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Abstract: As a probability-based statistical classification 
method, the Naïve Bayesian classifier has gained wide 
popularity despite its assumption that attributes are 
conditionally mutually independent given the class label. 
Improving the predictive accuracy and achieving 
dimensionality reduction for statistical classifiers has been an 
active research area in datamining. Our experimental results 
suggest that on an average, with Minimum Description Length 
(MDL) discretization the Naïve Bayes Classifier seems to be the 
best performer compared to popular variants of Naïve Bayes as 
well as some popular non-Naïve Bayesian statistical classifiers. 
We propose a Hybrid feature selection algorithm (CHI-WSS) 
that helps in achieving dimensionality reduction by removing 
irrelevant data, increasing learning accuracy and improving 
result comprehensibility. Experimental results suggest that on 
an average the Hybrid Feature Selector gave best results 
compared to individual techniques with popular filter as well as 
wrapper based feature selection methods.  The proposed 
algorithm which is a multi-step process utilizes discretization, 
filters out irrelevant and least relevant features and finally uses 
a greedy algorithm such as best first search or wrapper subset 
selector. For experimental validation we have utilized two 
established measures to compare the performance of statistical 
classifiers namely; classification accuracy (or error rate) and 
the area under ROC. Our work demonstrates that the proposed 
algorithm using generative Naïve Bayesian classifier on the 
average is more efficient than using discriminative models 
namely Logistic Regression and Support Vector Machine. This 
work based on empirical evaluation on publicly available 
datasets validates our hypothesis of development of 
parsimonious models from our generalized approach.  
 

Keywords: Naive Bayesian classifier, discretization, Minimum 
description length, feature selection, chi-square statistics.  
 

I. Introduction 
In the last few years, the digital revolution has provided 
relatively inexpensive and available means to collect and 
store large amounts of patient data   in databases containing 
rich medical information and made available through the   

Internet for Health services globally. Data mining techniques 
applied on these databases discover relationships and 
patterns that are helpful in studying the progression and the 
management of diseases [38]. For a Physician who is guided 
by empirical observation and clinical trials, this data 
becomes appropriate if it is provided in terms of generalized 
knowledge such as information pertaining to patient history, 
diseases, medications, and clinical reports.  

Several computer programs have been developed to carry 
out optimal management of data for extraction of knowledge 
or patterns contained in the data. These include Expert 
Systems, Artificial Intelligence and Decision support 
systems. One such program approach has been Data 
Classification with the goal of providing information such as 
if the patient is suffering from the illness or not from a case 
or collection of symptoms. Particularly, in the medical 
domain high classification accuracy is desirable. Data 
classification using Naïve Bayes (NB) has gained much 
prominence because of its simplicity and comparable 
accuracy with other classifiers. Research study shows that 
Naïve Bayesian classification works best for discretized 
attributes [4], [10].  

Based on the theory of Bayesian networks, Naïve Bayes is 
a simple yet consistently performing probabilistic model. 
Data classification with Naïve Bayes is the task of predicting 
the class of an instance from a set of attributes describing 
that instance and assumes that all the attributes are 
conditionally independent given the class. This assumption 
grossly violates real-world problems and much effort has 
been focused in the name of Naïve Bayes variants by 
relaxing the independence assumptions to improve 
classification accuracy. It has been shown that Naïve 
Bayesian classifier is extremely   effective   in   practice and   
difficult to improve upon [9]. 

Research work show that Naïve Bayes (NB) classification 
works best for discretized attributes and the application of 
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Fayyad and Irani’s Minimum Discretization Length (MDL) 
discretization gives on the average best classification 
accuracy performance [41]. In this paper we compare the 
accuracy performance of non-discretized NB with MDL 
discretized NB, popular variants of NB and with state-of-the-
art classifiers such as k-Nearest Neighbor, Decision Trees, 
Logistic Regression, Neural Networks and Support Vector 
Machines. 

Many factors affect the success of machine learning on 
medical datasets. The quality of the data is one such factor.  
If information is irrelevant or redundant or the data is noisy 
and unreliable then knowledge discovery during training is 
more difficult. Feature selection is the process of identifying 
and removing as much of the irrelevant and redundant 
information as possible [29], [34]. Regardless of whether a 
learner attempts to select features itself or ignores the issue, 
feature selection prior to learning can be beneficial. 
Reducing the dimensionality of the data reduces the size of 
the hypothesis space and allows algorithms to operate faster 
and more effectively. The performance of the Naïve Bayes 
classifier is a good candidate for analyzing feature selection 
algorithms since it does not perform implicit feature 
selection like decision trees. 

The motivation for this work comes from studies utilizing 
the combination of machine learning techniques in literature. 
They include the use of 3-NN for selecting best examples for 
1-NN [45], application of decision trees to identify the 
features for indexing in case based reasoning and selection 
of the examples [7], and instance based learning using 
specific instances [6]. The idea behind our general approach 
is to reduce the space complexity at each phase of the 
process so that greedy algorithms at the final step of the 
process have to deal with relatively smaller subset of 
features than the original. 

