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Introduction 

Intelligent robots are artificially created opera- 
tional systems which can make decisions and take 
action autonomously. These capabilities derive 
from their use of expert systems to reason using 
and from their ability to learn from information 
acquired through sensory input. 

When an intelligent robot operates in a hostile 
environment, its expert system must have the 
capability to recognize environmental threats. It 
must also be able to provide a real-time response 
to these threats. Traditional knowledge based 
expert systems do not possess this real-time re- 
sponse capability due to the sequential nature of 
their control architecture. Expert systems for Au- 
tonomous Mobile Robots thus require the inte- 
gration of real-time response and control capabil- 
ities with traditional knowledge based techniques. 
To address this requirement, we are currently 
exploring the Asynchronous Production System 
(APS), a concurrent, rule-based inference engine 
capable of monitoring and processing real-time 
information [l-3]. 

* Discussion is open until August 1993 (please submit your 
discussion paper to the Editor on Construction Technolo- 
gies, T.M. Knasell. 

This paper describes the implementation of a 
concurrent control architecture (an Asynchron- 
ous Production System) for the HERMIES Robot. 
Part A describes the concurrent control architec- 
ture for the Autonomous Mobile Robot (AMR) 
using APS. Part B describes specific issues per- 
taining to the implementation of APS for the 
HERMIES robot. 

Part A: Concurrent control architecture for the 
Autonomous Mobile Robot 

Robots are increasingly employed in diverse 
applications that involve monotonous or tedious 
tasks, and in hazardous environments such as 
nuclear reactors, under-sea exploration, and bat- 
tlefields. The environment in which an Au- 
tonomous Mobile Robot operates often changes 
rapidly. The robot encounters environmental 
threats which are hazardous to itself and its envi- 
ronment, such as the outbreak of a fire, the 
failure of one of the robot’s internal systems, etc. 
These threats may occur at any time and are 
therefore asynchronous (environmental threats 
may be called external events, as these are exter- 
nal to the robot). A dynamic and complex envi- 
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ronment like this imposes the following require- 
ments [4] on autonomous robotic systems: 
1. 

2. 

3. 

4. 

1. 

Rapid sensing: the capability to sense external 
events rapidly. 
Real-time response: the ability to respond 
within a limited time period to external events 
occurring in its domain. 
Interruptability: the capability to interrupt 
normal operation when an external event oc- 
curs and then to resume the interrupted task 
after responding to the external event. 
Fault-tolerance: the capability to rely on the 
other functional units to continue operations 
in the event of an internal failure. 

Specifications for the Autonomous Mobile 
Robot control system 

The heart of an Autonomous Mobile Robot is 
its control system. The control system features 
which ‘are critical to an AMR’s successful opera- 
tion are multitasking, multisensing, robustness, 
and interruptability [51. 

Multitasking: Robots operating in dynamic and 
hostile domains must often pursue multiple goals 
due to asynchronous changes in environmental 
conditions. These multiple goals may conflict with 
each other. On such occasions, the control strat- 
egy must be able to weigh their reIative impor- 
tance and attend to the most important one. 

Multisensing: Sensors are the most important 
part of Autonomous Mobile Robot systems, as 
they communicate external events to the robot. 
The robot control system must be able to process 
data from multiple sensors concurrently and must 
be able to rapidly assimilate it into its data struc- 
ture for quick decision making and subsequent 
response. This implies that the control system 
must be able to begin a fresh control cycle con- 
currently with existing ones. 

Robustness: When some of the sensors fail, 
the robot must be able to continue functioning 
with the remaining ones. This calls for an effi- 
cient control strategy which provides intelligent 
decisions even under conditions of incomplete or 
uncertain data. 

Interruptability: Higher priority environmental 
threats must be able to interrupt normal opera- 
tions of the robot. The robot must also be able to 
resume its original task after responding to the 

threat. Therefore, the robot’s control system must 
be able to halt an existing control process and 
later resume that process after completing the 
new control cycle initiated by the higher priority 
task. 

The following techniques have been used by 
several researchers to build a parallelized control 
system for Autonomous Mobile Robots: 
1. Decomposing the control system with respect 

to parallel task-achieving behavior of the 
robots, rather than by the traditional way of 
decomposing along functional units [6]. 

2. Using concurrent programming techniques [7]. 
3. Using a distributed control system consisting 

of master/ slave processes [8]. 
In this paper we focus our efforts on the concur- 
rent and distributed programming techniques for 
building an expert system to achieve modularity 
of control and response. 

2. A real-time expert system for Autonomous Mo- 
bile Robot control 

Earlier, we discussed the characteristics of the 
complex environments in which the mobile robots 
must operate. We also discussed the need for 
AMR control systems to make intelligent deci- 
sions in order to respond to environmental 
threats. Our task is to build a real-time expert 
system to make intelligent inferences from the 
environmental data. It must employ an efficient 
control strategy and must meet the specifications 
listed in the previous section. 

2.1. Limitations of traditional expert systems 

Some of the various limitations of traditional 
expert systems which must be overcome to achieve 
effective, real-time control in AMR applications 
are their inadequate infrastructure, slow speed, 
and non-interruptability. 

Inadequate infrastructure: Traditional Expert 
Systems like 0PS5 do not have the infrastructure 
for collecting external data and representing them 
in their data structure. Thus they are insensitive 
to external events occurring in their domain. 

Slow speed: The execution speed of these sys- 
tems cannot guarantee a real-time response to 
the external events. 
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Fig. 1. The recognize-act of a conventional production system. 

No interruptability: The control structure or 
production cycle of these systems as indicated in 
Fig. 1. is essentially a sequential and synchro- 
nized process [8] and hence the production cycle 
cannot be interrupted. Further, during an exter- 
nal emergency event a new cycle cannot be con- 
currently initiated to respond to the situation. 
Due to the sequential nature of the control struc- 
ture, the control processes are implemented in a 
uniprocessor environment. This deteriorates the 
real-time performance as an emergency event has 
to wait to be processed by the only available 
processor. 

The limited control structure of traditional 
production systems is thus a major hurdle which 
prevents their adoption for use in real-time con- 
trol applications. Considering the above short- 
comings, it was imperative for us to build an 
Asynchronous Production System to overcome 
them and achieve real-time performance. 

3. Asynchronous Production System 

An APS is a rule-based expert system which is 
capable of monitoring and responding to real-time 
events in its domain. It integrates the ease of 
knowledge representation of traditional produc- 
tion systems with real-time response and control 
capabilities. The real-time capabilities of an APS 
thus make it an ideal choice for controlling Au- 
tonomous Mobile Robots operating in hazardous, 
dynamic environments. 

3.1. Data structure of APS 

An APS has a working memory and a produc- 
tion memory similar to traditional production sys- 
tems. In addition to these, we have incorporated 
a new data structure called the External Input. 
This is a global dataset which is used by control 
processes for interprocess communication. Exter- 
nal Input has elements to represent facts and 
assertions about asynchronous external events. 
External Input elements are syntactically similar 
to working memory elements. The asynchronous 
stimuli are obtained through sensors and are in- 
tegrated into the External Input data structure. 

3.2. Partitioning the data structure for concurrency 

The data structure of an APS is partitioned to 
form four, well-defined Global Data Sets in order 
to achieve concurrency of control. The four global 
datasets are Working Memory (WM), External 
Input (ED, Conflict Set (CS) and Select Rule 
(SRI. Various production cycle processes commu- 
nicate through these global datasets. Each global 
dataset serves as an input dataset for some pro- 
cess and as output dataset for some other pro- 

Fig. 2. APS database. 
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cess. The data structure (Fig. 2) of an APS plays observe that the processes are essentially asyn- 
a vital role in achieving real-time performance. chronous in nature due to the fact that changes in 

different global datasets occur asynchronously. 
3.3. Control architecture of APS 

The APS control architecture (inference en- 
gine) consists of three distinct processes: 
MATCH, SELECT, and EXECUTE. Each of 
these processes has one or more input datasets 
and an output dataset (see Fig. 3). Each process 
is invoked when there is a change in one of its 
input datasets. The module halts after writing 
appropriate results to the output dataset. We can 

The completion of a process indirectly results in 
the invocation of another process since the out- 
put dataset of one process is the input dataset of 
another process. Each process deserves some fur- 
ther detail. 

The MATCH process matches External Input 
Elements with productions in addition to its tra- 
ditional role of matching Working Memory Ele- 
ments with productions. The input datasets for 
the MATCH process are Working Memory and 

Asynchronous Production System 

Modules Global Data Sets 

Data Input & 
Module Activation 

- Data Output 

APS Execution Mechanism 

Modules Input Data Sets Output Data Sets 

Match Working Memory Conflict Set 

External Input 

Select Conflict Set Select Rule 

Execute Select Rule Working Memory 

Fig. 3. The execution mechanism for the APS. 
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External Input. The output dataset is Conflict 
Set. The MATCH process is activated by changes 
in the Working Memory or the External Input. 
After the MATCH process is completed, it writes 
the set of satisfied productions to the Conflict Set 
and waits for another change in its input datasets. 

