SmartSAM: A Multisensor Network Based Framework for Video Surveillance and Monitoring

Guna Seetharaman
Electrical and Computer Engineering
Air Force Institute of Technology
WPAFB OH 45433
guna@ieee.org

Ha V. Le
Department of Electrical and Computer Engineering
Vietnam National University, Hanoi
144 Xuan Thuy, Hanoi, Vietnam
hele@hn.vnn.vn

S. S. Iyengar
Department of Computer Science
Louisiana State University
Baton Rouge LA 70803
iyengar@bit.csc.lsu.edu

R. Logananthraj
Center for Advanced Computer Studies
University of Louisiana at Lafayette
Lafayette LA 70504
logan@cacs.louisiana.edu

Abstract

A network of multi modal sensors with distributed and embedded computations is considered for a video surveillance and monitoring application. Practical factors limiting the video surveillance of large areas are highlighted. A network of line-of-sight sensors and mobile-agents based computations are proposed to increase the effectiveness. CMOS digital cameras in which both sampling and quantization occur on the sensor focal plane are more suitable for this application. These cameras operate at very high video frame rates and are easily synchronized to acquire images synaptically across the entire network. Also, they feature highly localized short term memories and include some SIMD parallel computations as an integral part of the image acquisition. This new framework enables distributed computation for piecewise stereovision across the camera network, enhanced spatio-temporal fusion, and super resolution imaging of steadily moving subjects. A top level description of the monitor, locate and track model of a surveillance and monitoring task is presented. A qualitative assessment of several key elements of the mobile agents based computation for tracking persistent tokens moving across the entire area is outlined. The idea is to have as many agents as the number of persons in the field of view, and perform the computations in a distributed fashion without introducing serious bottlenecks. The overall performance is promising when compared against that of a small network of cameras monitoring large corridors with a human operator in the loop.

Keywords: super-resolution, motion compensation, optical flow

*The author was with the Center for Advanced Computer Studies, University of Louisiana, when this work was started.
1. Introduction

Increased access to inexpensive fabrication of CMOS circuits has vitalized research in intelligent sensors with embedded computing and power aware features. Video image sensors [7], [9], and infra red detectors have been built using standard CMOS processes, with embedded digital signal processing in the pixel planes. They indicate an emerging trend in modeling the flow of information in an image processing system. The old ‘acquire, plumb, and process – in chain’ model of image processing systems would be replaced. The chain would most likely evolve into a topsorted graph comprised of: acquire-and-fuse, macro-assimilate, and meta-process stages, in which several nodes within each stage may be connected via lateral parallelism (fusion at that level). In this new paradigm, the data – at each stage of the chain would be subjected to appropriately designed intelligent processing, giving rise to a pipeline of incrementally inferred-knowledge. Insight into data representation and modeling of data flow in this framework could have a profound impact on making large surveillance systems more tractable through simpler distributed and parallel computing. The new approach would require sensor and data fusion at all levels, in both time and space. Smart CMOS pixel planes with simple and networked computational features could make video surveillance more effective and tractable. This paper is an effort to introduce a framework, and examine at least one of the newly enabled benefits of such a basic multisensor network system.

The paper is organized as follows. The basic structure of a large area video surveillance and monitoring system in the context of a busy airport is described. Some key parameters that may be used for gaging its performance are identified. Practical issues contributing to design tradeoffs are outlined. A set of currently known video imaging sensors and associated monitoring algorithms are described. A line of sight sensor network is introduced to effectively decouple the subtasks of detecting events of interest, and of tracking known tokens in space and time. A sub pixel accurate motion compensated super resolution imaging algorithm is applied as a suitable candidate to benefit from this decoupling. A description of mobile agents based computations is presented in the context of this multisensor surveillance and monitoring network. Some challenges that may have to be addressed are listed in the conclusion.