The approach we have adopted is a three phased 
framework. First, the continuous variables are discretized to 
reduce the effect of distribution imbalance. (Naïve Bayes 
works well with categorical attributes). In the second phase, 
irrelevant attributes are removed to minimize the feature 
count for the model. Even though Naïve Bayes gracefully 
handles irrelevant attributes, we are removing the irrelevant 
attributes to bring parsimony to the model structure. In the 
third phase, a greedy search algorithm is applied to search 
the best feature subset. 

Through this paper we propose a Hybrid feature selection 
algorithm which is a multi-step process. In the first step the 
data is discretized. During the second step the discretized 
data is filtered by removing irrelevant and least relevant 
features using chi-square feature selection. In the third step, 
a greedy algorithm like Wrapper Subset or Best First search 
is used to identify the best feature set. We experimentally 
compare the accuracy performance with individual 
techniques drawn from popular filter and wrapper based 
approaches. The experimental results with our proposed 
Hybrid feature selection algorithm show that it achieves on 
the average better dimensionality reduction and increased 
learning accuracy by reducing the space complexity at each 
phase of the process. Our experimental study shows that it is 

possible to reliably develop parsimonious models by 
applying the Hybrid feature selection algorithm that is both 
simple and effective. 

II. Naïve Bayes and NB Classifier 
Naïve Bayes, a special form of Bayesian network has been 
widely used for data classification in that its predictive 
performance is competitive with state-of-the-art classifiers 
such as C4.5 [12].  As a classifier it learns from training data 
from the conditional probability of each attribute given the 
class label. Using Bayes rule to compute the probability of 
the classes given the particular instance of the attributes, 
prediction of the class is done by identifying the class with 
the highest posterior probability. Computation is made 
possible by making the assumption that all attributes are 
conditionally independent given the value of the class. Naïve 
Bayes as a standard classification method in machine 
learning stems partly because it is easy to program, its 
intuitive, it is fast to train and can easily deal with missing 
attributes. Research shows Naïve Bayes still performs well 
in spite of strong dependencies among attributes [9]. 

Naïve Bayes is best understood from the perspective of 
Bayesian networks. Bayesian networks (BN) graphically 
represent the joint probability distribution of a set of random 
variables.  A BN is an annotated directed acyclic graph that 
encodes a joint probability distribution over a set of 
attributes X. Formally a BN for  X   is   a  pair   B= <G,θ>,    
where G represents the  directed acyclic graph whose  nodes 
represent the attributes X1, X2,..Xn and whose edges 
represent direct dependencies between the attributes.   The 
BN can be used to compute the conditional probability of a 
node given values assigned to the other nodes. The BN can 
be used as a classifier where the learner attempts to construct 
a classifier from a given set of training examples with class 
labels. Here nodes represent dataset attributes.  

Assuming that X1, X2..Xn are the n attributes 
corresponding to the nodes of the BN and say an example E 
is represented by a vector x1, x2,..xn where x1 is the value of 
the attribute X1. Let C represent the class variable and c its 
value corresponding to the class node in the Bayesian 
network, then the class c of the example E (c(E)) can be 
represented as a classifier by the BN [12] as 
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Although Bayesian networks can represent arbitrary 
dependencies it is intractable to learn it from data. Hence 
learning restricted structures such as Naïve Bayes is more 
practical. The Naïve Bayesian classifier represented as a BN 
has the simplest structure. Here the assumption made is that 
all attributes are independent given the class and equation 1 
takes the form. 
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The structure of Naïve Bayes is graphically shown in 
Figure 1. Accordingly each attribute has a class node as its 
parent only. The most likely class of a test example can be 
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easily estimated and surprisingly effective [9]. Comparing 
Naïve Bayes to Bayesian networks, a much more powerful 
and flexible representation of probabilistic dependence 
generally did not lead to improvements in accuracy and in 
some cases reduced accuracy for some domains [36]. 

 
 
 
 
 
 
 

Figure 1. Structure of Naïve Bayes 

III. Implementing the NB Classifier 
Considering that an attribute X has a large number of values, 
the probability of the value P(X=xi |C=c) from equation 2 
can be infinitely small. Hence the probability density 
estimation is used assuming that X within the class c are 
drawn from a normal (Gaussian) distribution where   σc   is   
the     standard 
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deviation and  µc  is the mean of the attribute values from the 
training set [10]. The major problem with this approach is 
that if the attribute data does not follow a normal 
distribution, as often is the case with real-world data, the 
estimation could be unreliable. Other methods suggested 
include the kernel density estimation approach [22]. But 
since this approach causes very high computational memory 
and time it does not suit the simplicity of naïve Bayes 
classification. 

When there are no values for a class label as well as an 
attribute value, then the conditional probability P(x|c) will be 
also zero if frequency counts are considered. To circumvent 
this problem, a typical approach is to use the Laplace-m 
estimate [3]. Accordingly   
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where nc = number of instances satisfying C=c, N = number 
of training instances, n= number of classes and k =1.  
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where nci  = number of instances satisfying both X=xi and 
C=c, m=2 (a constant) and P(X=xi) estimated similarly as 
P(C=c) given above.   

We also need to consider datasets that have a few 
unknowns among the attribute values. Although unknowns 
can be given a separate value [8], we have chosen to ignore 
them in our experiments. 