The SELECT process reads its input from 
Conflict Set dataset and writes its output to the 
Select Rule dataset. This process is activated by 
changes in the Conflict Set. It performs conflict 
resolution algorithms to select one of the rules 
for execution. 

The EXECUTE process reads its input from 
the Select Rule dataset and writes output to the 
Working Memory dataset. It executes the right- 
hand side (RHS) of the selected rule, which may 
consist of some specific instructions to manipu- 
late the Working Memory, to command HER- 
MIES to perform some task, or to invoke a user- 
defined function. The ability to call user-defined 
functions from within a rule makes it possible to 
use the APS for a variety of applications which 
require domain-specific algorithms. The EXE- 
CUTE process is activated by a change in the. 
Select Rule dataset. It halts after executing all 
the RHS actions of the selected rule. This pro- 
cess differs substantially from the act phase of the 
traditional production systems. 

For more details about the Data structure and 
Control structure of an APS, the reader is re- 
ferred to previous publications on this subject 
[l-3]. 

4. Task partitioning of the APS production cycle 
for concurrency 

We observed in the previous section that the 
the production cycle has been partitioned into 
three modular, independent processes, each of 
which functions asynchronously with respect to 
the other. This is the key factor in achieving 
concurrency. Each process is activated by a change 
in the corresponding input dataset and hence 
more than one process may be invoked concur- 
rently if there is a change in more than one 
dataset at any time. To discuss this in detail, we 
will take a close look at the control process. 

A change in Working Memory or External 
Input triggers the control mechanism. A change 
in any one of these datasets invokes the MATCH 

process. The MATCH process individually 
matches the data from both of these datasets with 
productions to find a set of productions which are 
completely satisfied. It then writes this set of 
productions to the dataset “Conflict Set” and 
halts. Since the MATCH process is the initial and 
most crucial process, it must be rapidly invoked 
by each external event. Hence, we must be able 
to invoke this process concurrently with the other 
active processes to respond to external events 
immediately. This is clearly achieved by the APS, 
as the external emergency event changes the Ex- 
ternal Input data structure directly and this in 
turn immediately activates the MATCH process. 

Furthermore, the activation of the MATCH 
process concurrently with other active processes 
triggers a chain of processes. The MATCH pro- 
cess halts by writing the set of satisfied produc- 
tions into the “Conflict Set”. Since the Conflict 
Set is the input dataset to the “Select process”, 
this process is activated at the completion of 
MATCH process. Observe that this is also acti- 
vated concurrently with the other processes. SE- 
LECT process, in turn, activates the EXECUTE 
process by writing the selected rule into the 
dataset “Select rule”. Thus there is complete 
modularity and concurrency between the various 
stages of the control process. 

5. Levels of separation of the control mechanism 

The effects of parallelizing each task of the 
APS production cycle can be viewed from three 
distinct points of view: Process Level, Processor 
Level and Interrupt Level. Each of these levels 
contributes to the overall concurrency of the con- 
trol task. The different levels of separation are 
interrelated. Synchronization of all the elements 
of a level is the key factor in the efficient opera- 
tion of a concurrent control mechanism. In the 
following section we discuss the salient features 
of each of these levels and the synchronization 
scheme involved in various stages. 

5.1. Process level separation 

Process level separation denotes the separa- 
tion of the control task into multiple processes, 
each of which is independent and performs a 
specific function in the control structure. The 
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Fig. 4. Concurrent execution of production cycle processes. 

APS control architecture consists of four pro- 
cesses. Three processes perform the function of 
the MATCH, SELECT and EXECUTE of the 
AI’S production cycle. The fourth process, the 
inference engine of APS, monitors the real-time 
environment and provides process synchroniza- 
tion between the various processes. It also re- 
solves global dataset access conflicts between 
processes. The different processes execute con- 
currently, as they are generally implemented in 
separate processors. Fig. 4 indicates the concur- 
rency in the execution of various processes. The 
figure shows that while the set of processes 
(MATCH, EXECUTE} or {SELECT, EXE- 
CUTE} may be activated simultaneously, the set 
{SELECT, MATCH) cannot. This is because the 
SELECT process takes a small part of the total 
production system cycle time and is activated only 
when the Conflict Set is modified. This observa- 
tion is important with respect to the “Retraction 
of a fact,” discussed later. 

5.1.1. Process sychroniza tion 
The synchronization of the various processes 

involves sensing the completion of one process 
and activating the next process in the production 
cycle. The various processes of the production 
cycle are event-driven. An event declares a change 
in the status of the system. There are two types of 
events. An External Event and an Internal Event. 
An External Event is one which indicates a signif- 
icant occurrence in the External world or the 
domain, such as a fire alarm or radiation leak, 
which causes a change in the External data. An 
Internal Event is one which indicates the comple- 

tion of one of the processes which, in turn, im- 
plies that there is change in one of the global 
datasets. An Internal Event originates at a pro- 
cess and is interpreted by the inference engine, 
giving an activation signal to activate the process 
which awaits the occurrence of that particular 
Internal Event. The External Event is sensed only 
by the fourth process, the inference engine. The 
other events originate at the respective process 
and are sent to the inference engine process 
which then sends an activation signal to the next 
corresponding process in the production cycle. 
The process synchronization scheme is indicated 
in Fig. 5. 

5.2. Processor level separation 

The essential criterion for achieving concur- 
rency and task partitioning of the production 
cycle is that the different concurrent processes 
must be implemented on different processors in a 

[SELECT] 

Fig. 5. Event based process synchronization scheme. 
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distributed processing environment. Ideally each 
process is implemented on a separate processor. 
However, we may combine the SELECT and 
EXECUTE processes and implement them on a 
single processor. This is possible because SE- 
LECT takes only a small part of the total produc- 
tion system cycle time. At this level, the different 
processors communicate through shared memory 
and thus they influence the execution of each 
other by altering the global datasets. Therefore 
synchronization between the different processors 
is essential for shared memory access. Apart from 
the three processors for three production cycle 
processes (viz MATCH, SELECT, EXECUTE), 
another processor is necessary for implementing 
the APS inference engine. The inference engine 
controls the activation of the three processes of 
the APS, arbitrates the shared memory access 
requests from different processors, and asyn- 
chronously monitors the external real-time in- 
puts. Hence the multiprocessor architecture is an 
essential part of the concurrent control architec- 
ture. 

5.2.1. Multiprocessor architecture 
An APS requires a multi-processor architec- 

ture where four processors work in MIMD mode 
to host the different processes of the production 
cycle and inference engine of APS. The proces- 
sors exchange information through a global mem- 
ory, access to which is controlled by the processor 
which hosts the APS inference engine (Fig. 6). 
We may implement the control structure using 
three processors. One CPU for MATCH process, 
another one for SELECT/ EXECUTE process, 
and a third processor for Real time Monitoring 
In this configuration, the third processor also 

Fig. 6. Multiprocessor architecture (PROC 1 hosts MATCH 
process; PROC 2 hosts SELECT process; PROC 3 hosts 

EXECUTE process; and PROC 4 hosts inference engine). 

hosts the APS inference engine. The global mem- 
ory access requests are routed through this pro- 
cessor. The MATCH processor will write the set 
of selected rules (viz, Rule buffer) on to the 
Shared Memory. This rule buffer will be read by 
the SELECT/EXECUTE processor which in 
turn writes the selected rule on to the shared 
memory. The SELECT/ EXECUTE processor 
also executes the RHS of the selected rule and 
modifies the global memory. 

5.3. State interrupt level separation 

In order to activate a new MATCH process 
when an External Event (Interrupt) occurs, the 
process management techniques used by the op- 
erating system may be employed. This technique 
calls for spawning the current MATCH/ SELECT 
process and thereby creating a child process. Then 
a new foreground MATCH process is created for 
the higher priority interrupt which occurred most 
recently. When the new MATCH process corre- 
sponding to the higher priority input is com- 
pleted, the spawned process may be brought to 
the foreground and executed, if it is still incom- 
plete. The different processes must be prioritized 
for proper scheduling at the process management 
level. 

6. Distributed processing for improved concur- 
rency 

An Autonomous Mobile Robot needs to per- 
form several distinct tasks: navigation, analysis of 
terrain topology, obstacle evasion, etc., each re- 
quiring a certain type of knowledge base. A dis- 
tributed expert system capable of integrating sev- 
eral expert subsystems, each having a large inde- 
pendent, knowledge base for handling different 
prioritized tasks, will result in a higher level of 
concurrency. Such a system consisting of a central 
coordinating shell can invoke a number of expert 
subsystems concurrently, each addressing a par- 
ticular prioritized task. This results in better 
real-time performance, as each one of them pro- 
cesses only the relevant knowledge-base, thereby 
avoiding garbage collection. This also avoids the 
combinatorial explosion. 
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7. Salient features of the concurrent control ar- 
chitecture 

7.1. Interruptibility and state recovery of processes 

As different processes are concurrently acti- 
vated due to changes in the data structure, more 
than one goal may contend for execution. This 

can occur during an emergency input because the 
MATCH process (which is the initial phase of the 
production cycle) executes concurrently and in 
turn gives rise to the execution of SELECT, EX- 
ECUTE processes. Thus, a SELECT process may 
complete its execution and the selected rule may 
be awaiting execution while the execution of the 
previously selected rule is still in progress. If the 
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Fig. 7. The HERMIES III robot. 
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emergency must be attended to immediately, then 
the execution of the existing rule should be inter- 
rupted, as the emergency event has the higher 
priority. After processing this exception the exe- 
cution process has to recover its previous state 
and resume the execution of the previous rule. So 
the system must have the capability to be inter- 
rupted and also the capability to recover its old 
state. 

