
Automation in Construction 1 (1993) 371-401
Elsevier

371

A concurrent control architecture for Autonomous Mobile
Robots using Asynchronous Production Systems *

S.S. Iyengar, Jeffrey Graham, V.G. Hegde, Phil1 Graham

Robotics Research Laboratory, Department of Computer Science, Louisiana State Uniuersity, Baton Rouge, LA 70803, USA

F.G. Pin

CESAR Laboratory, Oak Ridge National Labs, Bethel Valley Road, Oak Ridge, TN 37831, USA

The quest for efficient real-time response by autonomous robots in hazardous environments necessitates not only fast
computational schemes in expert systems but also requires insights on high performance data structures and concurrent
algorithms that lead to elegant problem-solving methods in the AI discipline. Towards this objective, this paper presents an
Asynchronous Production System (APS) of architecture capable of monitoring and processing real-time information.

Keywords: Asynchronous production system; parallel computation; multiprocessing; multitasking; real-time expert system;
distributed expert systems; autonomous robots.

Introduction

Intelligent robots are artificially created opera-
tional systems which can make decisions and take
action autonomously. These capabilities derive
from their use of expert systems to reason using
and from their ability to learn from information
acquired through sensory input.

When an intelligent robot operates in a hostile
environment, its expert system must have the
capability to recognize environmental threats. It
must also be able to provide a real-time response
to these threats. Traditional knowledge based
expert systems do not possess this real-time re-
sponse capability due to the sequential nature of
their control architecture. Expert systems for Au-
tonomous Mobile Robots thus require the inte-
gration of real-time response and control capabil-
ities with traditional knowledge based techniques.
To address this requirement, we are currently
exploring the Asynchronous Production System
(APS), a concurrent, rule-based inference engine
capable of monitoring and processing real-time
information [l-3].

* Discussion is open until August 1993 (please submit your
discussion paper to the Editor on Construction Technolo-
gies, T.M. Knasell.

This paper describes the implementation of a
concurrent control architecture (an Asynchron-
ous Production System) for the HERMIES Robot.
Part A describes the concurrent control architec-
ture for the Autonomous Mobile Robot (AMR)
using APS. Part B describes specific issues per-
taining to the implementation of APS for the
HERMIES robot.

Part A: Concurrent control architecture for the
Autonomous Mobile Robot

Robots are increasingly employed in diverse
applications that involve monotonous or tedious
tasks, and in hazardous environments such as
nuclear reactors, under-sea exploration, and bat-
tlefields. The environment in which an Au-
tonomous Mobile Robot operates often changes
rapidly. The robot encounters environmental
threats which are hazardous to itself and its envi-
ronment, such as the outbreak of a fire, the
failure of one of the robot’s internal systems, etc.
These threats may occur at any time and are
therefore asynchronous (environmental threats
may be called external events, as these are exter-
nal to the robot). A dynamic and complex envi-

0926-5805/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved

372 S.S. Iyengar et al. / Autonomous mobile robots using Asynchronous Production Systems

ronment like this imposes the following require-
ments [4] on autonomous robotic systems:
1.

2.

3.

4.

1.

Rapid sensing: the capability to sense external
events rapidly.
Real-time response: the ability to respond
within a limited time period to external events
occurring in its domain.
Interruptability: the capability to interrupt
normal operation when an external event oc-
curs and then to resume the interrupted task
after responding to the external event.
Fault-tolerance: the capability to rely on the
other functional units to continue operations
in the event of an internal failure.

Specifications for the Autonomous Mobile
Robot control system

The heart of an Autonomous Mobile Robot is
its control system. The control system features
which ‘are critical to an AMR’s successful opera-
tion are multitasking, multisensing, robustness,
and interruptability [51.

Multitasking: Robots operating in dynamic and
hostile domains must often pursue multiple goals
due to asynchronous changes in environmental
conditions. These multiple goals may conflict with
each other. On such occasions, the control strat-
egy must be able to weigh their reIative impor-
tance and attend to the most important one.

Multisensing: Sensors are the most important
part of Autonomous Mobile Robot systems, as
they communicate external events to the robot.
The robot control system must be able to process
data from multiple sensors concurrently and must
be able to rapidly assimilate it into its data struc-
ture for quick decision making and subsequent
response. This implies that the control system
must be able to begin a fresh control cycle con-
currently with existing ones.