IV. Discretization for NB Classifier 
Data discretization is the process of transforming data 

containing a quantitative attribute so that the attribute in 
question is replaced by a qualitative attribute [46]. Data 
attributes are either numeric or categorical. While categorical 
attributes are discrete, numerical attributes are either discrete 
or continuous. Research study shows that Naïve Bayes 
classification works best for discretized attributes and 
discretization effectively approximates a continuous variable 
[4]. 

Discretization involves dividing an attribute’s values into 
a number of intervals (mini .. maxi) so that each interval can 
be treated as one value of a discrete attribute.  The choice of 
the intervals can be determined by a domain expert or with 
the help of an automatic procedure that makes the task easy. 
For Naïve Bayes, computational time complexity is only 
linear with respect to the size of the training data. This is 
much more efficient than the exponential complexity of 
Non-Naïve Bayesian approaches [47]. They are also space 
efficient. With discretization, the learning complexity of the 
Naïve Bayes classifier should get reduced. Although several 
discretization methods have been developed for Naïve Bayes 
classifiers, we have chosen 2 unsupervised (Equal Width and 
Equal Frequency discretization) as well as the popular 
supervised Fayyad and Irani’s Minimum Description Length 
(MDL) [14], [42] methods for our experiments. 

V. Equal Width & Frequency discretization 
Both Equal Width and Equal Frequency discretization are 
unsupervised direct methods and have been used because of 
their simplicity and reasonable effectiveness [4]. In Equal 
Width Discretization (EWD) an attribute’s values are 
divided between xmin and xmax into k equal intervals such that 
each cut point is xmin+ m x ((xmax - xmin ) / k);  where m takes 
on the value from 0..(k-1).  In Equal Frequency 
Discretization (EFD) each interval in k between xmin and xmax 
has approximately the same number of the sorted values of 
the attribute.  Both EWD and EFW suffer from possible 
attribute loss on account of the pre-determined value of k.  
For our experiments we have chosen k to be 10. 

VI. MDL discretized Naïve Bayes 
The Minimum Description Length (MDL) discretization is 
Entropy based heuristic given by Fayyad and Irani [13].  The 
technique evaluates a candidate cut point between each    
successive pair of sorted values. For each candidate cut 
point, the data are discretized into two intervals and the class 
information entropy is calculated. The candidate cut point,   
which provides the minimum entropy is chosen as the cut 
point. The technique is applied recursively to the two sub-
intervals until the criteria of the Minimum candidate cut 
point, the data are discretized into two intervals and the class 
information entropy is Description Length (MDL).  

 For a set of instances S, a feature A and a partition 
boundary T, the class information entropy of the partition 
induced by T is given by 
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For the given feature the boundary Tmin that minimizes the 
class information entropy over the possible partitions is 
selected as the binary discretization boundary. The method is 
then applied recursively to both partitions induced by Tmin 
until the stopping criteria known as the Minimum 
Description Length (MDL) is met.  The MDL principle 
ascertains that for accepting a partition T, the cost of 
encoding the partition and classes of the instances in the 
intervals induced by T should be less than the cost of 
encoding the instances before the splitting. The partition is 
accepted only when 
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where   

( ) )2(2)1(1)(23log2),,( SEntcSEntcScEntcSTA −−−−=∆  
and   

 ),,()(),,( STAESEntSTAGain −=  
N = number of instances, c,c1,c2 are number of distinct 
classes present in S, S1 and S2 respectively. 

VII. Variants of Naïve Bayes Classifier 
Real-world problems rarely show the conditional 
independence assumption used in Naïve Bayes. Extending 
the structure was adopted as a direct way to possibly 
overcome the limitation posed by Naïve Bayes (NB) 
resulting in various NB variants. Briefly described are 4 
popular NB variants that were used in our experiments. 

The Tree Augmented Naïve Bayes (TAN) is an extended 
NB [15] where with a less restricted structure in which the 
class node directly points to all attribute nodes and an 
attribute node can have only one parent attribute node. TAN 
is a special case of Augmented Naïve Bayes (ANB), which 
is equivalent to learning an optimal BN, which is N-P hard.  
TAN has shown to maintain NB robustness and 
computational complexity and at the same time displaying 
better accuracy. The structure of TAN is shown in Figure 2. 

  
 
 

 

 
 

 
Figure 2. Structural representation of Tree Augmented 

Naïve Bayes (TAN) 

Boosting involves learning a series of classifiers, where each 
classifier in the series learns more attention to the examples 
that have been misclassified by its predecessors. Hence each 
next classifier learns from the reweighed examples. The final 
boosted classifier outputs a weighted sum of the outputs of 
each individual classifier series with each weighted 
according to its accuracy on its training set. Boosting 
requires only linear time and constant space and hidden 

nodes are learned incrementally starting with the most 
important [13]. A graphical representation for Boosted Naïve 
Bayes (BAN) is shown in Figure 3. The hidden nodes ψ 
correspond to   the outputs of   the NB classifier after each 
iteration of boosting. With sample datasets BAN shows 
comparable accuracy with TAN.    

 

 
 
 
 
 
 
 

Figure 3. Structural representation for the Boosted 
Augmented Naïve Bayes (BAN) 

The Forest augmented Naïve Bayes (FAN) represents an 
Augmented   Bayes   Network defined by a Class variable as 
parent to every attribute and an attribute can have at most 
one other attribute as its parent [23],[43]. By applying the 
algorithm [17] incorporating Kruskal’s Maximum Spanning 
Tree algorithms an optimal Augmented Bayes Network can 
be found. A graphical structural representation for the Forest 
augmented NB is shown in Figure 4.   