2. Basic model of distributed multi-sensor surveillance system

We present the basic factors influencing the analysis and performance of the dataflow and computation in a large-scale multisensor network, in the context of a airport surveillance system. The relevant factors are captured in Figure 1, including the dynamic computational states of the embedded software agents. The basic model assumes that some mechanism is available to distinctly locate multiple objects (persons) within its field of view, as they enter. Let \(m \) be the number of people that can check in simultaneously and pass through the pre-determined points of entry. Their exact locations are picked up by fast 3D sensors. Several multi sensors, such as X-ray and infrared cameras, may acquire additional data and tag the data to the voxel. This is in fact the origin of a spatio-temporal thread associated
with the events triggered by the moving person. Each person moves at an arbitrary pace. Let v be the average velocity. They are monitored by sensor clusters downstream. The local agents at these sensor clusters will need a speed and power proportional to $m \cdot v$. The local memory required and the monitoring complexity are $m\lambda v$. Network data flow is $m \cdot v$.

The spatio-temporal registration between two stations separated by a distance λ will be proportional to: m^2. It is envisioned that large variations in velocity can complicate the matter. In that case, simple dynamic programming approach using last recently known location as the index of search space could be exploited to reduce the complexity of the problem. Along these lines, we estimate the tracking complexity to be proportional to $m^2(1 + \alpha|v_{\text{max}} - v_{\text{min}}|)$, for the purpose of spatio-temporal registration. Further inspection reveals that the peak load on the agents would also be influenced by factor proportional to the variation. The complexity of local agent processing power, and memory requirements will scale up by a factor $(1 + \alpha|v_{\text{max}} - v_{\text{min}}|)$. In all these cases, the value of α would assume different values, one for each context.

Given a voxel and a camera whose field of view covers the same, the location of the image of the voxel in the captured video image is trivially determined if the cameras have been fully calibrated. We assume this to be the case. In a sense, this abstraction treats some clusters of sensors to be more adept at identifying distinct events; whereas, others downstream are more efficient in tracking them. Also, we do not preclude the possibility of any pair of adjacent sensors in forming ad hoc means to resolve 3D locations should there be a need triggered by local temporal events. That is, more rigorous voxel acquisition sensors are placed sporadically, and loosely coupled video cameras are widespread.
2.1 Sensors: Design, deployment, data acquisition and low level fusion.

Rapid acquisition of the 3D location (voxel occupancy) of people in their field of view is essential. A very high speed three dimensional sensor published in literature [1] may be used to acquire the 3D image of physical scenes. The sensor is constructed with an array of smart analog-pixel sensors. Each smart pixel is made of a photo cell, an analog comparator and a sample-and-hold circuit. The 3D data acquisition requires a planar laser beam to sweep through the scene. When the laser sweeps through the scene, it would produce an event of significance at various pixels at different times, – easily detected by an increase in intensity. The exact time of the event is captured which amounts to sensing the depth.

It is possible to acquire 3D data by a set of two video cameras, and not require a laser beam, or use laser minimally when necessary. Such a hybrid range and passive video sensor [15]. The sensor consists of two video cameras with significant overlap in their fields of view and similarity in their parallax. It seeks to detect a number of feature points in each view, in an attempt to establish point correspondence [Huang84] and compute 3D data. It involves spatial search for concurring observation(s) across the views. The spatial search has a well defined geometric pattern known as epipolar lines. Then, a SIMD parallel computing array makes it possible to acquire up to 15000 voxels per second [15]. In addition two image sequences are delivered by the cameras.

The computation described above is an example of low level fusion, facilitated by a pair of networked sensors with mutual access to very low-level data of each other. A number of higher-level approaches exist for stereovision; and, they differ in terms of the feature space used to detect the points of interest, and the methods used for matching them across two views, and the controllability of the observed space. Such computations, in our view, fall in the classification of macro and mid level fusion. Often they use scene knowledge and object knowledge and not the temporal signatures. That is, mutual access to the raw data of neighboring sensors and spatio-temporal fusion at low-level, we believe would offer speed, albeit with a need for post processing.

