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Abstract
A network of multi modal sensors with distributed and embedded computations is con-

sidered for a video surveillance and monitoring application. Practical factors limiting the
video surveillance of large areas are highlighted. A network of line-of-sight sensors and
mobile-agents based computations are proposed to increase the effectiveness. CMOS digi-
tal cameras in which both sampling and quantization occur on the sensor focal plane are
more suitable for this application. These cameras operate at very high video frame rates
and are easily synchronized to acquire images synaptically across the entire network. Also,
they feature highly localized short term memories and include some SIMD parallel computa-
tions as an integral part of the image acquisition. This new framework enables distributed
computation for piecewise stereovision across the camera network, enhanced spatio-temporal
fusion, and super resolution imaging of steadily moving subjects. A top level description of
the monitor, locate and track model of a surveillance and monitoring task is presented. A
qualitative assessment of several key elements of the mobile agents based computation for
tracking persistent tokens moving across the entire area is outlined. The idea is to have as
many agents as the number of persons in the field of view, and perform the computations
in a distributed fashion without introducing serious bottlenecks. The overall performance
is promising when compared against that of a small network of cameras monitoring large
corridors with a human operator in the loop.
Keywords: super-resolution, motion compensation, optical flow
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1. Introduction

Increased access to inexpensive fabrication of CMOS circuits has vitalized research in intel-
ligent sensors with embedded computing and power aware features. Video image sensors [7],
[9], and infra red detectors have been built using standard CMOS processes, with embedded
digital signal processing in the pixel planes. They indicate an emerging trend in modeling
the flow of information in an image processing system. The old ‘acquire, plumb, and process
– in chain’ model of image processing systems would be replaced. The chain would most
likely evolve into a topsorted graph comprised of: acquire-and-fuse, macro-assimilate, and
meta-process stages, in which several nodes within each stage may be connected via lateral
parallelism (fusion at that level). In this new paradigm, the data – at each stage of the
chain would be subjected to appropriately designed intelligent processing, giving rise to a
pipeline of incrementally inferred-knowledge. Insight into data representation and modeling
of data flow in this framework could have a profound impact on making large surveillance
systems more tractable through simpler distributed and parallel computing. The new ap-
proach would require sensor and data fusion at all levels, in both time and space. Smart
CMOS pixel planes with simple and networked computational features could make video
surveillance more effective and tractable. This paper is an effort to introduce a frame work,
and examine at least one of the newly enabled benefits of such a basic multisensor network
system.

The paper is organized as follows. The basic structure of a large area video surveillance
and monitoring system in the context of a busy airport is described. Some key parameters
that may be used for gaging its performance are identified. Practical issues contributing to
design tradeoffs are outlined. A set of currently known video imaging sensors and associ-
ated monitoring algorithms are described. A line of sight sensor network is introduced to
effectively decouple the subtasks of detecting events of interest, and of tracking known to-
kens in space and time. A sub pixel accurate motion compensated super resolution imaging
algorithm is applied as a suitable candidate to benefit from this decoupling. A description
of mobile agents based computations is presented in the context of this multisensor surveil-
lance and monitoring network. Some challenges that may have to be addressed are listed
in the conclusion.

2. Basic model of distributed multi-sensor surveillance system

We present the basic factors influencing the analysis and performance of the dataflow and
computation in a large-scale multisensor network, in the context of a airport surveillance
system. The relevant factors are captured in Figure 1, including the dynamic computational
states of the embedded software agents. The basic model assumes that some mechanism
is available to distinctly locate multiple objects (persons) within its field of view, as they
enter. Let m be the number of people that can check in simultaneously and pass through
the pre-determined points of entry. Their exact locations are picked up by fast 3D sensors.
Several multi sensors, such as X-ray and infrared cameras, may acquire additional data and
tag the data to the voxel. This is in fact the origin of a spatio-temporal thread associated
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Figure 1: The central theme is to observe video image of a busy corridor, with multiple lanes
and branches. The principal paradigm is to track every moving entity until a threshold has
been reached to raise an alarm or abandon tracking.

with the events triggered by the moving person. Each person moves at an arbitrary pace.
Let v be the average velocity. They are monitored by sensor clusters downstream. The
local agents at these sensor clusters will need a speed and power proportional to m · v. The
local memory required and the monitoring complexity are mλv. Network data flow is m · v
The spatio-temporal registration between two stations separated by a distance λ will be
proportional to: m2. It is envisioned that large variations in velocity can complicate the
matter. In that case, simple dynamic programming approach using last recently known
location as the index of search space could be exploited to reduce the complexity of the
problem. Along these lines, we estimate the tracking complexity to be proportional to
m2(1 + α|vmax − vmin|), for the purpose of spatio-temporal registration. Further inspection
reveals that the peak load on the agents would also be influenced by factor proportional to
the variation. The complexity of local agent processing power, and memory requirements
will scale up by a factor (1+α|vmax−vmin|). In all these cases, the value of α would assume
different values, one for each context.