 
 
 
 
 
 
 

 
Figure 4. Structural representation for Forest augmented 

Naïve Bayes (FAN) 

   The Selective Naïve Bayesian classifier (SNB) uses only 
a subset of the given attributes in making the prediction [28]. 
The model enables to exclude redundant, irrelevant variables 
so that they do not reflect any differences for classification 
purposes. Experiments with sample datasets reveal that SNB 
appears to overcome the weakness of NB classifier. An 
example structural representation for SNB is shown in 
Figure 5. 

 
 
 
 

 
 

Figure 5. Structural representation for Selective Naïve 
Bayes (SNB) 

For the above given model, and an example given by   
E=< x1, x2, X3, x4 >, will be assigned to the class 

)|4()|2()|1()(maxarg)( cxPcxPcxpcp
Cc

Ec
∈

=  

C 

X1 X2 X3 X4 

C 

Ψ1 Ψ2 
Ψ3 

X1 X2 X3 

C 

X1 

X2 

X3 

X4 

C 

X1 X2 X4



 5

VIII. Popular non-NB statistical classifiers 
Here we briefly describe the 5 non-Naïve Bayesian 
Statistical classifiers we have used in our experiments. The 
idea of a Decision Tree (DT) [39] is to partition the input 
space into small segments, and label these small segments 
with one of the various output categories. A DT is a k-ary 
tree where each of the internal nodes specifies a test on some 
attributes from the input feature set used to represent the 
data. Each branch descending from a node corresponds to 
one of the possible values of the feature specified at that 
node. Each test results in branches, which represent different 
outcomes of the test. The basic algorithm for DT induction is 
a greedy algorithm that constructs decision trees in a top-
down recursive divide-and-conquer manner. The class 
probability of an example is estimated by the proportion of 
the examples of that class in the leaf into which the example 
falls. For our experiments we have used the J48 class of C4.5 
decision trees provided in the Weka machine learning 
environment.  The J48 tree classifier forms rules from 
pruned partial decision trees built using C4.5’s heuristics. 
The J48 classifier parameters in Weka were set as follows: 
Confidence Factor is 0.25 (sets the threshold for the 
InformationGainRatio measure used by J48), minimum 
number of Instances per leaf is 2.0, number of folds is 3 (1 
for pruning and 2 for growing the tree) and sub tree pruning 
enabled.  

The k-NN is a supervised learning algorithm where the 
result of new instance query is classified based on majority 
of k-Nearest Neighbor category [6]. The purpose of this 
algorithm is to classify a new object based on attributes and 
training samples. The classifiers do not use any model to fit 
and only based on memory. Given a query point, we find k 
number of objects or (training points) closest to the query 
point. The classification is using majority vote among the 
classification of the k objects. Any ties can be broken at 
random. k-NN algorithm uses neighborhood classification as 
the prediction value of the new query instance. k-nearest 
neighborhood may be influenced by the density of the 
neighboring data points.  We have used Weka’s IBk 
implementation of the k-nearest neighbor classifier [6] and 
set the classifier parameters as - number of nearest neighbors 
(k) as 1, the windowSize is 0 (indicating that there was no 
limit on the number of training instances) and disabled 
distance weighting method, cross validation for selecting the 
best k value and attribute normalization. 

Logistic regression (LR) is part of a category of statistical 
models called generalized linear models. LR allows one to 
predict a discrete outcome, such as group membership, from 
a set of variables that may be continuous, discrete, 
dichotomous, or a mix of any of these [28]. LR is often 
referred to as a discriminative classifier unlike NB which is 
referred to as a generative classifier. To cater to Logistic 
Regression for more than 2 discrete outcomes, we have used 
Weka’s Multinominal Logistic Regression algorithm with ridge 
estimator in our experiments. The implementation of the 
Multinominal Logistic Regression with ridge estimator is 
believed to be suitable for small training sets [48]. The classifier 
parameters were configured for Weka’s default values as 
follows:  the ridge is 1.0E-8 (to enable log–likelihood) and the 

maximum number of iterations to be performed is -1.  

Artificial neural networks (NN) are relatively crude 
electronic networks of "neurons" based on the neural 
structure of the brain.  They process records one at a time, 
and "learn" by comparing their classification of the record 
(which, at the outset, is largely arbitrary) with the known 
actual classification of the record.  The errors from the initial 
classification of the first record is fed back into the network, 
and used to modify the networks algorithm the second time 
around, and so on for many iterations [19]. For the Neural 
Network classifier, we have used Weka’s Multilayer Perceptron 
algorithm. This network uses a sigmoid function as its activation 
function and back propagation as its learning algorithm.  The 
classifier parameters for the multilayer perceptron in Weka were 
set to the default values as follows – Hidden Layers is ‘a’ [the 
wildcard a = (attributes + classes) / 2 ], Momentum is 0.2,   
Learning rate is 0.3, Number of Epochs  is 500, Random seed 
for Weights is 0, validationSetSize is 0 and the validation 
threshold is  20. 

