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a b s t r a c t

Many trace elements (TE) occur naturally in marine environments and accomplish decisive functions in

humans to maintain good health. Mytilus galloprovincialis (MG) is a rich source of TE, but since it is

grown near industrial outfalls, they become polluted with elevated levels of TE concentration and serve

as biomarkers of pollution. As bioremediation is increasingly reliant on machine learning data

processing techniques, we propose the information theoretic concept of using MG for bioremediation.

The in situ bioremediation in MG is accomplished by reduction in concentration of TE by the technique

of determinant inequalities and the maximization of Mutual Information (MI) without adding any

chemical element externally. We bring out the superiority of our technique of MI over that of Principal

Component Analysis (PCA) in predicting lower concentration for bioremediation of Cd and Pb in MG.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Marine pollution has become a global concern because of
bioaccumulation of residues from various types of pollutants
such as persistent organic pollutants, heavy metals, polynuclear
aromatic hydrocarbons and radionuclides in tissues of various
species of marine organism leading to serious threat to human
health [1]. In view of the continuous increase in pollution levels in
the marine environment the use of molecular biomarkers has
drawn worldwide attention for pollution monitoring and bior-
emediation [2]. Biomarker can be defined as the measurements of
body fluids, cells or tissues that indicate in biochemical or cellular
terms the presence of contaminants or the magnitude of the
host response [3]. The goal of the biomarker is to detect these
biochemical changes in order to predict the onset of adverse
health effects so that evaluation of these early changes can be
used to prevent long term effects at the population and the

community level [4]. There are molecular, cellular, animal
biomarkers and living organisms like Mytilus galloprovincialis
(MG) have been used as inexpensive biomarkers [3–6].

Bioremediation is the use of living organisms, primarily micro-
organisms, to degrade the environmental contaminants into less
toxic forms. It uses naturally occurring bacteria and fungi or plants
to degrade or detoxify substances hazardous to human health and
the environment. As such, it uses relatively low-cost, low-technol-
ogy techniques, which generally have a high public acceptance and
can often be carried out on site [7]. Even though bioremediation is
confined to microorganism or plants, the use of filter-feeder
invertebrates like MG for bioremediation of heavy metals in aquatic
environment has invited recent attention [8–11].

Many trace elements (TE) like Mn, Fe, Cu and Zn, occur naturally
in marine environments and these TE accomplish decisive functions
in humans to maintain good health. MG is a rich source of TE, but as
they are grown extensively near the industrial water outfalls, they
become polluted. As there is a mutual interaction among the TE in
MG there is correlation among the TE. These correlations lead to a
dynamic balance and in situ bioremediation of a specific TE involves
complex and uncertain relationship among other contaminants and
it is difficult to understand their interactions [12]. Multivariate
Principal Component Analysis (PCA) used for statistical comparison
of TE concentration in MG creates independence in concentrations
by linear transformation [13,14]. PCA even though work in
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multivariate environment, target only bivariate and linear feature
dependencies and hence are not sufficient to eliminate all depen-
dencies for bioremediation in the data [15,16]. Real-world data like
essential concentration versus toxicity in human edibles often
contains non-linear structures which PCA is unable to resolve
[17,18]. Hence the development of novel bioremediation process is
increasingly reliant on machine learning data processing techniques
to consider non-linear complex interacting structures [19,20]. In
machine learning, the hidden rules that control complex systems are
discovered and are incorporated in the design of biomarker.

To our knowledge information theory has not been used so far
as supervised machine learning tool to annul the toxicity of a
specific TE from among the in situ available elements primarily
due to computational complexity [21]. Information theory pro-
vides benchmarks for the design of information processing
systems as it encompasses a multitude of powerful theorems
for computing ideal bounds [22]. As the limit of toxicity reduction
varies for each TE and since these TE form a dynamic balance,
credible bounds required for bioremediation can be provided by
information theory as compared to any other machine learning
approaches as information theory alone leads to redundancy
reduction [23].

Mutual Information (MI) is a generalized form of correlation
analogous to linear correlation but is sensitive to non-linear
dependencies between the variables (Fig. 1). In particular, a
vanishing MI does imply that the TE are independent, but not
so with vanishing Pearson coefficient [24]. Thus MI provides a
general measure of association that is applicable regardless of the
shape of the underlying distribution. Further, MI unlike linear or
rank order correlation is insensitive to non-monotonic depen-
dence between the TE variables [25]. In this paper, we develop an
algorithm based on maximizing the Mutual Information (MI) for
bioremediation of TE toxicity in the biomarker MG. The technique
of determinant inequalities developed by us [26] enables us to
estimate the bounds for each of the correlated TE. The lower
bounds for the correlated information give a high value of MI as
compared to the existing information and hence minimize the
toxic concentrations. We demonstrate the superiority our algo-
rithm over the PCA in mitigating the trace element toxicity in MG.

