
 1

Title: Scalable Reliable Multicast Using Receiver Grouping

Author 1: Elias G. Khalaf
 Assistant Professor

Department of Mathematics and Computer Science
6363 St. Charles Ave., Campus Box 35
Loyola University New Orleans
New Orleans, LA 70118

Email: ekhalaf@loyno.edu

Phone: (504) 865-2024
Fax: (504) 865-2051

Author 2: S. Sitharama Iyengar
 Professor and Chairman

Department of Computer Science
298 Coates Hall
Louisiana State University
Baton Rouge, LA 70803

Email: iyengar@csc.lsu.edu

Phone: (225) 578-1252
Fax: (225) 578-1465

Author Presenting Paper: Elias G. Khalaf

Keywords: Reliable Multicast Protocol Receiver Grouping

 2

Scalable Reliable Multicast Using Receiver Grouping

Elias G. Khalaf
Department of Mathematics and Computer Science

Loyola University New Orleans
6363 St. Charles Ave., Campus Box 35

New Orleans, LA 70118

S. Sitharama Iyengar
Department of Computer Science

Louisiana State University
Baton Rouge, LA 70803

Abstract

Scalable Reliable Multicast Protocols have been
the subject of much research in recent years. We
propose a new protocol that groups receivers for
error recovery into fixed-size groups, thus
reducing their processing requirement to O(1).
This means that, regardless of the size of the
multicast session, the processing requirements for
receivers remains constant. The processing
requirement on the sender is tunable according to
its processing capabilities and/or the expected
multicast session size. The concept of Local
Recovery is then applied which further improves
the processing requirements, especially on the
sender. The processing requirements on both the
sender and the receiver are analytically studied,
and compared with another same-class protocol.

Keywords: Reliable multicast, retransmission
scoping, receiver grouping.

1. Introduction

Internet Multicasting refers to the delivery of
data packets from a source (sender) to a set of
destinations (receivers), rather than just a single
destination [1]. Data packets can be sent from the
sender to each receiver separately, but that would
be wasteful of network bandwidth and of the
sender's processing power. Instead, using
multicasting, network routers perform replication
of data when necessary to eventually reach all

destinations. The sender in this case only sends
out one copy of the data. The receivers,
collectively, make up a multicast group.

The area of reliable multicast transport protocols
has been a very active research area of the past few
years. Many applications such as shared
whiteboard, file replication and update, stock quote
dissemination, web cache update, among others,
require reliable multicast. Many researchers have
been attempting to create one generic protocol that
will be suitable for all applications. It has been
realized, however, that there is no one protocol that
serves this purpose. Applications must have
greater control over the segmentation and framing
of data units.

Original transmission (lost)

Receivers

Original transmission (successful)

Retransmission

Sender

Fig. 1. Retransmission Scoping Problem

 3

On the other hand, there has been a flood of new
multicast protocols, each trying to serve a different
multicasting need or trying to improve on an
existing protocol. However, one major problem to
overcome with all protocols is the retransmission
scoping problem [5] as depicted in Fig. 1. This has
to do with the unnecessary processing overhead
that is imposed on a receiver that has already
received a packet correctly. The problem in
reliable multicast is how to scope retransmissions
so as to shield receivers and the links leading to
them form loss recovery due to other receivers [5].

In this paper we focus on processing
requirements at the receivers and at the sender,
with the conjecture that network bandwidth will
keep outgrowing processing speeds for the next
few years. Therefore, we devise new schemes for
congestion control in multicast enabled internets
that minimize processing requirements on
receivers (which constitute the bulk of the
network) as well as reduce or tune those
requirements on senders. We devise a new
approach to error recovery in negative
acknowledgement (NACK)-based multicast
transport protocols, and then we combine it with
the well-known approach of Local Recovery to
achieve even greater reduction in processing
requirements.