Support Vector Machines (SVMs), are one of the most 
powerful methods in machine learning for solving binary 
classification problems, based on the idea of identifying 
hyperplanes that maximizes the margins between the two 
classes [2]. The concept of decision planes that define 
decision boundaries are used in SVM.  A decision plane is 
one that separates between a set of objects having different 
class memberships. This approach constructs hyper planes in 
a multidimensional space that separates cases of different 
class labels. SVM can handle multiple continuous and 
categorical variables [5].  For our experiments we have used 
Weka’s SMO classifier- which implements John C. Platt's 
sequential minimal optimization algorithm for training a 
support vector classifier using polynomial kernels [49][50]. 
We have chosen Weka’s default values as follows: 
complexity parameter c is 1.0, gamma is 1.0, kernel cache 
size is 250007, use of the Polynomial kernel with exponent 
is 1.0 and the values (not to be changed) 1.0E-8 and 0.0010 
for Epsilon and toleranceParameter respectively. 

IX. Feature Selection for NB Classifier 
Feature selection is often an essential data pre-processing 
step prior to applying a classification algorithm such as 
Naïve Bayes. The term feature selection is taken to refer to 
algorithms that output a subset of the input feature set. One 
factor that plagues classification algorithms is the quality of 
the data.  If information is irrelevant or redundant or the data 
is noisy and unreliable then knowledge discovery during 
training is more difficult.  Regardless of whether a learner 
attempts to select features itself or ignores the issue, feature 
selection prior to   learning can be beneficial.  Reducing the 
dimensionality of the data reduces the size of the hypothesis 
space and allows algorithms to operate faster and more 
effectively. In some cases accuracy on classification can be 
improved [29].  As a learning scheme Naïve Bayes is simple, 
very robust with noisy data and easily implementable. We 
have chosen to analyze feature selection algorithms with 
respect to Naïve Bayes method since it does not perform 
implicit feature selection like decision trees. 
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Algorithms that perform feature selection as a 
preprocessing step prior to learning can generally be placed 
into one of two broad categories namely filter and wrapper 
based approaches [21]. For our experimental study we have 
considered 3 popular filter based approaches namely Chi-
squared, Gain Ration and ReliefF and 3 popular wrapper 
based approaches namely Correlation feature selection 
(CFS), WrapperSubset feature selection and Consistency-
based subset feature selection. 

X. Filter based feature selection 
The Filter based feature selection methods operate 
independently of any learning algorithm. Undesirable 
features are filtered out of the data before induction 
commences. Although filters are suitable to large datasets 
they have not proved as effective as wrappers. While the 
filter approach is generally computationally more efficient 
than the wrapper approach, its major drawback is that an 
optimal selection of features may not be independent of the 
inductive and representational biases of the learning 
algorithm to be used to construct the classifier. Discussed 
below are 3 popular filter approaches used for our 
experiments. 

The Chi-squared feature selection algorithm evaluates the 
worth of a feature by computing the value of the chi-squared 
statistic with respect to the class. The Chi-Squared (χ2) 
method [30] is built on the top of the entropy method. The χ2 
method evaluates features individually by measuring their 
chi-squared statistic with respect to the classes. 

Information Gain is one of the most popular feature 
selection algorithms. It uses the measure of information 
entropy of one variable (or feature) before and after 
observing another variable, the difference of which is the 
information gain [30]. Gain Ratio is a modified version of 
the Information Gain measure, and tells us the amount of 
information gain of the variable relative to the entropy of the 
class. The Gain Ratio can be termed as a modification of the 
information gain that reduces its bias towards attributes with 
more states. However a drawback of Gain Ratio is that it 
may overcompensate, i.e. choose an attribute just because its 
intrinsic information is very low. 

The Relief algorithm [27] assigns “relevance” weights to 
each feature which indicates the relevance to the target 
concept [29].  The method works by randomly sampling an 
instance from the data and locating its nearest neighbor from 
the same and opposite class. The values of the attributes of 
the nearest neighbor are compared to the sampled instance 
and used to update relevance scores for each attribute. The 
process is repeated for a user specified number of instances 
m. Here the useful attribute differentiates between instances 
from different classes and have the same value from the 
same class. This method of Relief originally intended for 
two-class problems has been extended using ReliefF to 
handle noisy and multi-class datasets. An advantage of 
ReliefF algorithm is that it can deal with noisy and 
incomplete datasets [29]. 