A set of omni directional (isotropic) light emitting diodes driven by a multiphase clock, and a set of omni directional light sensors can be deployed in large numbers along the corridor. These would be packaged in easily installed and networked strips. The spatio-temporal signals acquired through these rudimentary sensor nets would help reduce the camera count and increase their separation. Some of them come packaged with local micro-controllers for communication purposes. Such a sensor network is illustrated in Figure 2.

2.2 Overview of cooperative agents that monitor and track

A software agent is a program that perceives an environment through sensors and acts on the environment [14] [5]. Based on the actions performed by an agent on the environment, a software agent is classified [14] as reactive, rational, goal oriented etc. We are interested in a rational software agent that continuously plan and perform actions so as to maximize its utility. In this context we use the term agent to refer to a rational software agent.
The cooperative rational agents, by design, would maximize the effectiveness of (a) tracking people moving through a specified space, for example corridors of an airport and (b) detecting any suspicious activities of them. We assume that people enter through a security gate one at a time and an agent is responsible for monitoring and start tracking people through the gate. If there is more than one gate, say n, there must be n agents deployed to start tracking people going through each gate. Each person who is entering the gates is assigned a unique identification number (id) that is a symbol concatenated with time stamp. A useful unique id can be generated by concatenating gate number with time stamp, using which we can identify when and where a person entered into the corridors.

An agent perceives the environment through a pair strategically located video cameras so as to get a stereo view of its perceptual field as well as to have a maximal coverage in the segment of the corridors. Parker’s work [13] on placement of sensors in multi-target tracking is helpful in placing video cameras and other sensors. We use the standard techniques to synchronize all the cameras. Data fusion is done on video frames taken at the same time point, say t, to obtain the depth of the objects appearing in the video frames. In addition to receiving the inputs from a pair of video cameras, an agent receives inputs from other types of sensors to locate the positions of moving people and objects. The Line-of-Sight sensor described in previous section is one such example.

Tracking of people passing through a corridor and monitoring their activities would entail analyzing information on them which is both temporally and spatially distributed. Cooperating agents that collect spatial and temporal information over strategical locations can solve this problem. Agents interact each other via message passing. Our collaborative agent system has utility agents called agent name server and a facilitator. The agent name server translates the name into a specific address of the agent, for example its ip address so that
agent can use symbolic names of another agent to communicate. The facilitator maintains the capability and location information of each agent in the system so that it responds appropriately to the needs and request of other agents in the system. Our cooperative agent architecture is inspired by Zeus agent architecture [12] for its flexibility, capabilities and its availability.

In our context, the agents are capturing images in regular intervals (30 frames per seconds). Suppose a person is at location \(l \) at time \(t \) and the person is expected to be in a location bounded by circular area centered at \(l \) of radius \(r \) where \(r \) is the maximum distance traveled by the individual in the next time frame. Knowing the direction of the movement, the agent can narrow down the area of search further. The agent then directs image-processing algorithms to locate the person within the given area. Once the person is identified, the location of the person at the next time frame is updated. For some reason no person is identified in the region, then the area is gradually increased and the identification process continues. This is the basis of tracking. If there are more than one subject appeared in an area, it is resolved by matching with the candidates who may have moved from their previous positions. The agent-based architecture enables us to incorporate sophisticated object movement detection and tracking algorithms without any substantial modification of the system.

3. Super Resolution Imaging

The objective of super-resolution imaging is to synthesize a higher resolution image of objects from a set of images whose spatial resolution is limited by the operational nature of the imaging process. The synthesis is made possible by several factors that effectively result in subpixel level displacements and disparities between the images, to be extracted from multiview video streams.

We focus our experimental study [10] to digital video images of slow moving objects, moving steadily in the field of view of a camera fitted with a wide-angle lens. These assumptions hold good for a class of video based security and surveillance systems. Typically, these systems routinely perform MPEG analysis to produce a compressed video for storage and offline processing. In this context, however, the MPEG subsystem can be exploited to facilitate super-resolution imaging through a piecewise affine registration process which can easily implemented with the MPEG-4 procedures. A new method based on 2-D motion compensation presented in [10] is suitable to increase the effectiveness of security and surveillance systems.