2. Related Work

Several reliable multicast protocols and

architectures have been proposed. One of the
leading protocols is (scalable reliable mult icast)
SRM [2], which is NACK-based. SRM suffers
from the unwanted redundant packets sent to
receivers due to the fact that retransmissions are
multicast to the whole group, which is wasteful of
bandwidth and receiver processing power. The
concept of local recovery helps SRM reduce global
retransmissions by isolating domains of loss, but
the local groups can themselves suffer from the
same global problem should the size of the
multicast session grow too large. Other protocols
like LBRM [4] and RMTP [8] (and others like [3])
use a hierarchical approach with designated
receivers to supply repairs to lower-level receivers.
But the placement of such designated receivers and
their processing requirements are not fully studied.

The first analytical attempt in [9] and [10] to
study the performance of reliable multicast
protocols paved the way for researchers in this
area. In [9], the performance of two fundamental
classes of reliable multicast protocols were
compared, namely, the sender-initiated and the
receiver-initiated classes. Many other protocols
were designed that belonged to neither category.
In effect, two more categories were added by [7],
namely the ring-based protocols and the tree-
based protocols. The analysis and results can be
found in [11] and will be skipped here for space
limitations.

3. Protocols and System Model

A. System Model

This model consists of one sender S multicasting
a continuous stream of packets to R receivers. The
model could possibly be extended to have R
receivers where any receiver has an equal chance
of being a sender itself. For our model we assume:
• All loss events at all receivers for all

transmissions are mutually independent;
• The probability of packet loss, p, is

independent of the receiver;
• ACKs (positive acknowledgments) and

NACKs (negative acknowledgments) are never
lost and these packets (referred to as control
packets) are typically small;

• Processing requirements at the hosts are more
important than network bandwidth in
determining the throughput of reliable
multicast protocols.

B. Protocol Description

Receiver Grouping is a process that randomly
groups n receivers for the purpose of packet loss
recovery. In the global mode of the protocol, S
acts as a Match Maker and, upon request, groups n
receivers with each other, (n-1) of which had been
waiting to be grouped in a queue at S. While in the
queue, these receivers will recover lost packets
from S.

The new protocol proposed in this paper [6],
called the K protocol, tries to achieve optimal
processing requirements on both the sender and the
receivers without incurring heavy additional

 4

bandwidth. It utilizes a new and efficient error
recovery scheme. The protocol exhibits the
following properties:
• It utilizes a receiver-initiated loss recovery

scheme;
• It is NACK-based;
• The sender is generally not involved in the

recovery of lost packets, unless no other
receiver can provide the missing packets;

• It introduces the concept of receiver grouping.
A variation of this protocol uses local receiver
grouping in order to reduce congestion further
on the network.

The K protocol exhibits the following behavior:
• Upon joining a multicast group (session), a

receiver Ri initially pairs up with the sender S
until a group G of n receivers is formed;

• Receiver Ri informs S that it is looking for a
group;

• S saves the address of Ri in a queue and waits
until enough receivers request grouping;

• Upon receiving a request for grouping, S
checks if it has (n-1) receivers waiting for
grouping. If so, then S informs Ri and all other
(n-1) receivers in the queue that all of them are
going to be buddies in the same group for the
purpose of error recovery. At that moment, Ri
drops its pairing with S and groups with its
new buddies in G. If there are no receivers
waiting for grouping, S behaves as in the
previous step;

• All receivers in G now use point-to-point
(peer-to-peer) communication for error
correction in a NACK-based fashion (as
opposed to multicasting their NACKs). When
group members detect lost packets, they use
one of several possible group recovery
schemes (see section E). The schemes work in
such a way that all n receivers will end up
having the missing packet. If at least one
member has it, then S should not be bothered
and all members should recover their loss from
that one receiver. Only if none of the receivers
in G has a missing packet does S get consulted;

• Upon leaving a multicast session, a receiver
informs its group members that it intends to
leave. The group members then break the
group and act as if is they have just joined the
session, i.e. they pair with S until enough
members are found to form a new group;

• If some receiver in a group is not responding,
then its buddies in the group can detect this
either by polling it periodically, or by expiring
timeouts, in which case they behave as in the
previous step;

• If a receiver Ri has been dropped (dumped) by
its group members, then upon reestablishing a
contact with any of the former members, Ri is
informed that it needs to find another group. Ri
then behaves as if it's joining anew.