Given a voxel and a camera whose field of view covers the same, the location of the
image of the voxel in the captured video image is trivially determined if the cameras have
been fully calibrated. We assume this to be the case. In a sense, this abstraction treats
some clusters of sensors to be more adept at identifying distinct events; whereas, others
downstream are more efficient in tracking them. Also, we do not preclude the possibility of
any pair of adjacent sensors in forming ad hoc means to resolve 3D locations should there be
a need triggered by local temporal events. That is, more rigorous voxel acquisition sensors
are placed sporadically, and loosely coupled video cameras are widespread.
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2.1 Sensors: Design, deployment, data acquisition and low level fusion.

Rapid acquisition of the 3D location (voxel occupancy) of people in their field of view is
essential. A very high speed three dimensional sensor published in literature [1] may be
used to acquire the 3D image of physical scenes. The sensor is constructed with an array of
smart analog-pixel sensors. Each smart pixel is made of a photo cell, an analog comparator
and a sample-and-hold circuit. The 3D data acquisition requires a planar laser beam to
sweep through the scene. When the laser sweeps through the scene, it would produce an
event of significance at various pixels at different times, – easily detected by an increase in
intensity. The exact time of the event is captured which amounts to sensing the depth.

It is possible to acquire 3D data by a set of two video cameras, and not require a laser
beam, or use laser minimally when necessary. Such a hybrid range and passive video sensor
[15]. The sensor consists of two video cameras with significant overlap in their fields of view
and similarity in their parallax. It seeks to detect a number of feature points in each view, in
an attempt to establish point correspondence [Huang84] and compute 3D data. It involves
spatial search for concurring observation(s) across the views. The spatial search has a well
defined geometric pattern known as epipolar lines. Then, a SIMD parallel computing array
makes it possible to acquire up to 15000 voxels per second [15]. In addition two image
sequences are delivered by the cameras.

The computation described above is an example of low level fusion, facilitated by a pair
of networked sensors with mutual access to very low-level data of each other. A number of
higher-level approaches exist for stereovision; and, they differ in terms of the feature space
used to detect the points of interest, and the methods used for matching them across two
views, and the controllability of the observed space. Such computations, in our view, fall
in the classification of macro and mid level fusion. Often they use scene knowledge and
object knowledge and not the temporal signatures. That is, mutual access to the raw data
of neighboring sensors and spatio-temporal fusion at low-level, we believe would offer speed,
albeit with a need for post processing.

A set of omni directional (isotropic) light emitting diodes driven by a multiphase clock,
and a set of omni directional light sensors can be deployed in large numbers along the
corridor. These would be packaged in easily installed and networked strips. The spatio-
temporal signals acquired through these rudimentary sensor nets would help reduce the
camera count and increase their separation. Some of them come packaged with local micro-
controllers for communication purposes. Such a sensor network is illustrated in Figure
2.

2.2 Overview of cooperative agents that monitor and track

A software agent is a program that perceives an environment through sensors and acts on
the environment [14] [5]. Based on the actions performed by an agent on the environment,
a software agent is classified [14] as reactive, rational, goal oriented etc. We are interested
in a rational software agent that continuously plan and perform actions so as to maximize
its utility. In this context we use the term agent to refer to a rational software agent.
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LIGHT SOURCE LIGHT SENSOR

A CELL in Grid of cells − the entire corridor

Figure 2: A Line-of-Sight sensor network comprised of light emitters and light sensors
shown above effectively eliminates the bottleneck of locating people (points of interest) in
video frame rate.

The cooperative rational agents, by design, would maximize the effectiveness of (a) track-
ing people moving through a specified space, for example corridors of an airport and (b)
detecting any suspicious activities of them. We assume that people enter through a security
gate one at a time and an agent is responsible for monitoring and start tracking people
through the gate. If there is more than one gate, say n, there must be n agents deployed
to start tracking people going through each gate. Each person who is entering the gates is
assigned a unique identification number (id) that is a symbol concatenated with time stamp.
A useful unique id can be generated by concatenating gate number with time stamp, using
which we can identify when and where a person entered into the corridors.