XI. Wrapper based feature selection 
 The Wrapper employs as a subroutine a statistical 
resampling technique such as cross validation using the 
actual target learning algorithm to estimate the accuracy of 
feature subsets. This approach has proved useful but is slow 
because the learning algorithm is called repeatedly. The 
wrapper approach involves the computational overhead of 
evaluating candidate feature subsets by executing a selected 
learning algorithm on the dataset represented using each 
feature subset under consideration [40]. Wrapper methods 
are widely recognized as a superior alternative in supervised 
learning problems, but on account of the number of 
executions that the search process requires results in a high 
computational cost than filters methods. We briefly describe 
3 popular wrapper methods that were used in our 
experiments. 
      Correlation Feature Selection (CFS) evaluates the worth 
of a subset of features by considering the individual 
predictive ability of each feature along with the degree of 
redundancy between them. Subsets of features that are 
highly correlated with the class while having low inter-
correlation are preferred [34]. The method employs a 
heuristic to select a subset taking into account its usefulness 
for predicting the class along with the level of inter-
correlation among them. While irrelevant features will be 
poor predictors, redundant attributes will be highly 
correlated to one or more of the other features. If expanding 
a subset results in no improvement, the search drops back to 
the next best unexpanded subset and continues from there. 
Given enough time a best first search will explore the entire 
feature subset space, so it is common to limit the number of 
subsets expanded that result in no improvement. The best 
subset found is returned when the search terminates. CFS 
uses a stopping criterion of five consecutive fully expanded 
non- improving subsets. The greatest limitation of CFS is its 
failure to select features that have locally predictive values 
when they are overshadowed by strong, globally predictive 
features. 
     The Wrapper attribute selection uses a target learning 
algorithm to estimate the worth of attribute subsets. In this 
method, selection is made on a subset of original features of 
the dataset such that the induction algorithm (Naïve Bayes in 
our case) that is run on the data containing only those 
features generates a classifier with the highest possible 
accuracy [26]. Cross validation (we have used 5 CV for our 
experiments) is used to provide an estimate of the accuracy 
of the NB classifier when using only the attributes in a given 
subset.  The forward selection search is used to produce a list 
of attributes ranked according to their overall contribution to 
the accuracy of the attribute set with respect to the target 
learning algorithm.  
     Consistency-based subset evaluates the worth of a subset 
of features by the level of consistency in the class values 
when the training instances are projected onto the subset of 
features. For this feature selection approach, combinations of 
attributes whose values divide the data into subsets 
containing a strong single class majority is looked for. This 
approach is biased towards small feature subsets with a high-
class consistency. Here we use Liu and Sentiono’s 
consistency metric [31]. The forward selection search is used 
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to produce a list of attributes ranked according to their 
overall contribution to the consistency of the attribute set. 

XII. CHI-WSS feature selection algorithm 
Our proposed feature selection algorithm (CHI-WSS) 
combines the filter approach with a greedy subset search 
approach such as wrapper subset selector. The reason for 
using both filter based and wrapper based approach is to 
reduce the search space in each phase. Specifically wrapper 
based approach will not remove irrelevant features and filter 
algorithms do not greedily search the feature space. The 
hypothesis of our research is to find the effectiveness of 
combining these two approaches to reduce the search space 
and build a parsimonious model. Our approach can be 
viewed in terms of 3 distinct phases as shown in Figure 6.  

In the Discretization phase all non-categorical features of 
the dataset are discretized. All irrelevant and least relevant 
features are removed in the Filter phase. During the Subset 
search phase, feature subsets are identified using a greedy 
algorithm to find the set of features that maximizes 
classification accuracy. 

 
Figure 6. CHI-WSS feature selection Phases 

The CHI-WSS algorithm in Steps 
Step 1: Given the Dataset, apply MDL (Fayyad and Irani) 
discretization to all non-categorical features. 
Step 2: Compute chi-square feature ranking. Remove all 
irrelevant features from the dataset if their chi-square 
average merit equals zero. Next, remove all least relevant 
features from the dataset that satisfy the condition 

δ〈
×Σ

×
×

Nmeritavg
Nmeritavg i

_
)(_

100
2log

     where we set δ= 0.1 to 
satisfy our criterion. avg_meriti is the average merit for the 
feature in  consideration and N is the total number of 
attributes.  
Step 3: Identify the feature subsets using a greedy algorithm 
such as Best First Search or Wrapper Subset selector.  
 

The MDL discretization is carried out in the first step 
because greedy subset search methods like Wrapper subset 
do not do data discretization. Through the second step, by 
removing irrelevant and least relevant features, we reduce 
the computational overhead of the greedy feature search. 
Further, our approach is a generalized one as any suitable 
greedy search method such as Best First search or Wrapper 
subset search selector may be employed in the final step.  

The chi-square feature ranking computes the average of 
the 10 Cross Validation chi-square statistics with respect to 
the class – called average merit and given as avg_merit in 
the above given mathematical formula which is used for 
identification of least relevant features. The mathematical 
formula was empirically obtained through experimentation 
with various publicly available datasets. The wrapper 
methods are widely recognized as a superior alternative in 
supervised learning problems, since by employing the 
inductive algorithm to evaluate alternatives they have into 
account the particular biases of the algorithm. However, 
even for algorithms that exhibits a moderate complexity, the 
number of executions that the search process requires results 
in a high computational cost [33]. The CHI-WSS algorithm 
helps to reduce the space complexity at each phase so that 
greedy algorithms such as the Wrapper subset selector used 
at the final step have to deal with relatively smaller feature 
subsets than the original. This in turn validates the 
hypothesis of the development of parsimonious models from 
our generalized approach. 

XIII. Experimental Evaluation 
We have   used    17    natural   Medical    datasets for   our 
experiments whose technical specifications are as shown in 
Table 1. All the chosen datasets had at least one or more 
attributes that were continuous.  The main software package 
used in our experiments is Weka version 3.4.8 (Waikato 
Environment for Knowledge Analysis), developed at the 
University of Waikato in New Zealand [51]. For our 
experiments we have substituted all noisy data with 
unknowns. For datasets with redundant attributes and non-
computational attributes (such as patient identification 
number), we have ignored them from our experiments. All 
missing attribute values were ignored. 
 