7.2. Prioritized execution 

As discussed in the previous section, if there is 
an execution contention the system must be capa- 
ble of choosing one goal to execute from among 
the goals which are in contention. This means 
that each goal must have a priority assigned to it 
before it reaches the execution stage. Also, there 
must be perfect co-ordination among the various 
processes in processing the prioritized goals. 

7.3, Dynamic reconfiguration 

Concurrency results in additional computing 
load on the system due to invocation of multiple 
processes simultaneously. This is because the sys- 
tem has only limited resources. Concurrency re- 
sults in meaningful improvements in real-time 
performance only if the system dynamically re- 
configures itself to the changing environment and 
properly allocates resources according to the pri- 
ority of the events. 

The above features indicate that the control 
structure of an APS satisfy all the real-time re- 
quirements of an Autonomous Mobile Robot. 
From the foregoing discussion on the concur- 
rency of control, it is evident that concurrency 
can be added to some of the most important 
criteria for the real-time performance (listed in 
the introduction) of the Production systems. 
Hence it can be seen that APS satisfies all the 
major criteria for Real-time performance. 

Part B: APS implementation issues 

1. Software development environment 

APS and the Autonomous Robot Simulation 
System (ARSS) were developed in an environ- 

ment rich in state of the art hardware and soft- 
ware. Most noticeable was ORNL’s HERMIES 
III robot-a high-technology autonomous mobile 
platform complete with a laser range finder, 
sonars and cameras. Development of APS cen- 
tered on the Motorola 68020 processors found in 
HERMIES, while ARSS was developed on a 
Silicon Graphics IRIS workstation. An ethernet 
LAN provided process communication and high- 
speed data transfer between the two systems, 
allowing the development team to test APS on 
the ARSS simulator. Details of the development 
hardware are provided in the following section. 

Complementing the high-tech hardware, the 
software development environment included the 
Motorola OS-9 real-time operating system and 
the powerful simulation software IGRIP. Details 
of these packages are provided in Section 1.2. 

1.1. Hardware 

1.1.1. HERMES III 
HERMIES III is a battery-powered mobile 

robot designed to support the development of 
autonomous capabilities in performing complex 
navigation and manipulation under time con- 
straints while dealing with imprecise sensory in- 
formation [91. 

In order to achieve the ultimate level of auton- 
omy in a hostile environment, HERMIES is made 
fully aware of its environment by the acquisition 
and fusion of data from a sensor suite that in- 
cludes an Odetics laser range finder, four ccd 
cameras and thirty-two sonar transceivers. 

Sensory processing and mechanical control are 
handled by a 16 node Ncube hypercube machine 
in conjunction with five Motorola 68020 proces- 
sors mounted in VME bus racks. In the event 
more computing power is necessary, HERMIES 
can receive instructions and data via radio link to 
other computer systems. For a detailed descrip- 
tion of HERMIES III, the reader is referred to 
[91 and Fig. 7. 

1.1.2. Kslab ViklE system 
Vislab (“Vision Laboratory”) is a standalone 

computer system consisting of three Motorola 
68020 processors mounted in a VME bus. Each 
processor has 2 megabytes of resident random 
access memory. An additional 2 megabytes is 
shared between them. Vislab is a node in an 
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ethernet LAN shared by the Silicon Graphics motion velocities. The IGRIP software package is 
workstation. Vislab was the main develop-and-test layered on top of Unix on the Silicon Graphics 
platform for the APS system. workstation. 

1.1.3. Silicon Graphics workstation 
An IRIS 4D/60T workstation from Silicon 

Graphics was used to develop the ARSS simula- 
tion system. 

2. Development of APS 

1.2. Software 

1.2.1. OS-9 
The OS-9 operating system on HERMIES and 

Vislab is a multiuser, multitasking operating sys- 
tem featuring a real-time kernel. Because of the 
time-critical nature of APS, OS-9 seemed an ap- 
propriate choice for the project; however, be- 
cause it is not multiprocessing, OS-9 lacked some 
of the support tools needed for the development. 

The development of APS followed a struc- 
tured software engineering approach, framed 
within the successive versions lifecycle model. This 
section presents the details of APS construction- 
from requirements specification and design deci- 
sions through implementation and testing. It con- 
cludes with an evaluation of the development 
effort. 

2.1. Requirements specification 

Two problems with OS-9 proved constantly 
irritating during development. A severe lack of 
error handling by the operating system often lead 
to VME bus errors, cryptic error messages, and 
suspended processes due to the apparent corrup- 
tion of the kernel. The second problem was the 
most detrimental to the project. Because OS-9 is 
not multiprocessing, there are no system-level 
commands for handling processor synchroniza- 
tion, i.e. no atomic hardware instructions (Test- 
and-Set, Swap, semaphores) for dealing with the 
critical sections of APS. A software solution to 
APS’s Readers/Writers problem had to be im- 
plemented. See Sections 2.3.3 and 2.4 for details. 

2.1.1. Real-time, continuous monitoring for envi- 
ronmental threats 

APS shall immediately recognize any of a set 
of predefined environmental threats and react to 
them. This requirement presupposes the ability to 
acquire and process data from the environment 
in time to effect a favorable change. 

2.1.2. Graceful suspension and resumption of non- 
threat rules 

1.2.2. Unix 
Unix is known as an excellent portable devel- 

opment platform. The inherent relationship be- 
tween Unix and the C language was a definite 
plus, offering an extensive library of system calls 
for device control and communications. The Sili- 
con Graphics workstation uses the Unix Operat- 
ing system. 

At the time when an environmental threat is 
recognized, the currently executing non-threat 
rule shall be suspended. After the threat is abated, 
the suspended rule shall resume execution. This 
requirement implies that a facility must exist to 
capture and store the current state of the expert 
system (and robot), execute the threat rule, re- 
store the saved state, compensate for state 
changes due to execution of the threat-rule, and 
resume execution of the suspended rule. 

2.1.3. Most dangerous threats attended first 

1.2.3. IGRIP 
IGRIP is the acronym for Interactive Graphic 

Robot Instruction Program. This software pack- 
age provides a convenient framework for building 
the various components of a complete simulation 
system, and offers an effective scheme for defin- 
ing relationships between the components such as 
degrees of freedom, positional dependencies, and 

If during the execution of a threat rule a more 
dangerous threat is recognized, the low-threat 
rule shall be suspended and resumed after execu- 
tion of the high-threat rule. This requirement is a 
direct corollary of requirement 2.1.2. above, 
adding the ability of APS to handle more than 
one threat at a time in some predetermined pri- 
oritized fashion. 

2.1.4. Execution of existing rule bases 
APS shall execute CLIPS rule bases with pre- 

dictable results. This requirement is necessary 
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due to the large number of CLIPS rule bases 
currently in use at Oak Ridge National Labs. The 
rule implies that if an environmental threat is not 
detected, APS will behave in exactly the same 
manner as CLIPS. 

2.1.5. Portable, platform-independent code 
APS shall be coded using only ANSI-standard 

C language functions, constructs and features. 
This requirement guarantees that APS will be 
portable across hardware platforms. 

2.2. Lifecycle model: successive versions 

2.2.1. Description 
Product development by the method of succes- 

sive versions is an extension of prototyping in 
which an initial product skeleton is refined into 
increasing levels of capability. In this approach, 
each successive version of the product is a func- 
tioning system capable of performing useful work 
ma p. 52). 

2.2.2. Choice justification 
The successive versions lifecycle has several 

advantages over the conventional waterfall model 
of software development. It permits the explo- 
ration of technical issues concerning implementa- 
tion. It also allows evaluation before proceeding 
to the next stage of development. Since all tech- 
nical issues could not possibly be known or ac- 
counted for before hand concerning APS, this 
development model matched the requirements of 
the project perfectly. 

2.3. Design alternatives and decisions 

2.3.1. Genesis-modification of CLIPS and start- 
ing from scratch 

The premier design decision for the project 
was whether to modify the existing CLIPS pro- 
duction system or to develop an entirely new 
production system from the ground up. 

CLIPS was developed by the Artificial Intelli- 
gence Section of the Mission Planning and Analy- 
sis Division of NASA. It represents state of the 
art production systems- utilizing efficient RETE 
pattern matching networks for high-speed selec- 
tion and execution of complex rule bases and 
providing easy extensibility and modification of 
it’s C code. 

Modifying CLIPS has the advantage of satisfy- 
ing requirement D (execution of existing rule 
bases) with little effort. In addition, the develop- 
ment time of APS by modifying CLIPS would be 
much shorter than constructing an entirely new 
system from scratch. 