The flow of computation in the proposed method is depicted in Fig. 3. Each moving object will be separated from the background using standard image segmentation techniques. Also, a set of feature points, called the points-of-interest, will be extracted. These points include places were the local contrast patterns are well defined, and/or exhibit a high degree of curvature, and such geometric features. We track their motions in the 2-D context of a video image sequence. This requires image registration, or some variant of point correspondence matching. The net displacement of the image of an object between any two consecutive
video frames will be computed with subpixel accuracy. Then, a rigid coordinate system is associated with the first image, and any subsequent image is modeled as though its coordinate system has undergone a piecewise affine transformation. We recover the piecewise affine transform parameters between any video frame with respect to the first video frame to a subpixel accuracy. Independently, all images will be enlarged to a higher resolution using a bilinear interpolation [11] by a scale factor. The enlarged image of each subsequent frame is subject to an inverse affine transformation, to help register it with the previous enlarged image. Given K video frames, then, in principle, it will be feasible to synthesize $K - 1$ new versions of the scaled and interpolated and inverse-motion-compensated image at the first frame instant. Thus, we have K high resolution images to assimilate from.

4. Optical Flow Computation

We follow a framework proposed by Cho et al. [6] for optical flow computation based on a piecewise affine model. A surface moving in the 3-D space can be modeled as a set of small planar surface patches. Then, the observed motion of each 3-D planar patch in the 2-D image plane can be described by an affine transform. Basically, this is a mesh-
based technique for motion estimation, using 2-D content-based meshes. The advantage of content-based meshes over regular meshes is their ability to reflect the content of the scene by closely matching boundaries of the patches with boundaries of the scene features [2], yet finding feature points and correspondences between features in different frames is a difficult task. A multiscale coarse-to-fine approach is utilized in order to increase the robustness of the method as well as the accuracy of the affine approximations. An adaptive filter is used to smooth the flow field such that the flow appears continuous across the boundary between adjacent patches, while the discontinuities at the motion boundaries can still be preserved. Many of these techniques are already available in MPEG-4.

Our optical flow computation method includes the following phases:

1. **Feature extraction and matching**: in this phase the feature points are extracted and feature matching is performed to find the correspondences between feature points in two consecutive image frames.

2. **Piecewise flow approximation**: a mesh of triangular patches is created, whose vertices are the matched feature points. For each triangular patch in the first frame there is a corresponding one in the second frame. The affine motion parameters between these two patches can be determined by solving a set of linear equations formed over the known correspondences of their vertices. Each set of these affine parameters define a smooth flow within a local patch.

Finding the correspondences between feature points in consecutive frames is the key step of our method. We devised a matching technique in which the cross-correlation, curvature, and displacement are used as matching criteria. The first step is to find an initial estimate for the motion at every feature point in the first frame. Some matching techniques described in [16] would consider all of $M \times N$ pairs where M and N are the number of feature points in the first and second frames, respectively. Some others assume the displacements are small to limit the search for a match to a small neighborhood of each point. By giving an initial estimate for the motion at each point, we are also able to reduce the number of pairs to be examined without having to constrain the motion to small displacements. We have devised a multiscale scheme, in which the initial estimation of the flow field at one scale is given by the piecewise affine transforms computed at the previous level. At the starting scale, a rough estimation can be made by treating the points as if they are under a rigid 2-D motion. It means the motion is a combination of a rotation and a translation. Compute the centers of gravity, C_1 and C_2, the angles of the principal axes, α_1 and α_2, of the two sets of feature points in two frames. The motion at every feature points in the first frame can be roughly estimated by a rotation around C_1 with the angle $\phi = \alpha_2 - \alpha_1$, followed by a translation represented by the vector $t = x_{C_2} - x_{C_1}$, where x_{C_1} and x_{C_2} are the vectors representing the coordinates of C_1 and C_2 in their image frame.