An agent perceives the environment through a pair strategically located video cameras
so as to get a stereo view of its perceptual field as well as to have a maximal coverage in the
segment of the corridors. Parker’s work [13] on placement of sensors in multi-target tracking
is helpful in placing video cameras and other sensors. We use the standard techniques to
synchronize all the cameras. Data fusion is done on video frames taken at the same time
point, say t, to obtain the depth of the objects appearing in the video frames. In addition
to receiving the inputs from a pair of video cameras, an agent receives inputs from other
types of sensors to locate the positions of moving people and objects. The Line-of-Sight
sensor described in previous section is one such example.

Tracking of people passing through a corridor and monitoring their activities would entail
analyzing information on them which is both temporally and spatially distributed. Coop-
erating agents that collect spatial and temporal information over strategical locations can
solve this problem. Agents interact each other via message passing. Our collaborative agent
system has utility agents called agent name server and a facilitator. The agent name server
translates the name into a specific address of the agent, for example its ip address so that
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agent can use symbolic names of another agent to communicate. The facilitator maintains
the capability and location information of each agent in the system so that it responds ap-
propriately to the needs and request of other agents in the system. Our cooperative agent
architecture is inspired by Zeus agent architecture [12] for its flexibility, capabilities and its
availability.

In our context, the agents are capturing images in regular intervals (30 frames per sec-
onds). Suppose a person is at location l at time t and the person is expected to be in a
location bounded by circular area centered at l of radius r where r is the maximum dis-
tance traveled by the individual in the next time frame. Knowing the direction of the
movement, the agent can narrow down the area of search further. The agent then directs
image-processing algorithms to locate the person within the given area. Once the person is
identified, the location of the person at the next time frame is updated. For some reason no
person is identified in the region, then the area is gradually increased and the identification
process continues. This is the basis of tracking. If there are more than one subject appeared
in an area, it is resolved by matching with the candidates who may have moved from their
previous positions. The agent-based architecture enables us to incorporate sophisticated
object movement detection and tracking algorithms without any substantial modification
of the system.

3. Super Resolution Imaging

The objective of super-resolution imaging is to synthesize a higher resolution image of
objects from a set of images whose spatial resolution is limited by the operational nature
of the imaging process. The synthesis is made possible by several factors that effectively
result in subpixel level displacements and disparities between the images, to be extracted
from multiview video streams.

We focus our experimental study [10] to digital video images of slow moving objects,
moving steadily in the field of view of a camera fitted with a wide-angle lens. These as-
sumptions hold good for a class of video based security and surveillance systems. Typically,
these systems routinely perform MPEG analysis to produce a compressed video for storage
and offline processing. In this context, however, the MPEG subsystem can be exploited
to facilitate super-resolution imaging through a piecewise affine registration process which
can easily implemented with the MPEG-4 procedures. A new method based on 2-D mo-
tion compensation presented in [10] is suitable to increase the effectiveness of security and
surveillance systems.

The flow of computation in the proposed method is depicted in Fig. 3. Each moving ob-
ject will be separated from the background using standard image segmentation techniques.
Also, a set of feature points, called the points-of-interest, will be extracted. These points in-
clude places were the local contrast patterns are well defined, and/or exhibit a high degree of
curvature, and such geometric features. We track their motions in the 2-D context of a video
image sequence. This requires image registration, or some variant of point correspondence
matching. The net displacement of the image of an object between any two consecutive
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Figure 3: The schematic block diagram of the proposed super-resolution imaging method.

video frames will be computed with subpixel accuracy. Then, a rigid coordinate system is
associated with the first image, and any subsequent image is modeled as though its coor-
dinate system has undergone a piecewise affine transformation. We recover the piecewise
affine transform parameters between any video frame with respect to the first video frame
to a subpixel accuracy. Independently, all images will be enlarged to a higher resolution
using a bilinear interpolation [11] by a scale factor. The enlarged image of each subsequent
frame is subject to an inverse affine transformation, to help register it with the previous
enlarged image. Given K video frames, then, in principle, it will be feasible to synthesize
K − 1 new versions of the scaled and interpolated and inverse-motion-compensated image
at the first frame instant. Thus, we have K high resolution images to assimilate from.