The major drawback of using CLIPS as a start- 
ing point of APS lies in its data structures. CLIPS 
is very efficient, and that efficiency is due to 
several factors: 
1. Strong common coupling: modules are tightly 

bound together by the global data structures 
([lo], p. 148). By separating the modules from 
the global data, we increase the complexity of 
interprocess communication. 

2. Weak communicational cohesion: modules re- 
fer often to the same set of input and/or 
output data ([lo], p. 149). This condition made 
it difficult to decompose the CLIPS system 
into the separate, asynchronous modules 
MATCH, SELECT, and EXECUTE. 

3. Large “scope of effect”: a significant change in 
the run-time behavior of CLIPS occurs when 
the outcome of a decision within a module 
(such as in an “IF-THEN-ELSE” construct) is 
changed. Tracing the flow of execution through 
CLIPS was difficult. 

Another (slight) disadvantage of modifying CLIPS 
is its extra code for supporting features that are 
not useful to APS or that may slow its execution 
speed. This code and its supporting data struc- 
tures must be removed. 

Starting from scratch offers the advantage of 
designing a system that exactly satisfies the re- 
quirements specification; a small, fast inference 
engine with distinct, separate modules for each 
phase of execution. However, starting from 
scratch involves extensive time for planning and 
design-time not available to the development 
team. For these reasons, the APS project team 
focused on the metamorphosis from CLIPS to 
APS. 

2.3.2. Load balancing-asynchronous processes 
and processors 

The decision to modify CLIPS lead to the next 
major design alternative-determining the num- 
ber of processors and processes running on those 
processors in order to achieve the required level 
of performance. 
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Adhering to the philosophy of Task Level Par- 
titioning, there would be four processes in 
APS-MATCH, SELECT, EXECUTE, and a 
real-time monitor process RTM for detecting en- 
vironmental threats. To run at the fastest possible 
speed each process should be dedicated to a 
separate processor; however, faced with only three 
processors available for the APS system (the oth- 
ers are dedicated to performing other necessary 
robotic tasks), the four processes had to be com- 
bined in such a way so that the CPU load was 
distributed evenly among them. The logic behind 
mapping processes onto processors is of some 
interest. 

By far, the most complex and computationally 
expensive task in an expert system is the search 
for matching rules. Therefore it is empirically 
obvious that MATCH should have an entire pro- 
cessor dedicated to it. That leaves either SE- 
LECT or RTM to be shared with EXECUTE. 

SELECT is simplistic and not computationally 
intensive. It is also dataflow dependent with EX- 
ECUTE, writing data to the Select Rule dataset. 
RTM is I/O bound (constantly interrogating 
physical devices for indications of threats) as is 
EXECUTE (robotic motion commands), so these 
should not be combined on a processor. That 
forces SELECT and EXECUTE to share a pro- 
cessor, with RTM having an entire processor to 
itself. This is also a practical decision because it 
gives APS the best chance of fulfilling require- 
ment A (real-time continuous monitoring for en- 
vironmental threats); the RTM runs at the fastest 
possible speed on a processor with no other tasks 
to perform. 

Summarizing, MATCH will be alone on pro- 
cessor #l. SELECT and EXECUTE will share 
processor #2, and RTM will be alone on proces- 
sor #3. Figure 8 graphically illustrates the pro- 
cess-processor map. 

2.3.3. Interprocess communications-pipes, shared 
memory and signals 

After determining the process-processor map 
of APS, attention focused on how best to imple- 
ment interprocess communications (ipc). The 
choices available were pipes, shared memory, and 
signals. 

Pipes offer several useful features. Implemen- 
tation is straightforward-processes read and 
write to pipes just like to a file. The serialization 

processor #l processor #3 

/ \ f \ 
EXTERNAL INPUT 

MATCH + RTM 

\ / 1 / 

iii 
processor #2 

Fig. 8. APS processor/process map. 

of data through a pipe ensures that data will not 
be stepped on or lost by the process at the 
receiving end. A disadvantage of pipes is that 
they are relatively slow-a fact that cannot be 
ignored when constructing a real-time system. 
And, although serialization may be viewed as an 
advantage in some sense, it is its biggest disad- 
vantage; incoming data is not randomly available, 
i.e. important data is not revealed until all data 
before it has been processed. This situation is not 
acceptable, especially for communication with 
RTM which must deal with prioritized threats 
and notify SELECT/EXECUTE to handle it. 
For these reasons pipes were removed from con- 
sideration for ipc. 

Signals offer efficient interprocess communica- 
tions, but they are characterized by their inter- 
rupt-like nature. Interrupting a rule in mid-ex- 
ecution would leave APS in an uncertain state, 
preventing its resumption after the interrupt is 
handled. This would prevent satisfying the re- 
quirement of Section 2.1.2, so signals were also 
excluded from consideration. 

The advantage of using shared memory is that 
data is available to all processes without the work 
involved in reading and writing though a pipe. 
Setting up shared memory is not difficult, and is 
much more efficient (faster) than the pipe archi- 
tecture. Shared memory would seem a more ap- 
propriate ipc implementation. The disadvantage 
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Table 1 code and to the data and control flow mecha- 
APS environmental threats nisms within. 
Threat category 

Fire alarm 
Security alarm 
Power failure emminent 
Radiation leak 
Camera failure 
End-effector failure 
Collision emminent 
Sonar failure 

Priority 

100 
50 

1000 
150 

1000 
1000 
1000 
1000 

Experimentation was conducted during this 
version to establish the basis for the shared mem- 
ory and to test the algorithm for handling the 
read/write contention for the global datasets. 

2.4.2. APS Version 2-one processor, three pro- 
cesses 

of shared memory is that, as mentioned in Sec- 
tion 1.2, OS-9 lacks any multiprocessing capabili- 
ties and as such lacks the atomic instructions 
necessary to ensure data integrity when multiple 
processes attempt to read/write a common mem- 
ory address. To handle the read/write synchro- 
nization between processes and global datasets a 
Bakery algorithm should be implemented ([ll], p. 
335). 

In APS Version 2, MATCH, SELECT, and 
EXECUTE were decoupled into separately com- 
piled and executable modules. Shared memory, 
tested during Version 1, was implemented with 
success. At this point, CLIPS and APS executed 
any rulebase with exactly the same results. 

2.4.3. APS Version 3-two processors, three pro- 
cesses 

2.3.4. Environmental alarms: threat detection and 
prioritization 

The final design alternative is the choice of 
environmental conditions that must be monitored 
in order to identify the existence of a threat, and 
the priority in which simultaneous threats will be 
handled. 

For testing purposes, eight environmental fac- 
tors are continuously monitored: radiation detec- 
tor, fire alarm, security alarm, collision detector, 
power supply, sonar failure, ccd camera failure 
and end-effector failure, These “threats” are pri- 
oritized as shown in Table 1, with the higher 
priority threats demanding the greatest attention. 

APS Version 3 saw the addition of a 68020 
processor to the system and migration of SE- 
LECT and EXECUTE to it. It was at this point 
that the problem of bus errors began to appear; 
APS was in resource contention for the address 
bus! The problems were intermittent, and no 
solution was implemented. Also noticeable at this 
point was the first variations in run-time behav- 
iors between CLIPS and APS. The change in 
execution proved to be caused by the change of 
order in which facts are asserted by the EXE- 
CUTE process. By prioritizing each rule in the 
rulebase, comparable run-time behavior between 
the two expert systems was reestablished. 

2.4, Implementation 

With the critical design decisions made, APS 
implementation began. As discussed in Section 
2.2, the Successive Versions lifecycle model was 
used. All together, four distinct versions of APS 
were created. 

2.4.1. APS Version 1 -one processor, one process 
In the initial version of APS, the MATCH, 

SELECT, and EXECUTE processes were modu- 
larized into separate, callable routines. No at- 
tempt was made to decouple the data structures 
or to alter the control flow of CLIPS. Version 
One provided the initial exposure to the CLIPS 

The problem of rule suspension and resump- 
tion was also studied in Version 3. The difficulty 
lies not in suspending the currently executing 
rule, but in resuming execution at some later 
time. The state of the expert system must be 
preserved in some structure for resolution when 
the rule is reactivated. Another problem arises at 
the time of reactivation because the possibility 
exists that the robot itself is no longer in the same 
state as before (it has probably moved), so some 
plan must be in place to resolve the differences in 
state so that the rule may resume execution. 
Though this problem is solvable, time constraints 
and the focus on real-time execution prevented 
the implementation of this requirement. 

2.4.4. APS Version I-three processors, four pro- 
cesses 

The final version of APS was marked by the 
addition of the real-time monitor process RTM 
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and its processor. Environmental alarms and trig- 
gers were simulated using keyboard input to the 
APS system. After an alarm goes off, RTM ac- 
cesses the shared memory module and initializes 
a flag indicating the occurrence of the proper 
threat. MATCH reacts to the flag, finding all 
rules that will handle the threat. Next, it signals 
SELECT/EXECUTE to suspend the current 
rule and execute the threat rule. This method of 
handling the external input proved the most reli- 
able. Response time of HERMIES to the threats 
was excellent. No problems were detected in this 
final phase of development. 