2. Machine learning methodology

2.1. Preliminaries of information theory

As MG grows in marine environment, we study the interaction
between the TE concentrations due to correlation.

Let Ci (i¼1,N) be the concentration of trace N elements and let
Ti be respective toxicity, then according to information theory
[27], MI can be written as

MI C,Tð Þ ¼ ConstantlogGq ð1Þ

where Gq is the determinant of the correlation matrix r having
elements rij where correlation coefficient rij is defined as

rij ¼ ½CovðCi,CjÞ=fVar:ðCiÞg
0:5
fVar:ðCjÞg

0:5
� ð2Þ

rij varies between þ1 and �1, is a measure of linear association
between the concentrations of the TE and this linear association
vanishes when rij¼0.

MI is a measure of statistical correlation in concentration
between the TE, and its value depends on the value of the
determinant of the correlation matrix r. In order to maximize
MI, Gq has to be maximized.

As an illustration, let us consider a simple case of just two TE,
having concentration C1, and C2, then

q¼
1 r12

r21 1

 !

where r12 is the correlation coefficient between C1 and C2.

Gq ¼ detr¼ ð1�r2
12Þ

As r12 varies between þ1 and �1, the maximum value, det r
is 1 only when r12¼0.

Gq can be maximized to unity by finding the upper and lower
bounds of r12. Thus, by maximizing Gq by the knowledge of the
bounds for the correlated elements of r, the correlated informa-
tion between the concentrations of TE is minimized. Minimization
of the correlated information leads to lowering of r and the
corresponding concentrations of the TE as per Eq. (2). As the
concentration is reduced from the initial value, the corresponding
toxicity of each of the TE is also reduced. Hence an index of
minimization of toxicity in TE for effective bioremediation is the
maximization of the MI, by the estimation of upper and lower
bounds for the correlated elements of the correlation matrix q.
The algorithm developed by us to determine the upper and lower
bounds for the correlated elements of r by the technique of
determinant inequalities is described below.

2.2. Estimation of bounds for correlated concentration by technique

of determinant inequalities

We develop the technique of determinant inequalities to
estimate the upper and lower bounds for the correlated elements
of the correlation matrix. Consider a quantity q, which is
unknown or is difficult to estimate. A rigorous estimate of it, is
provided by the upper and lower bounds, say U and L, respec-
tively, such that UZqZL. The unknown quantity q in our case is
the constant concentration of TE in the sea, which causes
correlation or bias. This constant bias appears in one or several
elements of the determinant G. Let us suppose the sign of the
determinant G can be determined. Then G can be considered as a
polynomial in q i.e. G¼G(q) and the roots of the determinant
function G(q)¼0 enable us to estimate the permissible values of q

and hence the upper and lower bounds can be determined. Thus
to determine the bounds on r

(a) The sign of the determinant G has to be known.
(b) The roots of the polynomial G(q)¼0 should be determined.

The determinant G is positive when rij¼0. In this case, only the
uncorrelated diagonal elements of r exist. Similarly the determinant
G is zero when rij is either þ1 or �1. Such a determinant is called

H (XY)

H (X|Y) H (X:Y) H (Y|X)

H (X) H (Y)

Fig. 1. Mutual Information. In the above figure the uncertainty of X is measured by

its entropy H(X). The uncertainty of X given the knowledge of Y is measured by the

conditional entropy H(X9Y). The uncertainty of the pair X, Y is measured by the

entropy H(X,Y). Mutual Information, I(X; Y) is defined as the reduction of the

uncertainty of X due to knowledge of Y [27].
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a Gram determinant or Gramian and its positivity is expressed as an
inequality

GZ0 ð3Þ

The upper and lower bounds are determined by solving the
polynomial equation G(q)¼0.

For the purpose of illustration, let us consider a (3�3)
correlation matrix with elements of r as follows:

1 r12 r13

r21 1 r23

r31 r32 1

0
B@

1
CA

Then G¼det rZ0 requires that

1�r2
23�r

2
12þ2r12r13r23�r

2
13Z0

From the above equation, it is clear that r12 must lie between
two roots of the quadratic equation, which constitute the upper,
and lower bounds of r12.

The upper bound is

r13r23þ½ð1�r
2
13Þð1�r

2
23Þ�

0:5

And the lower bound is

r13r23�½ð1�r
2
13Þð1�r

2
23Þ�

0:5

2.3. Robustness of the algorithm

Let us designate the determinant as Gi with ith row and
column deleted, Gij with ith and jth row and column deleted,
(note that when G has only two rows and columns then G12¼1)

gii with rii¼0,
gij with rij¼0, and row j and column i deleted.