Robustness: When some of the sensors fail,
the robot must be able to continue functioning
with the remaining ones. This calls for an effi-
cient control strategy which provides intelligent
decisions even under conditions of incomplete or
uncertain data.

Interruptability: Higher priority environmental
threats must be able to interrupt normal opera-
tions of the robot. The robot must also be able to
resume its original task after responding to the

threat. Therefore, the robot’s control system must
be able to halt an existing control process and
later resume that process after completing the
new control cycle initiated by the higher priority
task.

The following techniques have been used by
several researchers to build a parallelized control
system for Autonomous Mobile Robots:
1. Decomposing the control system with respect

to parallel task-achieving behavior of the
robots, rather than by the traditional way of
decomposing along functional units [6].

2. Using concurrent programming techniques [7].
3. Using a distributed control system consisting

of master/ slave processes [8].
In this paper we focus our efforts on the concur-
rent and distributed programming techniques for
building an expert system to achieve modularity
of control and response.

2. A real-time expert system for Autonomous Mo-
bile Robot control

Earlier, we discussed the characteristics of the
complex environments in which the mobile robots
must operate. We also discussed the need for
AMR control systems to make intelligent deci-
sions in order to respond to environmental
threats. Our task is to build a real-time expert
system to make intelligent inferences from the
environmental data. It must employ an efficient
control strategy and must meet the specifications
listed in the previous section.

2.1. Limitations of traditional expert systems

Some of the various limitations of traditional
expert systems which must be overcome to achieve
effective, real-time control in AMR applications
are their inadequate infrastructure, slow speed,
and non-interruptability.

Inadequate infrastructure: Traditional Expert
Systems like 0PS5 do not have the infrastructure
for collecting external data and representing them
in their data structure. Thus they are insensitive
to external events occurring in their domain.

Slow speed: The execution speed of these sys-
tems cannot guarantee a real-time response to
the external events.

S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems 373

Match -1

I I Conflict Resolution d

; - Exern -1

Fig. 1. The recognize-act of a conventional production system.

No interruptability: The control structure or
production cycle of these systems as indicated in
Fig. 1. is essentially a sequential and synchro-
nized process [8] and hence the production cycle
cannot be interrupted. Further, during an exter-
nal emergency event a new cycle cannot be con-
currently initiated to respond to the situation.
Due to the sequential nature of the control struc-
ture, the control processes are implemented in a
uniprocessor environment. This deteriorates the
real-time performance as an emergency event has
to wait to be processed by the only available
processor.

The limited control structure of traditional
production systems is thus a major hurdle which
prevents their adoption for use in real-time con-
trol applications. Considering the above short-
comings, it was imperative for us to build an
Asynchronous Production System to overcome
them and achieve real-time performance.

3. Asynchronous Production System

An APS is a rule-based expert system which is
capable of monitoring and responding to real-time
events in its domain. It integrates the ease of
knowledge representation of traditional produc-
tion systems with real-time response and control
capabilities. The real-time capabilities of an APS
thus make it an ideal choice for controlling Au-
tonomous Mobile Robots operating in hazardous,
dynamic environments.

3.1. Data structure of APS

An APS has a working memory and a produc-
tion memory similar to traditional production sys-
tems. In addition to these, we have incorporated
a new data structure called the External Input.
This is a global dataset which is used by control
processes for interprocess communication. Exter-
nal Input has elements to represent facts and
assertions about asynchronous external events.
External Input elements are syntactically similar
to working memory elements. The asynchronous
stimuli are obtained through sensors and are in-
tegrated into the External Input data structure.

3.2. Partitioning the data structure for concurrency

The data structure of an APS is partitioned to
form four, well-defined Global Data Sets in order
to achieve concurrency of control. The four global
datasets are Working Memory (WM), External
Input (ED, Conflict Set (CS) and Select Rule
(SRI. Various production cycle processes commu-
nicate through these global datasets. Each global
dataset serves as an input dataset for some pro-
cess and as output dataset for some other pro-

Fig. 2. APS database.

374 S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems

cess. The data structure (Fig. 2) of an APS plays observe that the processes are essentially asyn-
a vital role in achieving real-time performance. chronous in nature due to the fact that changes in

different global datasets occur asynchronously.
3.3. Control architecture of APS

The APS control architecture (inference en-
gine) consists of three distinct processes:
MATCH, SELECT, and EXECUTE. Each of
these processes has one or more input datasets
and an output dataset (see Fig. 3). Each process
is invoked when there is a change in one of its
input datasets. The module halts after writing
appropriate results to the output dataset. We can

The completion of a process indirectly results in
the invocation of another process since the out-
put dataset of one process is the input dataset of
another process. Each process deserves some fur-
ther detail.