3. Testing 

Throughout the development lifecycle of APS, 
exhaustive testing was conducted to ensure proper 
execution of existing CLIPS rulebases. To test the 
APS requirements of Section 2.1, a new rulebase 
had to be constructed. 

3.1. Test data 

APS was designed to run on the HERMIES 
III autonomous mobile robot at ORNL. Unfortu- 
nately, at the time of APS development the robot 
was unavailable. Testing proceeded using the 
ARSS that was developed as part of this project. 
The test “data” used for APS consisted of the 
rulebase found in APPENDIX A. Note the prior- 
itization of the rules (known as “salience” in 
CLIPS) used to maintain a stable behavior of the 
rulebase. Also note the calls to external subrou- 
tines. These routines are provided for reference 
in APPENDIX B. 

Of interest in the rulebase is the mechanism 
employed to determine if, after a hardware fail- 
ure, the current task can be executed to success- 
ful completion. For example, a series of rules is 
executed with the goal of closing a radiation 
valve. One of the rules requires the use of the 
end-effector. While executing the navigation rule 
to travel to the valve location, the RTM detects a 
servo failure in the end-effector-it is damaged 
and will not function correctly. The navigation 
rule is suspended so that the hardware failure 
can be attended by its special rule. One of the rhs 
actions of the failure rule is to retract any rule 
that requires the end-effector; the rule to close 
the radiation valve is retracted. An alternative 

plan of action may now be executed to achieve 
the same goal-perhaps the robot will flip an 
electrical breaker. This feature of APS will prove 
very useful in the real world of robot hardware 
failures, contingency plans, redundancy and sur- 
vivability. 

3.2. Test results 

Requirement 1.2.1. 
Real-time, continuous monitoring of environ- 

mental threats was achieved. The response time 
to the external events was almost instantaneous. 

Requirement 1.2.2. 
Graceful suspension and resumption of non- 

threat rules was not pursued due to time con- 
straints and focus upon the real-time responsive- 
ness of the system. Initial design was completed 
however, and this requirement should be met in 
the next version of APS. 

Requirement 1.2.3. 
Most dangerous threat attended first was 

achieved. APS successfully handled the simulta- 
neous occurrence of multiple threats-interrupt- 
ing the current threat rule after notification by 
RTM of a higher-priority event, executing the 
new rule, and invalidating consequential rules 
after a hardware failure would have prevented its 
successful completion. 

Requirement 1.2.4. 
Execution of existing rulebases was achieved. 

Test rulebases included tic-tat-toe, an automotive 
diagnostics system and the rulebase found in Ap- 
pendix A. 

Requirement 1.2.5. 
Portable, platform independent code was par- 

tially achieved. Syntactic implementation of 
shared memory was specific to the OS-9 operat- 
ing system and is not part of the ANSI-standard 
C definition. These system-dependent modules 
were isolated to a separate object file. 

4. Autonomous robot simulation system 

Testing the APS on the Autonomous Mobile 
Robot in a real-world situation may endanger the 
equipment and the people involved. In order to 
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avoid this problem it is necessary to use simula- 
tion techniques to characterize the problem and 
find the best model which can be used for testing 
the robotic system. For this purpose a front-end 
simulation software package called the Au- 
tonomous Robot Simulation System (ARSS) was 
developed. ARSS is layered on top of the generic 
simulation product IGRIP. 

The ARSS system allows the testing of robotic 
systems in theoretical situations and environ- 
ments. Further, this system allows us to test the 
actual real-time data in a simulated environment. 
An elegant feature of the ARSS is that it allows 
the user to click a mouse on menu buttons such 
as zoom, translate and rotate while the simula- 
tion is in progress to obtain varying visual per- 
spectives. 

4.1. APS interface to IGRIP using command sets 

Two sets of commands were designed and im- 
plemented into ARSS to support the HERMIES 
robot commands given by the APS. SET A com- 
mands require movement of the robot or one of 
its peripherals, whereas SET B commands re- 
quire no movement. These sets are: 

SETA 
FMOVE(x,i) 

BMOVE(x,i) 

FRMOVE(x,i) 

RTURN(i) 
LTURNG) 
MJOINTx(i) 

LCAMx(i) 

RCAMx(i) 

UTILTx(i) 

DTILTx(i) 

ZTILTx 

LHEAD(i) 

Move forward x feet 
and i inches 
Move backward x feet 
and i inches 
Move forward x feet 
and i inches, fire the 
forward looking sonar 
Turn right i degrees 
Turn left i degrees 
Move joint x of the arm 
by i degrees 
Turn pan table to the 
left by i degrees 
Turn pan table to the 
right by i degrees 
Turn tilt table x up by i 
degrees 
Turn tilt table x down 
by i degrees 
Return tilt table x to 0 
degrees 
Turn the LRF pan 
table to the left i de- 
grees 

RHEAD(i) 

ZHEAD 

MATCH 

SELECT 

SET B 
GET_ JOINT(a) 

SNAPx_ TO _ CUBE(a) 

SNAPL_ TO _ CUBE(b) 

SONARx(y) 

WIDE_ SCAN(b) 

A parser program was 
HERMIES commands 
mand sets. 

Turn the LRF pan 
table to the right i de- 
grees 
Return the LRF pan 
table to 0 degrees 

Rotates the match 
graph-ic by ten degrees 

Rotates the select 
graph-ic by ten degrees 

Get joint degrees and 
store in array a 
Acquire CCD camera 
x data and store in ar- 

ray 
Acquire LRF data and 
store in array b 
Fire single sonar x and 
store range in y 
Fire all sonars and 
store the data in array 
b 

constructed to translate 
into these ARSS com- 

4.2. Features of IGRIP applied to the simulation 

4.2.1. Parts 
In IGRIP each piece of equipment having a 

degree of freedom must be created and stored 
separately as parts, which are composed of ob- 
jects such as blocks, polygons and cylinders. For 
instance, the robotic arm has seven degrees of 
freedom and so it has seven different parts with 
each part made up of any combination of blocks, 
cylinders, polygon etc. Similarly the laser range 
finder, the cameras etc, are created and stored 
separately. 

4.2.2. Devices 
A Device is constructed by attaching a series 

of parts to each other and defining their relation- 
ship to each other. The HERMIES III used in 
simulation is a single device consisting of the 
seven parts of the robot arm, cameras, tilt tables, 
laser range finder, wheels and the body of the 
robot. Each part is attached to its position and 
later its attributes such as the link type (either 
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rotational or translational) and link speed etc are 
defined. 

4.2.3. Work-cells 
Work-cells comprise of devices, positioned in 

arbitrary locations. The work-cell created consists 
of three devices, the HERMIES II, match graphic, 
and execute graphic. HERMIES II moves across 
a grid that has lines spaced seven feet apart when 
it receives commands from the APS. On the 
other hand, the match and select graphics rotate 
by ten degrees in order to show the amount of 
work being performed by each processor. This is 
achieved a Graphics Simulation Language Pro- 
gram which reacts to the incoming commands by 
joining the links of the appropriate parts of a 
particular device. 

4.2.4. GSL-A simulation language 
IGRIP is a powerful tool for graphic simula- 

tion. It supports an efficient simulation language 
called GSL. IGRIP and GSL provide a conve- 
nient framework for building the various compo- 
nents of the simulation and offers an effective 
scheme for defining the relationship between 
them. 

GSL is a procedural language used to con- 
struct programs for individual devices in a simula- 
tion system to govern their actions. GSL syntax is 
similar to that of PASCAL with specific enhance- 
ments for device motion, display control, view- 
point choreography, etc. Apart from processing 
the input, GSL is used in the ARSS for opening 
windows to graphically display the simulation and 
its status messages and for spawning the commu- 
nications program and command parser. 

OS/9 Operatmg 
System 

commands 

e g FMOVE (115) arguments 
FMOVE, 11, 6 

II 
Fig. 9. Integration of graphics software to APS. 

4.2.5. Communication between APS and ARSS 
In order to simulate the robotic action during 

the execution of the selected rule APS must 
communicate with ARSS. Both Vislab and the 
Iris workstation were connected to ethernet. The 
design team built up communications primitives 
on using the socket facilities found on both sys- 
tems. Figure 9 shows the integration of the 
ARSS/IGRIP graphics software with the APS 
expert system. 

5. Conclusion 

We have discussed the need for using a real- 
time expert system with a concurrent control ar- 
chitecture for the control of an autonomous mo- 
bile robot operating in a complex hostile environ- 
ment. We have described the various factors con- 
tributing to the concurrency of control of Asyn- 
chronous Production System-a powerful expert 
system base built with real-time capabilities. We 
have also observed how concurrency of control 
enhances the real-time response of the mobile 
robots. We have described in detail how the 
concept of concurrency of control can be effec- 
tively implemented in the real-world situation for 
controlling an Autonomous Mobile Robot, partic- 
ularly for controlling the HERMIES III robot 
which is used for experiments in a hostile do- 
main. 