Let i^t and j^{t+1} be two feature points in two frames t and $t + 1$, respectively. Let i^{t+1} be the estimated match of i^t in frame $t + 1$, $d(i^t, j)$ be the Euclidean distance between i^{t+1} and j^{t+1}, $c(i, j)$ be the cross-correlation between i^t and j^{t+1}, $0 \leq c(i, j) \leq 1$, and $\Delta \kappa(i, j)$...
be the difference between the curvature measures at i^t and j^{t+1}. A matching score between i^t and j^{t+1} is defined as follows

$$d(i', j) > d_{\max} : \quad s(i, j) = 0$$

$$d(i', j) \leq d_{\max} : \quad s(i, j) = w_c c(i, j) + s_k(i, j) + s_d(i, j),$$

where

$$s_k(i, j) = w_k (1 + \Delta \kappa(i, j))^{-1}$$

$$s_d(i, j) = w_d (1 + d(i', j))^{-1}$$ \hspace{2cm} (2)$$

The quantity d_{\max} specifies the maximal search distance from the estimated match point. w_c, w_k, and w_d are the weight values, determining the importance of each of the matching criteria. The degree of importance of each of these criteria changes at different scales. At a finer scale, the edges produced by Canny edge detector become less smooth, meaning the curvature measures are less reliable. Thus, w_k should be reduced. On the other hand, w_d should be increased, reflecting the assumption that the estimated match becomes closer to the true match. For each point i^t, its optimal match is a point j^{t+1} such that $s(i, j)$ is maximal and exceeds a threshold value t_s. Finally, inter-pixel interpolation and correlation matching are used in order to achieve subpixel accuracy in estimating the displacement of the corresponding points.

Using the constrained Delaunay triangulation [8] for each set of feature points, a mesh of triangular patches is generated to cover the moving part in each image frame. A set of line segments, each of which connects two adjacent feature points on a same edge, is used to constrain the triangulation, so that the generated mesh closely matches the true content of the image. Each pair of matching triangular patches, results in six linear equations made of piecewise local affine motion parameters, which can be solved to produce a dense velocity field inside the triangle.

4.1. Evaluation of Optical Flow Computation Technique

We conducted experiments with our optical flow estimation technique using some common image sequences created exclusively for testing optical flow techniques and compared the results with those in [3] and [4]. The image sequences used for the purpose of error evaluation include the Translating Tree sequence (Fig. 4), the Diverging Tree sequence (Fig. 5), and the Yosemite sequence (Fig. 6). These are simulated sequences for which the ground truth is provided. A comprehensive comparison of the results against well published contemporary techniques was presented in [10].

Let $\mathbf{v} = [u \, v]^T$ be the correct 2-D motion vector and \mathbf{v}_e be the estimated motion vector at a point in the image plane. To verify if the accuracies are indeed at subpixel resolution, we used the distance error $d_e = |\mathbf{v} - \mathbf{v}_e|$. For the Translating Tree sequence, the mean distance error is 11.40\% of a pixel and the standard deviation of errors is 15.69\% of a pixel. The corresponding figures for the Diverging Tree sequence are 17.08\% and 23.96\%. The results confirmed that the flow errors at most points of the images are of subpixel resolution.
5. Super-Resolution Image Reconstruction

Given a low-resolution image frame \(b_k(m, n) \), we can reconstruct an image frame \(f_k(x, y) \) with a higher resolution as follows [11]:

\[
f_k(x, y) = \sum_{m,n} b_k(m, n) \frac{\sin \pi(x\lambda^{-1} - m)}{\pi(x\lambda^{-1} - m)} \frac{\sin \pi(y\lambda^{-1} - n)}{\pi(y\lambda^{-1} - n)}
\]

(3)

where \(\frac{\sin \theta}{\theta} \) is the ideal interpolation filter, and \(\lambda \) is the desired resolution step-up factor.