C. Observations

We observe the following properties for the K
protocol:
• S acts as a match maker in forming G;
• Protocol K is stateless with respect to

grouping, i.e. it keeps no record of which
receivers are grouped with each other at any
point in time. Statelessness is very important
to have; otherwise, it would be very costly in
terms of memory requirements for a server to
remember all groups. In addition, that
information will become stale very quickly due
to the dynamic nature of receivers joining and
leaving a multicast session;

• Unless there are delays in processing
groupings, for example due to insufficient
processing power, no more than (n-1) receivers
should pair with S at any point in time, since
they will end up being grouped with each
other;

• If R, the total number of receivers, is a
multiple of n, then R/n groups will be formed
with no leftover receivers. Otherwise we will
have at most (R mod n) receivers paired with S
at any point in time.

It is worthy to note that all receivers are required
to group under K and it is assumed that none of
them are incapable of doing so.

D. Example

The operation of the K protocol is depicted in
Fig. 1. In this example, there is one sender S and
seven receivers, R1 through R7. The requests for
grouping randomly arrive at S from R2, R4, R1,
R6, R3, R5 and R7 respectively in that order. The
resulting groupings are shown in the figure.
Receivers R3 through R7 lose the packet/segment

 5

and request repairs from their buddies in the group.
In group (R2, R4, R1), R4 did not have the packet
so it recovered it from R4. All receivers in the
group (R6, R3, R5) lost the segment, so one of
them (R5 in this case) recovered the segment from
S and supplied it to all others. Note that since
7 mod 3 = 1, only one receiver (the last to request
grouping), namely R7, did not find a group, so it
paired with S for error recovery, awaiting a group.

E. Group Recovery Schemes

Receivers in a group of size n can deploy several
error recovery schemes, but some can be more
efficient than others, especially when a large
number of receivers in the group did not receive a
multicast packet. However, since the number of
receivers in a group is constant, even a total
ordering on the sending of NACKs and
retransmissions, an O(n2) operation, would not
pose a severe threat on the processing load of the
receivers in a group. Three recovery schemes can
be found in [6], each with its advantages and
disadvantages.

F. Effect of Grouping on Sender

The grouping operation involves the reception of
n messages from n receivers, the storage of the
addresses of (n - 1) receivers until they get
grouped, and the sending of n messages to all n
receivers informing them that they are to form a
group. Message sizes in this operation are very
small and the storage needed is insignificant. At
most, (n - 1) additional storage buffers are needed
on the server to store the addresses of (n - 1)
receivers waiting to be grouped; once the nth
receiver requests grouping, all (n - 1) buffers are
released. In addition, grouping is generally a one-
time operation for each group of n receivers for the
life of a multicast session, provided the receivers
remain healthy for the duration of the session.
Therefore, in the best case, grouping only requires
the sender to process a total of 2R messages during
the life of the session. In the worst case, all
receivers join the session simultaneously - an
unlikely scenario - in which case S receives R
requests for grouping and is then expected to
perform R/n grouping operations. In reality,
receivers dynamically join/leave multicast sessions
at different points in time, although a surge could
be expected at the beginning of a multicast session.

4. Processing Cost Analysis

In order to understand the improvements

achieved with the K protocol, we now analyze the
processing requirements on receivers as well as on
the sender. We follow the same analysis and use
the same notation presented in [10] and [9]. The
notation used in the processing cost analysis is
described in Table 1.

A. The Receiver

In order to analyze the processing requirements
at a receiver Ri, we must first consider the
following facts:

• Ri only receives NACKs from its buddies in
the group, which amount to at most (n - 1)
NACKs;

• Ri supplies its (n - 1) buddies with missing
packets via point-to-point communication, at
most (n - 1) times per packet transmission or
loss;

Fig. 2. Example of the operation of K

 6

• A receiver asks S for a lost packet only if
none of its buddies in the group have it.
This takes place at most once per packet
transmission/loss.