The following key ideas were established dur- 
ing the discussion: 

The real-time response by an Autonomous 
Mobile Robot to environmental threats de- 
pends on the parallelization of the control 
system used on the robot. 
The expert system used for time-critical, intel- 
ligent control of an Autonomous Mobile Robot 
must possess an inference engine with a con- 
current control architecture in order to pro- 
vide real-time response to environmental 
threats. 
APS-a real-time expert system-possesses a 
concurrent control architecture and is there- 
fore ideally suited for the control of Au- 
tonomous Mobile Robots. 
The concurrency of control of APS is due to 
the following factors: 
(a) partitioning of the control task into four 

independent processes, with one process 
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(b) 

Cc) 

for the control and coordination between 
different processes; 
partitioning of the database into four dis- 
tinct global datasets which are uniquely 
associated with the various processes of 
the control mechanism. Inclusion of a spe- 
cial data structure for external events; 
using a multi-processor architecture which 
ensures the concurrent execution of differ- 
ent processes and the continuous monitor- 
ing of the real-time events in the robot 
environment. 

The implementation of the concept of APS on 
HERMIES III and the thorough testing of the 
overall robot system calls for effective mod- 
elling of real-world problems such as domain 
modelling, path planning, etc. This requires 
the development of a graphic simulation soft- 
ware package. 
The Autonomous Robot Simulation System 
provides a convenient and portable platform 
for characterizing the problem and for exhaus- 
tive testing of the entire robot system under 
theoretical and real-world conditions, using 
both theoretical and actual data. 
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Appendix A. Asynchronous Production System rulebase 

Cdefrule file-based "the terrain reader" 

=> 

Cfprintout t crlf "*** ASYNCHRONOUS PRODUCTION SYSTEM DEMO 

(read map) 

Cfprintout t crlf "the robot starts at 0.0 facing North", crtf) 

(bind ?xs 0) 

(bind ?ys 0) 

(bind ?dir I) 

Cfprintout t "what are the robot", goat co-ords?" crtf) 

Cfprintout t "x = "1 

(bind ?xd (read)) 

Cfprintout t "y = "1 

(bind ?yd (read)) 

(assert Crobpos ?xs ?ys)) 

(assert Crobdir ?dir)) 

(assert (goat ?xd ?yd)) 

(assert Cdest ?xd ?yd) 

;;; flags for the following facts are ordered "power vision effector" 

;;; value TRUE=l, value FALSE=0 

;;; for the initial task of navigating to goat, only power is required 

(assert (task-requires 1 0 0) 

(assert (task-available 1 1 I) 

(assert Crtm-Location-fire 2 0)) 

(assert Crtm-Location-security 4 2)) 

(assert Crtm-Location-pouer 2 4)) 

(assert Crtm-location-radiation 0 2)) 

***"crtf) 

Cfprintout t crlf "*** hermies begins navigation to goat 

(plan ?xs ?ys ?xd ?yd ?dir) 

(assert (navigate)) 

(assert (plan-exec 0)) 

1 

;;;************************************************** 
;;;; navigation using the current plan 

;;;************************************************** 

Cdefrute navigate "using the plan" 

(declare (salience 10000)) 

?nav <- (navigate) 

?ptan <- (plan-exec ?num) 

(total-plan ?totat&: C<= ?num ?totat)) 

?currplan <- (plan ?num ?prim ?paraI 

=> 

(retract ?ptanI 

(bind ?var I) 

(assert (plan-exec =C+ ?num ?var))) 

(retract ?nav) 

(retract ?currptan) 

(assert Cnav ?prim ?para) 

***" crtf) 
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;;;************************************************** 

;;; robot primatives on hermies 
;;;************************************************** 

* 

(defrule formove “move forward” 

?nav <- (nav 0 ?para) 

?pos <- (robpos ?x ?y) 

(robdir ?dir)e (dest ?xd ?yd) 

=7 

(fprintout t “fmove ” ?para ” 0”, crlf) 

(ahparam ?x ?y ?xd ?yd ?dir) 

(fmove ?para 0) 

(retract ?pos) 

(if (= ?dir 0) then (assert (robpos (+ ?x (/ ?para 4)) ?y))) 

(if (= ?dir I) then (assert (robpos ?x =(+ ?y (/ ?para 4))))) 

(if (= ?dir 2) then (assert (robpos (- ?x (/ ?para 4)) ?y))) 

(if (= ?dir 3) then (assert (robpos ?x =(- ?y (/ ?para 4))))) 

(retract ?nav) 

(assert (navigate)) 

) 

(defrule rightturn “turn right” 

?nav <- (nav 2 ?para) 

?rob C- (robdir ?dir) 

=7 

(fprintout t “rturn ” ?para crlf ) 

(rturn ?para) 

(retract ?rob) 

(bind ?diff (- ?dir 

(if (< ?diff 0) then 

(assert (robdir ?dif 

(retract ?nav) 

(assert (navigate)) 

) 

(/ ?para 90) 

(bind ?diff 

f)) 

)) 

(+ 4 ?diff))) 

(defrule Leftturn “turn left” 

?nav <- (nav 1 ?para) 

?rob <- (robdir ?dir) 

) 

(fprintout t “lturn ” ?para crlf) 

(Lturn ?para) 

(retract ?rob) 

(bind ?diff (4 ?dir (/ ?para 90))) 

(if 0 ?diff 3) than (bind g?diff (- 4 ?diff))) 

(assert (robdir ?diff)) 

(retract ?nav) 

(assert (navigate)) 

1 

;;;************************************************** 

;;; high-level rules for alarms 
;;;************************************************** 

(defrule alarm-fire ” ” 

(declare (salience 100)) ?rtm rule <- (rtm alarm fire) - - 
task-available ?ap ?av ?ae) 

?taskr <- (task-requires ? ? ?) 

=7 

(if (= ?ap ?ay ?ae I) then 

(retract ?taskr) 
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(assert (clean work-mem)) 

(assert (task-requires 1 1 I)) 

(assert (process fire) 

else 

(fprintout t crlf "ignoring fire... hardware insufficient", crlf)) 

(retract ?rtm rule) - 
1 

(defrute alarm-security M U 

(declare (salience 50)) 

?rtm rule <- (rtm alarm security) 

(task-available ?ip ?a"-?ae) 

?taskr <- (task-requires ? ? ?) 

=> 

(if (= ?ap ?ay I) then 

(retract ?taskr) 

(assert (clean work-mem)) 

(assert (task-requires 1 1 0)) 

(assert (process security)) 

else 

(fprintout t crtf "ignoring security,... hardware insufficient" crlf)) 

(retract ?rtm rule) - 
) 

(defrute alarm-power w w 

(declare (salience 10000)) 

?rtm rule <- (rtm alarm power) - - _ 
?taska <- (task-available ?ap ?ay ?ae) 

=> 

(retract ?rtm rule ?taska) 

(assert (clean work-mem)) 

(assert (task-available 0 7av ?ae) 

(assert (process power)) 

) 

(defrule alarm-radiation M M 

(declare (salience 150)) 

?rtm rule <- (rtm alarm radiation) 

(task-available ?ap ?ay-?ae) 

?taskr i- (task-requires ? ? ?) 

=> 

(if (= ?ap ?ay ?ae I) then 

(retract ?taskr) 

(assert (clean work-mem)) 

(assert (process radiation)) 

else 

(fprintout t crlf "ignoring radiation... hardware insufficient", crlf)) 

(retract ?rtm_rule) 

;;;*************************************~~~~~~~~~~~~* 

;;; high-level rules for handling hardware failures 

;;;************************************************** 

(defrule failure-vision "handle failure of sonar end ccd camera" 

(declare (salience 1000)) 

?rtm rule <- (rtm failure vis - - 
?taska <- (task-available*ap 1 

(task-requires ? ?trv ?) 

=> 

(if (= ?trv I) then 

(fprintout t crlf "vision fa 

on) 

?ae) 

led and was required" crlf) 



S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems 391 

else 

(fprintout t crlf "vision failed... continuing" crlf)) 

(retract ?rtm rule ?taska) 

(assert (taskTavailable ?ap 0 ?ae)) 

1 

(defrule failure-effector "handle fa 

?rtm rule <- (rtm failure effector) - 
?taska <- (task-available-?ap ?ay 1 

(task-requires ? ? ?tre) 

=> 

ilure of end-effector" (declare (salience 1000)) 

) 

(if (= ?tre I) then 

(fprintout t crlf "effector failed 

else 

and was required" crlf) 

(fprintout t crlf "effector failed... continuing" crlf)) 

(retract ?rtm_rule ?taska) 

(assert (task-available ?ap ?ay 0) 

) 

;;;************************************************** 
;;; mid-level rules for processing the interrupts 

;;;************************************************** 

(defrule replan-fire "move to location of fire" 

(declare (salience 100)) 

?clean <- (clean-over) 

(robpos ?xs ?ys) 

(rtm-location-fire ?xfire ?yfire) 

(robdir ?dir) 

?rtm-rule <- (process fire) 

?dest <- (dest ? ?I 

=> 

(plan ?xs ?ys ?xfire ?yfire ?dir) 

(assert (navigate)) 

(assert (plan-exec 0)) 

(retract 7clean ?rtm-rule ?dest) 

(assert (dest ?xfire ?yfire)) 

(assert (rtm-event-occurred)) 

(fprintout t crlf "*** hermies extinguished the fire ***" crlf) 

(defrule replan-security "move to location of security intrusion" 

(declare (salience 50)) 

?clean C- (clean-over) 

(robpos ?xs ?ys) 

(rtm-location-security ?xsecurity ?ysecurity) 

(robdir ?dir) 

? rtm-rule <- (process security) 

?dest <- (dest ? ?) 