According to Eq. (3) GZ0 and hence Gi and Gij are also Gram
determinants of lower order. Thus GZ0, Gi40, Gij40 and we can
establish the following inequalities:

rijþðgii=GiÞZ0

ðgþ�rijÞðrij�g�ÞZ0

where g7¼{(�1)iþ jgij7(GiGj)
0.5}/Gij. Thus for the uncorrelated

component, the lower bound is riiZ�gii/Gi.
While, for correlated component the upper and lower bounds

are

gþZrijZg� ð4Þ

According to Hadamard’s inequality

G¼ detr¼ r
Y

rij

The equality is achieved if and only if rij¼0. The maximum
value of the determinant is the product of the diagonal elements
and the least positive value is zero, when rij is either þ1 or �1.
Since, the MI cannot be negative, the value of either the upper or
the lower bounds of rij which maximizes the determinant G is the
robust value which maximizes the MI.

3. Results

The concentration correlation matrix for ten trace elements in
MG is depicted in Table 1. The pollution by lead and cadmium in
mussel growth near the shore appears to be ubiquitous and
characteristic of industrialized coastal areas. The lower bounds for
the concentration of nine elements which has correlation with Cd
and Pb are obtained using Eq. (4). The lower bound of each of these

elements which maximizes the MI according to Eq. (1) is depicted in
Tables 2 and 3, respectively. The corresponding values obtained by
the PCA are also tabulated for comparison with that of MI.

4. Discussion

In recent years, active research is pursued to develop an
inexpensive technique to attenuate the toxicity of TE in the
marine mussels before being consumed by the public. Natural
attenuation is the preferred methodology for the bioremediation
of contaminant concentration as it involves toxicity reduction
without adding any chemical externally [28,29].

In this paper, using the concept of maximization of MI as a
machine learning tool, bioremediation of the toxicity of a specific
TE like, Cd and Pb in the biomarker MG was performed by
decreasing the existing concentration of elements as depicted in
Table 1, with the lower bound values as depicted in Tables 2 and
3, respectively. As these lower bound values of concentration are
much lower than that of the existing values, no external addition

Table 1
Correlation matrix of the concentrations of trace elements in the biomarker MG.

Al 1 0.85 0.88 0.87 0.30 0.19 �0.21 0.74 0.78 0.75

Cr 1 0.80 0.83 0.31 0.28 �0.08 0.73 0.87 0.72

Mn 1 0.81 0.26 0.25 �0.14 0.71 0.80 0.65

Fe 1 0.45 0.25 �0.17 0.57 0.76 0.62

Co 1 0.44 0.29 0.03 0.23 0.26

Ni 1 0.61 0.11 0.15 0.12

Cu 1 �0.21 �0.10 0.03

Zn 1 0.82 0.71

Cd 1 0.81

Pb 1

Table 2
Comparison of r for Cd obtained by maximizing Mutual Information (MI) and the

Principal Component Analysis (PCA) in the biomarker MG.

No. Element Existing value of r of

Cd with other TE as

in Table 1

Lower bound

values of r by

MI

PCA

values

1. Al 0.78 0.72 0.94

2. Cr 0.87 0.64 0.93

3. Mn 0.80 0.59 0.91

4. Fe 0.76 0.58 0.89

5. Co 0.23 0.01 0.36

6. Ni 0.15 �0.003 0.28

7. Cu �0.10 �0.29 �0.11

8. Zn 0.82 0.53 0.82

9. Pb 0.81 0.53 0.83

Table 3
Comparison of r for Pb obtained by maximizing Mutual Information (MI) and the

Principal Component Analysis (PCA) in the biomarker MG.

No. Element Existing value of r of

Pb with other TE as

in Table 1

Lower bound

values of r by

MI

PCA

values

1. Al 0.75 0.48 0.94

2. Cr 0.72 0.56 0.93

3. Mn 0.65 0.50 0.91

4 Fe 0.62 0.48 0.89

5. Co 0.26 �0.13 0.36

6. Ni 0.12 �0.11 0.28

7. Cu 0.03 �0.40 �0.11

8. Zn 0.71 0.49 0.82

9. Cd 0.81 0.53 0.92
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of chemical is required for bioremediation. Consequently, the
lower bound values as predicted by the MI technique are ideally
suited for natural attenuation in the biomarker MG.

In contrast all the values predicted by PCA both in Tables 2 and 3
are higher than the lower bound values predicted by MI, necessitat-
ing external addition of chemicals. As no chemical should be added
for bioremediation by natural attenuation, PCA values are not suited
as a machine learning tool for bioremediation of MG.

Even though in this paper, we have selectively mitigated the
toxicity of Cd and Pb, our MI technique can be extended for the
bioremediation of the toxicity of other elements in Table 1 using
Eq. (4). But in the case of PCA only large variances have important
structure and the potentially toxic TE having lesser variance is not
considered. Thus selective bioremediation of TE having lower
variance is not all feasible by PCA.
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