In doing performance analysis at the receiver we
must consider the time it takes each receiver to do
the following:

• obtain data from higher layers;
• process NACK from (n - 1) buddies;
• send (n - 1) NACKs to its buddies or to S if

none have the packet;
• process received packet from buddies (at

most (n - 1) times) or from S (once);
• send packet to buddies (at most (n - 1)

times).
Therefore, the expected processing time at the
receiver can be expressed as the sum of the above
times to get

YK = Yf + (n - 1)Yn + (n - 1)Xn +
(n - 1)Yp + (n - 1)Xp.

Taking the expectation of YK we get

 E[YK] = E[Yf] + E[(n - 1)]E[Yn] +

 E[(n - 1)]E[Xn] + E[(n - 1)]E[Yp]+
 E[(n - 1)]E[Xp].

Now since E[n] = n for constant n, we get E[YK] =
O(n). Therefore, E[YK]∈O(1).

This means that the processing requirement at
the receiver is constant and is independent of R,
which is a highly desirable property in order to
achieve optimality, and is the major result of this
paper.

B. The Sender

We are interested in the mean processing
requirement per packet in order for the sender to
multicast packets reliably to all of the receivers.
Processing requirements at the sender can be
expressed as the total time needed to perform the
following:

• prepare and transmit the first packet
• process all NACKs sent by receivers
• process all retransmissions to receivers in

response to the NACKs

Xf Sender time to feed packet from application to
transport layer

Xp Sender time to process transmission of a packet

Xn Sender time to process a NACK

Yp Receiver time to process a newly received packet

Yt Receiver time to process a timeout

Yn Receiver time to process and transmit/receive a
NACK

p loss probability at a receiver

M Number of receivers requesting repair from sender

R Total number of receivers in session

n Number of receivers is a group

Xw,
Yw

Send and receive packet processing time in
protocol w.

B. The Sender

Therefore, the expected processing requirements
at the sender under the K protocol can be expressed
as XK = Xf + M(Xn + Xp), where M is the number of
receivers requesting repair from S when their
buddies cannot supply the lost packet. Taking the
expectation of XK we get

E[XK] = E[Xf] + E[M](E[Xp] + E[Xn]).

 It is worthy here to note that error correction from
the sender is done on a one-to-one unicast
communication channel. Therefore, we are
interested in finding the number of receivers that
will request correction from S.

The probability of a group (R1, R2, ... ,Rn) not
receiving a packet is now reduced to pn. We can
now treat the system as a session of R/n receivers
(each being a group of n receivers) with the
probability of losing a packet of pn. The expected
value of M can now be given as E[M] = (pn/n)R.
Substituting in E[XK] we get

E[XK] = E[Xf] + (pn/n)R (E[Xp] + E[Xn]).

Please note that the n in Xn is for NACKs and is
not the same as the size of a group. Therefore,

E[XK] ∈O(1 + (pn/n)R).

As p ? 0, E[XK] = O(1). The sender’s processing
requirements can thus be tuned to its capabilities,
by changing the size of the group (n). The larger

Table 1. Notation

 7

the receiver group size, the less the sender’s
processing requirements, as more error correction
takes place within each group. This can be
illustrated in Fig. 3 where a significant processing
improvement was achieved by increasing the
receiver group size from 5 to 7 in K, while
maintaining a 20% probability of packet loss. The
dashed line corresponds to K, and the solid line to
a receiver-initiated class of protocols with NACK
avoidance (RINA) [11] that exhibits a sender’s
requirement of O(1 + pln(R)/(1 - p)), and a
receiver’s requirement of O(1 – p + pln(R)). The
major drawback of RINA is the receiver’s
processing requirements; this has been reduced to
O(1) in K.

(a) p = 0.2, n = 5

(b) p = 0.2, n = 7

Fig. 3. RINA (solid line) vs. K (dashed line) –

increasing group size from 5 to 7.