=> 

(plan ?xs ?ys ?xsecurity ?ysecurity ?dir) 

(assert (navigate)) 

(assert (plan-exec 0)) 

(retract ?clean ?rtm-rule ?dest) 

(assert (dest ?xsecurity ?ysecurity) 

(assert (rtm-event-occurred)) 

(fprintout t crlf "*** hermies shot the intruder in the foot 

1 

***" crlf) 
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(defrule replan-power "move to location of battery charger" 

(declare (salience 10000)) 

?ctean <- (clean-over) 

(robpos ?xs ?ys) 

(rtm-location-power ?xpower ?ypouer) 

(robdir ?dir) 

7 rtm-rule <- (process power) 

?dest <- (dest ? ?) 

?taska <- (task-available ?ap ?av ?ae) 

=> 

(plan ?xs ?ys ?xpower ?ypouer ?dir) 

(assert (navigate) 

(assert (plan-exec 0)) 

(retract ?clean ?rtm=rule ?dest ?taska) 

(assert (dest ?xpover ?ypouer)) 

(assert (rtm-event-occurred)) 

(assert (task-available 1 ?av ?ae)) 

(fprintout t crlf "*** hermies recharged his batteries 

1 

(defrule replan-radiation "move to location of radiation leak" 

(declare (salience 150)) 

?clean <- (clean-over) 

(robpos ?xs ?ys) 

(rtm-location-radiation ?xradiation ?yradiation) 

(robdir ?dir) 

?rtm-rule <- (process radiation) 

?dest <- (dest ? ?I 

=> 

(plan ?xs ?ys ?xradiation ?yradiation ?dir) 

(assert (navigate)) 

(assert (plan-exec 0)) 

(retract ?clean ?rtm-rule ?dest) 

(assert (dest ?xradiation ?yradiation) 

(assert (rtm-event-occurred)) 

(fprintout t crlf "*** hermies sealed the radiation leak 

;;;************************************************** 
;;; Lou level rules for real time processing * 

;;;************************************************** 

(defrule clean "the working memory" 

(declare (salience 10000)) 

(clean work-mem) 

?plan <- (plan-exec ?num) 

(total-plan ?total&: (<= ?num ?total)) 

?currplan C- (plan ?num ?prim ?para) 

=> 

(retract ?currplan) 

(retract ?plan) 

(assert (plan-exec =(t ?num ?))) 

***" crlf) 

***" crtf) 

(defrule finish-clean "no plans Left" 

(declare (salience 10000)) 

?clean <- (clean work-mem) 

?plan <- (plan-exec ?num) 

?atotal <- (total-plan ?total&: (> ?num ?total)) 

=> 

(retract ?clean ?plan ?atotal) 
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(fprintout t "took out "all the plans" crlf) 

(assert (nav-clean)) 

1 

(defrule no-plans-exist "no plans existed" 

(declare (salience 10000)) 

?clean <- (clean work-mem) 

(not (plan-exec ?)I 

(not (total-plan ?I) 

=> 

(retract ?clean) 

(fprintout t "took out all the plans" crlf) 

(assert (nav-clean)) 

1 

(defrule nav-clean "if navs were generated" 

(declare (salience 10000)) 

?clean <- (nav-clean) 7nav <- (nav ?prim ?para) 

=> 

(retract ?clean ?nav) 

(assert (navigate-clean)) 

) 

(defrule no-navs "no navs were found" 

(declare (salience 10000)) 

?clean <- (nav-clean) 

(not (nav ?prim ?para)) 

=> 

(retract ?clean) 

(assert (navigate-clean)) 

) 

(defrule navigate-clean "if navigate is present" 

(declare (salience 10000)) 

?clean <- (navigate-clean) 

?nav <- (navigate) 

=> 

(retract ?clean ?nav) 

(assert (clean-over) 

) 

( defrule no-navigate "no navigate present" 

(declare (salience 10000)) 

?clean C- (navigate-clean) 

(not (navigate)) 

> 

(retract ?clean) 

(assert (clean-over)) 

defrule nav-finish "no plans left" 

?nav <- (navigate) 

?plan C- (plan-exec ?num) 

?atotal <- (total-plan ?total&: (> ?num ?total) 
=> 
(retract ?nav ?plan ?atotal) 

(fprintout t “navigation camp 

(assert (recover)) 

1 

(defrule success "robot at dest 

? ret <- (recover) 

eted" crlf) 

ination" 

393 
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(not (rtm-event-occurred)) 

(robpos ?xs ?ys.) 

(goal ?xs ?ys) 

=> 

(retract ?rec) 

(fprintout t crlf "*** success !!! hermies arrived at goal 

) 

(defrule rtm-event-recover "recovery" 

? ret <- (recover) 

? rtm-rule <- (rtm-event-occurred) 

(robpos ?xs ?ys) 

(goat ?xd ?yd&: (11 (!= ?xs ?xd) (!= ?ys ?yd))) 

(robdir ?dir) 

?dest <- (dest ? ?) 

=> 

(retract ?rec ?rtm-rule ?dest) 

(fprintout t crtf "*** recovering from real-time interrupt 

(plan ?xs ?ys ?xd ?yd ?dir) 

(assert (navigate)) 

(assert (dest ?xd ?yd)) 

(assert (plan-exec 0)) 

Appendix B. Asynchronous Production System external functions 

#include <stdio.h> 

#include "cLips.h" 

#define HUGE 10000.0 

int terrainCSlC51; 

struct unit C 

int x; 

int y; 

int dir; 

float g; 

int h; 

float f; 

int parx; 

int pary; 

struct unit *parent; 

); 

int xstart, ystart, xdest, ydest, robdir, robdist; 

int solution C25lC31, Lastsol; 

int primsotC21C21, index; 

extern int s socket; 

char bufC481; 

int rc, buf_ten; 

/************************************************1 

I* Lou level robot routines */ 

/********************************************~****f 

***" crtf) 

***" crtf) 

ahparam0 

xstart = rftoat(1); 

ystart = rftoat(2); 
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xdest = rfloat(3); 

ydest = rfloat(4); 

robdir = rfloat(5); 

return (0); 

bmove0 

float x,y; 

x = rfloat (I); 

y = rfloat(2); 

sprintfcbuf, “BMOVE (Xd,Xd)\O”, (int) x, (int) y); 

buf_len = strlen(buf)+l; 

rc = send(s_socket, &buf Len, sizeofcbuf ten), 0); 

rc = send(s socket, buf, -buf Len, 0); - 

sleep(5); 

return(O); 

LaZOfmoveO 

c 

float x,y; 

x = rfloatcl); 

y = rfloat(2); 

sprintfcbuf, “FMOVE (Xd,Xd)\O”, (int) x, (int) y); 

buf_len = strlen(buf)+l; 

rc = send(s_socket, &buf Len, sizeof (buf_len), 0); 

rc = send(s_socket, buf, -buf Len, 0); 

sleep(5); 

return (0); 

LturnO 

c 

float x; 

x = rfloat(1); 

sprintfcbuf, “LTURN (%d)\O”, (int) x); 

buf Len = strlen(buf)+l; - 
rc = send(s socket, &buf Len, sizeoftbuf Len), 0); 

rc = send(s_socket, but, -but Len, 0); - 

sleep(5); 

return(O); 

rturn0 

c 

float x; 

x = rfloat(1); 

395 

sprintfcbuf, “RTURN (%d)\O”, (int) x); 

buf Len strlen(buf)+l; - 
rc = send(s_socket, &buf Len, sizeofcbut Len), 0); - 
rc = send(s socket, buf, buf Ten, 0); 
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sleep(5); 

return(O); 

) 

aplan 

float a, b, c, d, e; 

a q rfloat(1); 

b = rfLoat(2); 

c = rfloat0); 

d = rftoat(4); 

e = rftoat(5); 

plan (int) a, (int) b, lint) c, (int) d, (int) e); 

return(O); 

) 

/************************************************1 

I* high Level robot routines */ 

/************************************************1 

read map0 

c - 

FILE *terdat, *fopenO; 

int i, j; 

if ((terdat = fopen("terrain.dat", "r")) == NULL) 

c 

printf("can 't open terrain.dat\n"); 

return(O); 

1 

else 

c 

printf("\n\n\n"); 

printf("The Terrain N \n”) . , 

printf(" W + E\n"). I 

printfc" X s \n"). I 
printf("0 1 2 3 4 \n\n"). I 

for Cj = 4; j>-1; j--j 

C 

for (i = 0; i<5; it+) 

c 

fscanfcterdat, "%d", &terrainCilCjl); 

printf("%d I', terrainCilCj1); 