Table 1: Specifications for the Medical datasets 

 
         

We have used 10-fold cross validation test method to all 
the medical datasets [25]. The dataset was divided into 10 
parts of which 9 parts were used as training sets and the 
remaining one part as the testing set. The classification 
accuracy was taken as the average of the 10 predictive 
accuracy values.  
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Table 2 provides the experimental evaluation of 
discretization techniques employed. The wins for Fayyad 
and Irani’s MDL discretization indicates on the average 
improved classification accuracy compared to that of Equal 
Frequency and Equal Width discretization. We argue that 
MDL discretization does better on account of using the class 
information entropy after discretization and EWD and EFD 
discretization levels are not optimized. 

Table 2: Naïve Bayes Classification Accuracy with and 
without Discretization 

 
     

Table 3 shows the accuracy results for non-discretized 
NB, MDL discretized NB and variants of NB. The 4 variants 
of Naïve Bayes chosen for our experiments are Selective 
Naïve Bayes (SNB), Boosted Naïve Bayes (BNB), Tree 
Augmented Naïve Bayes (TAN) and Forest Augmented 
Naïve Bayes (FAN). 

Table 3: Classification Accuracy with Naïve Bayes (NB), 
MDL discretized NB and variants of NB. 

 
Abbreviations Used:  NB- Naïve Bayes, NB (MDL) – Naïve Bayes 
with MDL discretization, SNB – Selective Naïve Bayes, BNB- 
Boosted Naïve Bayes, TAN- Tree Augmented Naïve Bayes, FAN – 
Forest Augmented Naïve Bayes 
 

Table 4 shows the accuracy performance with non-
discretized NB, MDL discretized NB and some popular non-
NB classifiers. The 5 popular   non-NB statistical classifiers 

are Decision Tree (DT),   k –Nearest Neighbor   (k- NN), 
Logistic Regression (LR), Neural Network (NN) and 
Support Vector Machine (SVM). The wins at the bottom of 
Table 3 and Table 4 provides the ratio of medical datasets 
where the accuracy is highest among the considered 
classifiers to the total number of datasets used for our 
experiments. In both tables the MDL discretized NB on the 
average gave best results. 

   Table 4: Classification Accuracy with Naïve Bayes (NB), 
MDL discretized NB and non-NB classifiers 

 
Abbreviations Used:  NB- Naïve Bayes, NB (MDL) – Naïve Bayes 
with MDL discretization, DT – Decision Tree,   k-NN  - k -Nearest 
Neighbor, LR- Logistic Regression, NN-Neural Network, SVM – 
Support Vector Machine 
 

To further substantiate the results obtained in Table 3 and 
4, we have tabled the results for the Area under the Receiver 
Operator Characteristics (AUROC) in Table 5 and   6 for the  

Table 5:  AUROC (in percentage) with Naïve Bayes (NB), 
MDL discretized NB and variants of NB. 

 
Abbreviations Used:  NB- Naïve Bayes, NB (MDL) – Naïve Bayes 
with MDL discretization, SNB – Selective Naïve Bayes, BNB- 
Boosted Naïve Bayes, TAN- Tree Augmented Naïve Bayes, FAN – 
Forest Augmented Naïve Bayes 
 
above mentioned statistical classifiers. Clearly the wins 
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obtained by MDL discretized NB classifier proves that it is 
the best performer. 
 

Table 7 provides the results of feature selection using the 
proposed CHI-WSS algorithm. From the wins given at the 
bottom of the table; applying the proposed hybrid feature 
selector, all the 17 datasets saw improvement in 
dimensionality reduction with comparable classification 
accuracy. 

Table 6: AUROC (in percentage) with Naïve Bayes (NB), 
MDL discretized NB and non-NB classifiers 

 
Abbreviations Used:  NB- Naïve Bayes, NB (MDL) – Naïve Bayes 
with MDL discretization, DT – Decision Tree, k-NN- k -Nearest 
Neighbor, LR- Logistic Regression, NN-Neural Network, SVM – 
Support Vector Machine 
 

Table 7: Classification accuracy before and after applying 
CHI-WSS algorithm 

Note: Given in brackets is the total number of attributes selected 
 

Figure 7 shows that feature dimensionality reduction was 
achieved for all the 17 datasets using the CHI-WSS 
algorithm. Figure 8 depicts the classification accuracy 
performance before and after the application of the CHI-
WSS feature selection algorithm. 

In Table 8a and Table 8b we compare the performance 
accuracy of the NB classifier using CHI-WSS algorithm with 

popular filter based algorithms. For our study we have 
considered 3 popular filter based approaches namely Chi-
squared, Gain Ration and ReliefF. While Table 8a shows   
results for the datasets without any discretization, Table 8b 
gives the results for MDL discretized datasets carried out at 
the pre-processing stage.  From the wins at the bottom of 
both tables, naïve Bayesian classification using the CHI- 
WSS algorithm gives best accuracy results. 