5. Grouping with Local Recovery

We combine the concept of local recovery [3],
[4], [8], with that of grouping to achieve even
lower processing requirements on the sender. The
major difference in this modified K protocol,
which we will call KL, is that repair servers
(special designated nodes in the network) now play
the role of the sender in terms of grouping and
error recovery. Only if a repair server does not
have a lost packet does it consult the sender or
another repair server in the hierarchy. The details
of the KL protocol are given in [6], in which the
sender’s processing requirements is shown to be

E[XKL] ∈O(B(1-p) + Bpln(B))

where B is the branching factor of the network.
Notice that if p is constant, then E[XKL]
∈O(Bln(B)), and that if p ? 0, then E[XKL]=
O(1), which is always a desirable property. The
receiver’s processing requirements under KL
remains constant since the group size does not
have to change, and neither do the recovery
schemes. In addition, as far as the receiver is
concerned, the local repair server is
indistinguishable from the sender. Therefore,
E[YKL]= O(1).

6. Conclusions

In this paper we introduced the new concept of

receiver grouping as a new model for requesting
error correction in a multicast session. The major
contribution is that the processing requirements on
the receiver side have been reduced to O(1) – a
constant! This was achieved with the K protocol,
in which a receiver need not process unwanted
packets resulting from multicast retransmissions
due to other receivers. The sender’s processing
requirements under K can be tuned to its
capabilities, by changing the size of the receiver
group. The concept of local recovery was applied
to further reduce the processing requirements on
the sender resulting in the KL protocol, while
maintaining the constant processing requirements
on the receivers.

Our work can proceed in several directions since
there are many unresolved issues to deal with.
First, the choice of the group size is critical before

 8

a multicast session starts, so the question is how to
optimally choose n, and whether this choice can be
altered dynamically during a multicast session and
the effect this may have on the sender, receivers
and network bandwidth. Another direction is to
find the optimal group recovery scheme within
each group, based on what the receivers know
about each other and whether they have a lost
packet or not. One other possibility is to consider
electing a group leader, and then have the leaders
join a separate multicast session for error recovery.
Finally, the effect of grouping on network
bandwidth can be studied, aside from the
processing requirements on receivers.

7. References

[1] S. Deering, “Multicast Routing in a Datagram

Internetwork,” Ph.D. Dissertation, Stanford
University, Palo Alto, CA, December 1991.

[2] S. Floyd, V. Jacobson, S. McCanne, C. Liu,

and L. Zhang, “A Reliable Multicast
Framework for Light-Weight Sessions and
Application Leve l Framing,” IEEE/ACM
Trans. Networking, Vol. 5, pp. 784-803,
December 1997.

[3] M. Hofmann, “Enabling Group

Communication in Global Netoworks,”
Proceedings of Global Networking ’97,
Calgary, Alberta, Canada, November 1996.

[4] H. W. Holbrook, S. K. Singhal and D. R.

Cheriton, “Log-Based Receiver Reliable
Multicast for Distributed Interactive
Simulation,” Proceedings of ACM
SIGCOMM, pp. 328-341, August 1995.

[5] S. Kasera, G. Hjalmtysson, D. Towsley and J.

Kurose, “Scalable Reliable Multicast Using
Multiple Multicast Channels,” IEEE/ACM
Trans. Networking, Vol. 8, No. 3, pp. 294-
310, June 2000.

[6] Elias G. Khalaf, “Congestion Control

Mechanisms for Internet Multicast Transport
Protocols”, Ph.D. Dissertation, Louisiana
State University, Baton Rouge, Louisiana,
May 2000.

[7] B. N. Levine and J. Garcia -Luna-Aceves, “A

Comparison of Known Classes of Reliable
Multicast Protocols,” Proceedings of ACM
Multimedia, November 1996.

[8] J. C. Lin and S. Paul, “RMTP: A Reliable

Multicast Transport Protocol,” Proceedings of
IEEE Infocom, pp. 1414-1424, 1996.

[9] S. Pingali, J. Kurose and D. Towsley, “A

Comparison of Sender-Initiated and Receiver-
Initiated Reliable Multicast Protocols”,
Proceedings of ACM Sigmetrics Conference,
May 1994.

[10] D. Towsley, J. Kurose and S. Pingali, “A

Comparison of Sender-Initiated and Receiver-
Initiated Reliable Multicast Protocols”, IEEE
Journal on Selected Areas in
Communications, Vol. 15, No. 3, pp. 398-406,
April 1997.

[11] S. Paul, Multicasting on the Internet and its

Applications, Kluwer Academic Publishers,
1998.