For example, if \(b_k(m, n) \) is a 50 \(\times \) 50 image and \(\lambda = 4 \), then, \(f_k(x, y) \) will be of the size 200 \(\times \) 200.

Each point in the high-resolution grid corresponding to the first frame can be tracked along the video sequence from the motion fields computed between consecutive frames, and the super-resolution image is updated sequentially:

\[
x^{(1)} = x, y^{(1)} = y, f_1^{(1)}(x, y) = f_1(x, y)
\]

(4)

\[
x^{(k)} = x^{(k-1)} + u_k(x^{(k-1)}, y^{(k-1)}), y^{(k)} = y^{(k-1)} + v_k(x^{(k-1)}, y^{(k-1)})
\]

(5)

\[
f_k(x, y) = \frac{k-1}{k} f_{k-1}(x, y) + \frac{1}{k} f_k(x^{(k)}, y^{(k)})
\]

(6)

for \(k = 2, 3, 4 \cdots \). The values \(u_k \) and \(v_k \) represent the dense velocity field between \(b_{k-1} \) and \(b_k \). This sequential reconstruction technique is suitable for online processing, in which the super-resolution images can be updated every time a new frame comes.

6. Experimental Results

We conducted experiments on real images. The first image sequence (Figs. 7-8) captures a slow-moving cone. The resolution of the input images is 160 \(\times \) 120. The optical flows between consecutive frames were computed using registered feature points and the triangular meshes covering the moving cone. The super-resolution image, constructed with the resolution of 640 \(\times \) 480, shows the improvement in quality comparing to the original low-resolution images.

The second image sequence including 16 frames capturing a slow-moving book (Figs. 9-11) The resulted super-resolution images show that the more number of frames used, the better the quality of the reconstructed image is.

7. Conclusion

We have presented a method for reconstructing super-resolution images from sequences of low-resolution video frames, using motion compensation as the basis for multi-frame data fusion. Motions between video frames are computed with a multiscale piecewise affine model which allows accurate estimation of the motion field even if the motion is non-rigid. The reconstruction is sequential – only the current frame, the frame immediately before it
and the last reconstructed image are needed to reconstruct a new super-resolution image. This makes it suitable for applications that require real-time operations like in surveillance systems. The proposed super resolution is one example of a number of new computations made feasible in a distributed multi sensor network comprised of many video cameras, and line-of-sight sensors. Coarser measurement of people in 3D field of view is made available by the line-of-sight sensors. This in fact helps decouple the tasks of detecting points of interest in images, and recognizing / monitoring the dynamically moving objects giving rise to that points of interest. The decoupling facilitates high frame rate of computation. The task of interpreting the super resolution images, and its dynamics, is currently in progress.

8. Disclaimer

This work was initially conceived when the primary author was with The Center for Advanced Computer Studies, University of Louisiana. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the United States Air Force, the U.S. Department of Defense or the U.S. Government. (AFIT-35-101 pp. 15.5). This article has been cleared for public dissemination with a requirement that this disclaimer be included.

References

Figure 4: Top: two frames of the Translating Tree sequence. Middle: generated triangular meshes. Bottom: the correct flow (left) and the estimated flow (right).
Figure 5: Top: two frames of the Diverging Tree sequence. Middle: generated triangular meshes. Bottom: the correct flow (left) and the estimated flow (right).
Figure 6: Top: two frames of the Yosemite sequence. Middle: generated triangular meshes. Bottom: the correct flow (left) and the estimated flow (right).
Figure 7: Top: two frames of an image sequence featuring a moving cone with printed characters and symbols. Bottom: the triangular meshes generated for image registration.
Figure 8: A super-resolution image reconstructed with the scale factor $\lambda = 4$.
Figure 9: Top: two frames of an image sequence featuring a moving book cover. Bottom: the triangular meshes generated for image registration.
Figure 10: A super-resolution image reconstructed from two frames with the scale factor $\lambda = 4$.

Figure 11: A super-resolution image reconstructed from 16 frames with the scale factor $\lambda = 4$.