 
Figure 7. Feature dimensionality reduction before and after 

using CHI-WSS algorithm 
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Figure 8. Classification accuracy performance before and 

after using CHI-WSS algorithm 
 

Table 8a: Classification accuracy of NB with Filter 
based Feature Selection Algorithms 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9a and Table 9b compare the performance accuracy 
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of the NB classifier using CHI-WSS algorithm with popular 
wrapper based algorithms. In our experimental study we 
have considered 3 popular wrapper based approaches namely 
Correlation feature selection (CFS), WrapperSubset feature 
selection and Consistency-based subset feature selection. 
From the wins at the bottom of both tables, Naïve Bayesian 
classification with the CHI-WSS algorithm gave on the 
average best accuracy results comparable to the 
computationally intensive Wrapper Subset approach.  The 
results also show that by using the CHI-WSS algorithm we 
achieve on the average better dimensionality reduction 
compared to the widely recognized Wrapper Subset feature 
selection method. 

Table 8b: Classification accuracy of NB with (MDL 
discretized) Filter based Feature Selection Algorithms 

 
Note: Given in brackets is the total number of attributes selected 

 
Table 9a: Classification accuracy of NB with Wrapper based 

Feature Selection Algorithms 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Given in brackets is the total number of attributes selected 
     

Figure 9 shows a comparison between the feature 
dimensionality reduction achieved using the hybrid feature 
selection algorithm (CHI-WSS) to the widely recognized 
Wrapper Subset Feature Selection. The WIN-LOSS-TIE for 
the CHI-WSS feature selection method with respect to the 

widely recognized Wrapper Subset Feature selection is 8-4-5 
clearly demonstrating that on the average the proposed 
hybrid feature selection (CHI-WSS) method achieves better 
dimensionality reduction compared to Wrapper Subset 
feature selector. 

Table 9b: Classification accuracy of NB with (MDL 
discretized) Wrapper based Feature Selection Algorithms 

 
       

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Note: Given in brackets is the total number of attributes selected 
                                   

 
Figure 9. Number of features of Original set, Wrapper using 

Naïve Bayes and CHI-WSS using Naïve Bayes 
 

Table 10 provides the results of the classifier accuracy 
using our proposed CHI-WSS algorithm as well as those 
achieved by WrapperSubset based feature selection using 
discriminative models- Logistic Regression and   Support   
Vector Machine.  From the wins given at the bottom of the 
table we see that feature selection with our proposed 
algorithm on the average gives better performance than the 
other non-generative methods. 

In order to compare the efficiency of our proposed new 
feature selection algorithm based on generative Naïve Bayes 
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model, we have used two established measures namely; 
classification accuracy (or error rate) and the area under 
ROC to compare the classifier performance with two other 
popular   discriminative   models such as  SVM and  Logistic 
Regression that are used in Medical data mining.           

Table 10: Comparative analysis of Feature selection based 
on Classification Accuracy 

 
*all irrelevant and least relevant features were initially removed 
using our Chi-square feature ranking criterion 
 

Further, in Table 11 using true positive rates given in 
terms of the area under ROC (AUROC), the proposed hybrid 
feature selector (CHI-WSS) with Naïve Bayes gets more 
wins than the other methods as shown at the bottom of the 
table. For the proposed hybrid feature selection algorithm 
(CHI-WSS), the computational overhead with Naïve Bayes 
is much lower compared to using discriminative   models 
such as Support Vector Machine (SVM) and Logistic 
Regression (LR). 

Table 11: Comparative analysis of Feature selection based 
on AUROC (in percentage) 

*all irrelevant and least relevant features were initially removed 
using our Chi-square feature ranking criterion  

XIV. Conclusions 
In this work an attempt was made to show how the Naïve 
Bayesian classification accuracy and dimensionality 
reduction could be achieved with discretization methods and 
with the proposed hybrid feature selector (CHI-WSS) 
algorithm for Medical datamining.  

Our experimental results indicate that with Medical 
datasets, on an average, Naïve Bayes with Fayyad and 
Irani’s Minimum Description Length (MDL) discretization 
seems to be the best performer compared to the 4 popular 
variants of Naïve Bayes and the 5 popular non-Naïve 
Bayesian statistical classifiers. Since most of the state of the 
art classifiers are performing well on these datasets, it is 
clear that the data transformation is more important than the 
classifier itself. 

The experimental results with the proposed hybrid feature 
selector (CHI-WSS) indicate that, utilizing Naïve Minimum 
Description Length (MDL) discretization, filtering out 
irrelevant and least relevant features using Chi-square 
feature selection ranking and finally using a greedy 
algorithm like Wrapper subset selector  to identify the best 
feature set, we could achieve effective feature dimensionality 
reduction and increased learning accuracy compared to using 
individual techniques – popular filter as well as wrapper 
based methods.  

Comparing to the use of discriminative models such as 
Logistic Regression and Support Vector Machines 
employing wrapper based approach for feature selection, our 
proposed algorithm on the average gives better performance 
with much reduced computational overhead. The new hybrid 
feature selection algorithm helps in reducing the space 
complexity through its process steps enabling greedy 
algorithms in the final step to deal with relatively smaller 
subset of features than the original. We validate our method 
for the development of parsimonious models from the 
generalized approach. We also propose that the Naïve 
Bayesian classifier with the proposed hybrid feature selector 
(CHI-WSS) could be set as a benchmark for statistical 
classifiers. 
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