4. Optical Flow Computation

We follow a framework proposed by Cho et al. [6] for optical flow computation based on
a piecewise affine model. A surface moving in the 3-D space can be modeled as a set
of small planar surface patches. Then, the observed motion of each 3-D planar patch in
the 2-D image plane can be described by an affine transform. Basically, this is a mesh-
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based technique for motion estimation, using 2-D content-based meshes. The advantage of
content-based meshes over regular meshes is their ability to reflect the content of the scene
by closely matching boundaries of the patches with boundaries of the scene features [2], yet
finding feature points and correspondences between features in different frames is a difficult
task. A multiscale coarse-to-fine approach is utilized in order to increase the robustness of
the method as well as the accuracy of the affine approximations. An adaptive filter is used
to smooth the flow field such that the flow appears continuous across the boundary between
adjacent patches, while the discontinuities at the motion boundaries can still be preserved.
Many of these techniques are already available in MPEG-4.

Our optical flow computation method includes the following phases:

1. Feature extraction and matching: in this phase the feature points are extracted and
feature matching is performed to find the correspondences between feature points in
two consecutive image frames.

2. Piecewise flow approximation: a mesh of triangular patches is created, whose vertices
are the matched feature points. For each triangular patch in the first frame there is a
corresponding one in the second frame. The affine motion parameters between these
two patches can be determined by solving a set of linear equations formed over the
known correspondences of their vertices. Each set of these affine parameters define a
smooth flow within a local patch.

Finding the correspondences between feature points in consecutive frames is the key step
of our method. We devised a matching technique in which the cross-correlation, curvature,
and displacement are used as matching criteria. The first step is to find an initial estimate
for the motion at every feature point in the first frame. Some matching techniques described
in [16] would consider all of M ×N pairs where M and N are the number of feature points
in the first ans second frames, respectively. Some others assume the displacements are small
to limit the search for a match to a small neighborhood of each point. By giving an initial
estimate for the motion at each point, we are also able to reduce the number of pairs to be
examined without having to constrain the motion to small displacements. We have devised
a multiscale scheme, in which the initial estimation of the flow field at one scale is given
by the piecewise affine transforms computed at the previous level. At the starting scale,
a rough estimation can be made by treating the points as if they are under a rigid 2-D
motion. It means the motion is a combination of a rotation and a translation. Compute
the centers of gravity, C1 and C2, the angles of the principal axes, α1 and α2, of the two
sets of feature points in two frames. The motion at every feature points in the first frame
can be roughly estimated by a rotation around C1 with the angle φ = α2 − α1, followed by
a translation represented by the vector t = xC2 − xC1 , where xC1 and xC2 are the vectors
representing the coordinations of C1 and C2 in their image frame.

Let it and jt+1 be two feature points in two frames t and t + 1, respectively. Let i′t+1

be the estimated match of it in frame t + 1, d(i′, j) be the Euclidean distance between i′t+1

and jt+1, c(i, j) be the cross-correlation between it and jt+1, 0 ≤ c(i, j) ≤ 1, and ∆κ(i, j)
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be the difference between the curvature measures at it and jt+1. A matching score between
it and jt+1 is defined as follows

d(i′, j) > dmax :
s(i, j) = 0

d(i′, j) ≤ dmax :
s(i, j) = wcc(i, j) + sk(i, j) + sd(i, j),

(1)

where
sk(i, j) = wk(1 + ∆κ(i, j))−1

sd(i, j) = wd(1 + d(i′, j))−1 (2)

The quantity dmax specifies the maximal search distance from the estimated match point.
wc, wk, and wd are the weight values, determining the importance of each of the matching
criteria. The degree of importance of each of these criteria changes at different scales. At
a finer scale, the edges produced by Canny edge detector become less smooth, meaning the
curvature measures are less reliable. Thus, wk should be reduced. On the other hand, wd

should be increased, reflecting the assumption that the estimated match becomes closer to
the true match. For each point it, its optimal match is a point jt+1 such that s(i, j) is
maximal and exceeds a threshold value ts. Finally, inter-pixel interpolation and correlation
matching are used in order to achieve subpixel accuracy in estimating the displacement of
the corresponding points.

Using the constrained Delaunay triangulation [8] for each set of feature points, a mesh of
triangular patches is generated to cover the moving part in each image frame. A set of line
segments, each of which connects two adjacent feature points on a same edge, is used to
constrain the triangulation, so that the generated mesh closely matches the true content of
the image. Each pair of matching triangular patches, results in six linear equations made of
piecewise local affine motion parameters, which can be solved to produce a dense velocity
field inside the triangle.

4.1. Evaluation of Optical Flow Computation Technique

We conducted experiments with our optical flow estimation technique using some common
image sequences created exclusively for testing optical flow techniques and compared the
results with those in [3] and [4]. The image sequences used for the purpose of error evaluation
include the Translating Tree sequence (Fig. 4), the Diverging Tree sequence (Fig. 5), and
the Yosemite sequence (Fig. 6). These are simulated sequences for which the ground truth is
provided. A comprehensive comparison of the results against well published contemporary
techinques was presented in [10].