> 

if Cj =I 2) 

printfc" %d Y\n",j); 

else 

printfc" %d\n",j); 

) 

) 

fctose (terdat); 

printf ("\n"); 

return 1); 

1 

plant xs, ys, xd, yd, dir) 

int xs, ys, xd, yd, dir; 

C 

int sot; 

if CterrainCxslCysl == 1) 

c 

printf("bad start position\n"l; 
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return(O); 

1 

if CterrainCxdlCydl == I) 

c 

printf("bad destination position\n"); 

return(O); 

) 

xstart = xs; 

ystart = ys; 

xdest = xd; 

ydest = yd; 

robdir = dir; 

printf("goa1 = %d, %d\n", xdest, ydest); 

printf("start = %d, %d, %d\n", xstart, ystart, robdir); 

sol = astar0; 

if (sol == 0) 

printf("no solution av&ilable\n"); 

else if (sol q = I) 

c 

modsolO; 

assertsolO; 

) 

return(l); 

) 

astar 

c 

struct unit *openC251; 

struct unit *close C253; 

struct unit *successor; 

int i = 0, j q 0, k, 1, m, openi, found; 

struct unit *init, *bestnode, *succeedO, *try; 

init = (struct unit l ) malloc (sizeof (*init)); 

init->x = xstart; 

init->y = ystart; 

init-7dir q robdir; 

init- = 0.0; 

init-7h = estimatecinit); 

init-7f q init-7g + (float) init-7h; 

init-7parx = -1; 

init-7pary = -1; 

init-7parent = NULL; 

openCi1 = (struct unit *) malloc (sizeof (*try)); 

equalnode(openCi3, init); 

it+; 

bestnode = (struct unit *) malloc (sizeof (*bestnode)); 

successor = (struct unit *) malloc (sizeof (*successor)); 

while (I) C 

equalnode (bestnode, opentO]); 

openi = 0; 

for (k = 1; k < i; k++) C 

if CopenCkl-7f <= bestnode-7f) C 

equalnode (bestnode, openCk1); 

openi = k; 

1 

) 

if (bestnode-7f == HUGE) return (0); 
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openCopenil->f = HUGE; 

openCopenil->x = 5; 

openCopenil->y = 5; 

closeCj1 = (struct unit *) malloc (sizeof (*try)); 

equalnode CcloseCjl, bestnode); 

jtt; 

if (bestnode->x = xdest && bestnode->y == ydest) C 

try = (struct unit *) malloc (sizeof (*try)); 

equalnode (try, bestnode); 

lasts01 = -1; 

while (!((try->x = - xstart) && (try->y == ystart))) C 
lastsot++; 
solutionCtastsollC0l = try->x; 
solutionCLastsollC1l = try->y; 

soLutionClastsollC21 = try->dir; 

for (k = 0; k Cj; k++) C 

if ((closeCkl->x == try->parx) && 

ctose[kl->y == try->pary)) 

equatnode (try, ctosetkl); 

> 

1 

return (I); 

It 

else C 

for (k=O; k (4; kt+) C 

if CsucceedCbestnode, k) != NULL) C 

equatnode (successor, succeed(bestnode, k)); 

found = 0; 

for (l=O; 1 <i: I++) C 

if (CopenCll->x == successor->x) && 

CopenCll->y successor->y)) < 

found = 1; 

if (successor->f < openCll->f) 

equalnode(openC11, successor); 

1 

1 

if (found == 0) C 

for (l=O; ICj; I++) C 

if ((closeCll-> =: successor->x) && 

(ctoseCll>y == successor->y)) C 
found = 2; 

if (successor->f < closeCll->f) 

equalnode (closeC11, successor); 
1 
1 

> 
if (found == 0) C 

open[il = (struct unit *) maltoc (sizeof (*try)); 

equatnode(openCi1, successor); 

it+; 

> 

? 

1 

1 

) 

1 

int estimate(point) 

struct unit *point; 

c 

int x, y; 



if (( 

x = 

if CC 

Y = 

retur 

1 
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x = xdest = point-7x) (0) 

-x; 

y = ydest = point->y) <O) 

-Y; 

n (x + y); 

struct unit *succeed(point, dir) 

struct unit 9int; 

int dir; 

c 

struct unit *temp; 

int tempx, tempy; 

float rot; 

tempx = point->x; 

tempy = point-7y; 

if ((dir == 0) && 

((tempxtl > 4)) 

return(NULL); 

if ((dir == I) && 

1 1 CterrainCtempx +llCtempy 1 == 1))) 

(tempytl > 4) ) ) (terrainCtempxl)tempy +I1 == 1))) 

return(NULL); 

if ((dir == 2) && 

((tempx - 1 (0) 1 1 CterrainCtempx -llCtempyl == 1))) 

return(NULL); 

if ((dir == 3) && 

(tempy - 1 (0) ( 1 CterrainCtempxlCtempy -11 == 1))) 

return(NULL); 

temp = (struct unit *I malloc (sizeof (*temp)); 

switch (dir) I 

case 0: temp-7x = tempx +I; 

temp-7y = tempy; 

break; 

case 1: temp-7x = tempx; 

temp->y = tempy +I; 

break; 

case 2: temp-7x = tempx -1; 

temp-7y = tempy; 

break; 

case 3: temp-7x = tempx; 

temp-7y = tempy -1; 

break; 

1 

temp->dir = dir; 

if (point->dir - dir == 0) rot 

if ((point-7dir - dir == I) 1 
2 2 (point->dir - dir == 3) 

rot = 0.5; 

= 0.0; 

1 (point-7dir 

1 1 (point-7d 

- dir == -1) 

r - dir == -3)) 

if ((point-7dir - dir == 2) ( ) (point7dir - dir == -2)) 

rot = 1.0; 

temp-7g = point-79 t 1.0 + rot; 

temp-7h = estimateftemp); 

temp-7f = temp-7g + (float) temp-7h; 

temp-7parent = point; 

temp-7parx = point-7x; 

temp-7pary = point-7y; 

return (temp); 

) 

equalnode(blank, full) 

struct unit *blank, *full; 

i 

399 
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blank-)x = full->x; 

blank->y = full->y; 

blank-> dir = full->dir; 

blank->9 q full->g; 

blank->h = full->h; 

blank->f = full->f; 

blank->parent = full->parent; 

blank->parx = full->parx; 

blank->pary = full->pary; 

> 

prints010 

c 

int i; 

printf("the solution\n"); 

for (i = lastsol; i >= 0; i--) C 

printf("%d, %d, %d\n", solutionCilC01, solutionCilC11, 

solutionCilC21); 

modsol 

c 

int curr, next, dist = 0, i, diff; 

curr = robdir; 

index = -1; 

for (i = Lastsol; i >= 0; i--) C 

next = solutionCilC21; 

diff = next - curr; 

curr = next; 

suitch (diff) C 

case 0: C 

dist++; 

break; 

1 

case 1: 

case -3: C 

if (dist > 0) C 

index++; 

primsolCindexlC01 = 0; 

primso~CindexlC11 = d 

> 

index++; 

primsolCindexlC01 = 1; 

primsolCindexlCl1 = 90 

dist = 1; 

break; 

1 

case -1: 

case 3: C 

if (dist > 0) C 

index++; 

primsolCindexlC01 = 0; 

St; 

primsolCindexlC11 = dist; 

) 

index++; 

primsolCindexlC01 = 2; 

primsolCindexlC11 = 90; 

dist = 1; 

break; 

) 
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case 2: 

case -2: c 
if (dist > 0) C 

index++; 

primsolCindexlC03 = 0; 

primsolCindexlC11 = dist; 

> 

index++; 

primsolCindexlC01 = 2; 

primsolCindexlC11 = 180; 

dist = 1; 

break; 

1 

) 

> 

it (dist > 0) C 

index++; 

primsolCindexlC0l = 0; 

primsolCindexlC1l = dist; 

> 

robdir = curr; 

printprim 

c 

int i, prim, para; 

printf("the solution in terms of primitives\n"); 

for (i = 0; i <= index; it+) C 

prim primsotCilC0l; 

para = primsolCilC1l; 

if (prim == 0) printf("fmoves Zd O\n", para*4); 

else if (prim == I) printf("lturnXd\n", para); 

else if (prim == 2) printf("rturnXd\n", para); 

1 

1 

asserts01 0 

c 

int i, prim,.para; 

char factC501; 

for (i = 0; i <= index; it+) 

< 

prim = primsolCilCO1; 

para = primsolCilC1l; 

if (prim == 0) 

sprintfcfact, "plan Xd 0 Xd", i, para*4); 

else if (prim == I) 

sprintfcfact, "plan Xd 1 Xd", i, para); 

else if (prim == 2) 

sprintfcfact, "plan Xd 2 Xd", i, para); 

assert fact); 

1 

sprintfcfact, "total-plan Xd", index); 

assert (fact); 

1 


