]E[Yp ]+  
    E[(n - 1)]E[Xp]. 

  
Now since E[n] = n for constant n, we get E[YK] = 
O(n).  Therefore, E[YK]∈O(1).  

This means that the processing requirement at 
the receiver is constant and is independent of R, 
which is a highly desirable property in order to 
achieve optimality, and is the major result of this 
paper. 
 
B. The Sender 
 

We are interested in the mean processing 
requirement per packet in order for the sender to 
multicast packets reliably to all of the receivers.  
Processing requirements at the sender can be 
expressed as the total time needed to perform the 
following: 

• prepare and transmit the first packet 
• process all NACKs sent by receivers 
• process all retransmissions to receivers in 

response to the NACKs 
 
 

 
 

Xf Sender time to feed packet from application to 
transport layer 

Xp Sender time to process transmission of a packet 

Xn Sender time to process a NACK 

Yp Receiver time to process a newly received packet 

Yt Receiver time to process a timeout 

Yn Receiver time to process and transmit/receive a 
NACK 

p loss probability at a receiver 

M Number of receivers requesting repair from sender 

R Total number of receivers in session 

n Number of receivers is a group 

Xw, 
Yw 

Send and receive packet processing time in 
protocol w. 

 
B. The Sender 
 

Therefore, the expected processing requirements 
at the sender under the K protocol can be expressed 
as XK = Xf + M(Xn + Xp), where M is the number of 
receivers requesting repair from S when their 
buddies cannot supply the lost packet.  Taking the 
expectation of XK we get  
 

E[XK] = E[Xf] + E[M](E[Xp] + E[Xn]). 
 
  It is worthy here to note that error correction from 
the sender is done on a one-to-one unicast 
communication channel.  Therefore, we are 
interested in finding the number of receivers that 
will request correction from S. 

The probability of a group (R1, R2, ... ,Rn) not 
receiving a packet is now reduced to pn.  We can 
now treat the system as a session of R/n receivers 
(each being a group of n receivers) with the 
probability of losing a packet of pn.  The expected 
value of M can now be given as E[M] = (pn/n)R. 
Substituting in E[XK] we get 

 
E[XK] = E[Xf] + (pn/n)R (E[Xp] + E[Xn]). 

 
Please note that the n in Xn is for NACKs and is 
not the same as the size of a group.  Therefore,  
 

E[XK] ∈O(1 + (pn/n)R). 
 
As p ?  0, E[XK] = O(1).  The sender’s processing 
requirements can thus be tuned to its capabilities, 
by changing the size of the group (n).  The larger 

Table 1.  Notation 
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the receiver group size, the less the sender’s 
processing requirements, as more error correction 
takes place within each group.  This can be 
illustrated in Fig. 3 where a significant processing 
improvement was achieved by increasing the 
receiver group size from 5 to 7 in K, while 
maintaining a 20% probability of packet loss.  The 
dashed line corresponds to K, and the solid line to 
a receiver-initiated class of protocols with NACK 
avoidance (RINA) [11] that exhibits a sender’s 
requirement of O(1 + pln(R)/( 1 - p)), and a 
receiver’s requirement of O(1 – p + pln(R)).  The 
major drawback of RINA is the receiver’s 
processing requirements; this has been reduced to 
O(1) in K. 
 

 
(a) p = 0.2, n = 5 

 

 
(b) p = 0.2, n = 7 

 
 
Fig. 3. RINA (solid line) vs. K (dashed line) – 

increasing group size from 5 to 7. 
 

5.   Grouping with Local Recovery 
 

We combine the concept of local recovery [3], 
[4], [8], with that of grouping to achieve even 
lower processing requirements on the sender.  The 
major difference in this modified K protocol, 
which we will call KL, is that repair servers 
(special designated nodes in the network) now play 
the role of the sender in terms of grouping and 
error recovery.  Only if a repair server does not 
have a lost packet does it consult the sender or 
another repair server in the hierarchy.  The details 
of the KL protocol are given in [6], in which the 
sender’s processing requirements is shown to be 

 
E[XKL] ∈O(B(1-p) + Bpln(B)) 

 
where B is the branching factor of the network.  
Notice that if p is constant, then E[XKL] 
∈O(Bln(B)), and that if p ?  0, then E[XKL]= 
O(1), which is always a desirable property.  The 
receiver’s processing requirements under KL 
remains constant since the group size does not 
have to change, and neither do the recovery 
schemes.  In addition, as far as the receiver is 
concerned, the local repair server is 
indistinguishable from the sender.  Therefore, 
E[YKL]= O(1). 
 
6.   Conclusions 

 
In this paper we introduced the new concept of 

receiver grouping as a new model for requesting 
error correction in a multicast session. The major 
contribution is that the processing requirements on 
the receiver side have been reduced to O(1) – a 
constant!  This was achieved with the K protocol, 
in which a receiver need not process unwanted 
packets resulting from multicast retransmissions 
due to other receivers.  The sender’s processing 
requirements under K can be tuned to its 
capabilities, by changing the size of the receiver 
group.  The concept of local recovery was applied 
to further reduce the processing requirements on 
the sender resulting in the KL protocol, while 
maintaining the constant processing requirements 
on the receivers. 

Our work can proceed in several directions since 
there are many unresolved issues to deal with.  
First, the choice of the group size is critical before 
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a multicast session starts, so the question is how to 
optimally choose n, and whether this choice can be 
altered dynamically during a multicast session and 
the effect this may have on the sender, receivers 
and network bandwidth.  Another direction is to 
find the optimal group recovery scheme within 
each group, based on what the receivers know 
about each other and whether they have a lost 
packet or not.  One other possibility is to consider 
electing a group leader, and then have the leaders 
join a separate multicast session for error recovery. 
Finally, the effect of grouping on network 
bandwidth can be studied, aside from the 
processing requirements on receivers. 
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