Let v = [u v]T be the correct 2-D motion vector and ve be the estimated motion vector
at a point in the image plane. To verify if the accuracies are indeed at subpixel resolution,
we used the distance error de = |v − ve|. For the Translating Tree sequence, the mean
distance error is 11.40% of a pixel and the standard deviation of errors is 15.69% of a pixel.
The corresponding figures for the Diverging Tree sequence are 17.08% and 23.96%. The
results confirmed that the flow errors at most points of the images are of subpixel resolution.
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5. Super-Resolution Image Reconstruction

Given a low-resolution image frame bk(m, n), we can reconstruct an image frame fk(x, y)
with a higher resolution as follows [11]:

fk(x, y) =
∑

m,n

bk(m, n)
sin π(xλ−1 − m)

π(xλ−1 − m)
sinπ(yλ−1 − n)

π(yλ−1 − n)
(3)

where sin θ
θ is the ideal interpolation filter, and λ is the desired resolution step-up factor.

For example, if bk(m, n) is a 50 × 50 image and λ = 4, then, fk(x, y) will be of the size
200 × 200.

Each point in the high-resolution grid corresponding to the first frame can be tracked
along the video sequence from the motion fields computed between consecutive frames, and
the super-resolution image is updated sequentially:

x(1) = x, y(1) = y, f (1)
1 (x, y) = f1(x, y) (4)

x(k) = x(k−1) + uk(x(k−1), y(k−1)), y(k) = y(k−1) + vk(x(k−1), y(k−1)) (5)

f (k)
k (x, y) =

k − 1
k

f (k−1)
k−1 (x, y) +

1
k
fk(x(k), y(k)) (6)

for k = 2, 3, 4 · · · . The values uk and vk represent the dense velocity field between bk−1 and
bk. This sequential reconstruction technique is suitable for online processing, in which the
super-resolution images can be updated every time a new frame comes.

6. Experimental Results

We conducted experiments on real images. The first image sequence (Figs. 7-8) captures a
slow-moving cone. The resolution of the input images is 160× 120. The optical flows between
consecutive frames were computed using registered feature points and the triangular meshes
covering the moving cone. The super-resolution image, constructed with the resolution of
640 × 480, shows the improvement in quality comparing to the original low-resolution
images.

The second image sequence including 16 frames capturing a slow-moving book (Figs. 9-
11) The resulted super-resolution images show that the more number of frames used, the
better the quality of the reconstructed image is.

7. Conclusion

We have presented a method for reconstructing super-resolution images from sequences of
low-resolution video frames, using motion compensation as the basis for multi-frame data
fusion. Motions between video frames are computed with a multiscale piecewise affine
model which allows accurate estimation of the motion field even if the motion is non-rigid.
The reconstruction is sequential – only the current frame, the frame immediately before it
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and the last reconstructed image are needed to reconstruct a new super-resolution image.
This makes it suitable for applications that require real-time operations like in surveillance
systems. The proposed super resolution is one example of a number of new computations
made feasible in a distributed multi sensor network comprised of many video cameras, and
line-of-sight sensors. Coarser measurement of people in 3D field of view is made available
by the line-of-sight sensors. This in fact helps decouple the tasks of detecting points of
interest in images, and recognizing / monitoring the dynamically moving objects giving rise
to that points of interest. The decoupling facilitates high frame rate of computation. The
task of interpreting the super resolution images, and its dynamics, is currently in progress.
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Figure 4: Top: two frames of the Translating Tree sequence. Middle: generated triangular
meshes. Bottom: the correct flow (left) and the estimated flow (right).
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Figure 5: Top: two frames of the Diverging Tree sequence. Middle: generated triangular
meshes. Bottom: the correct flow (left) and the estimated flow (right).
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Figure 6: Top: two frames of the Yosemite sequence. Middle: generated triangular meshes.
Bottom: the correct flow (left) and the estimated flow (right).
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Figure 7: Top: two frames of an image sequence featuring a moving cone with printed
characters and symbols. Bottom: the triangular meshes generated for image registration.
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Figure 8: A super-resolution image reconstructed with the scale factor λ = 4.
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Figure 9: Top: two frames of an image sequence featuring a moving book cover. Bottom:
the triangular meshes generated for image registration.
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Figure 10: A super-resolution image reconstructed from two frames with the scale factor
λ = 4.
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Figure 11: A super-resolution image reconstructed from 16 frames with the scale factor
λ = 4.
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