The MATCH process matches External Input
Elements with productions in addition to its tra-
ditional role of matching Working Memory Ele-
ments with productions. The input datasets for
the MATCH process are Working Memory and

Asynchronous Production System

Modules Global Data Sets

Data Input &
Module Activation

- Data Output

APS Execution Mechanism

Modules Input Data Sets Output Data Sets

Match Working Memory Conflict Set

External Input

Select Conflict Set Select Rule

Execute Select Rule Working Memory

Fig. 3. The execution mechanism for the APS.

S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems 375

External Input. The output dataset is Conflict
Set. The MATCH process is activated by changes
in the Working Memory or the External Input.
After the MATCH process is completed, it writes
the set of satisfied productions to the Conflict Set
and waits for another change in its input datasets.

The SELECT process reads its input from
Conflict Set dataset and writes its output to the
Select Rule dataset. This process is activated by
changes in the Conflict Set. It performs conflict
resolution algorithms to select one of the rules
for execution.

The EXECUTE process reads its input from
the Select Rule dataset and writes output to the
Working Memory dataset. It executes the right-
hand side (RHS) of the selected rule, which may
consist of some specific instructions to manipu-
late the Working Memory, to command HER-
MIES to perform some task, or to invoke a user-
defined function. The ability to call user-defined
functions from within a rule makes it possible to
use the APS for a variety of applications which
require domain-specific algorithms. The EXE-
CUTE process is activated by a change in the.
Select Rule dataset. It halts after executing all
the RHS actions of the selected rule. This pro-
cess differs substantially from the act phase of the
traditional production systems.

For more details about the Data structure and
Control structure of an APS, the reader is re-
ferred to previous publications on this subject
[l-3].

4. Task partitioning of the APS production cycle
for concurrency

We observed in the previous section that the
the production cycle has been partitioned into
three modular, independent processes, each of
which functions asynchronously with respect to
the other. This is the key factor in achieving
concurrency. Each process is activated by a change
in the corresponding input dataset and hence
more than one process may be invoked concur-
rently if there is a change in more than one
dataset at any time. To discuss this in detail, we
will take a close look at the control process.

A change in Working Memory or External
Input triggers the control mechanism. A change
in any one of these datasets invokes the MATCH

process. The MATCH process individually
matches the data from both of these datasets with
productions to find a set of productions which are
completely satisfied. It then writes this set of
productions to the dataset “Conflict Set” and
halts. Since the MATCH process is the initial and
most crucial process, it must be rapidly invoked
by each external event. Hence, we must be able
to invoke this process concurrently with the other
active processes to respond to external events
immediately. This is clearly achieved by the APS,
as the external emergency event changes the Ex-
ternal Input data structure directly and this in
turn immediately activates the MATCH process.

Furthermore, the activation of the MATCH
process concurrently with other active processes
triggers a chain of processes. The MATCH pro-
cess halts by writing the set of satisfied produc-
tions into the “Conflict Set”. Since the Conflict
Set is the input dataset to the “Select process”,
this process is activated at the completion of
MATCH process. Observe that this is also acti-
vated concurrently with the other processes. SE-
LECT process, in turn, activates the EXECUTE
process by writing the selected rule into the
dataset “Select rule”. Thus there is complete
modularity and concurrency between the various
stages of the control process.

5. Levels of separation of the control mechanism

The effects of parallelizing each task of the
APS production cycle can be viewed from three
distinct points of view: Process Level, Processor
Level and Interrupt Level. Each of these levels
contributes to the overall concurrency of the con-
trol task. The different levels of separation are
interrelated. Synchronization of all the elements
of a level is the key factor in the efficient opera-
tion of a concurrent control mechanism. In the
following section we discuss the salient features
of each of these levels and the synchronization
scheme involved in various stages.

5.1. Process level separation

Process level separation denotes the separa-
tion of the control task into multiple processes,
each of which is independent and performs a
specific function in the control structure. The

376 S.S. lyengar et al. / Autonomous mobile robots using Asynchronous Production Systems

-- indicates that the process onginated due to a change I” the

(SELECT)

P2

(EXECUTE) p3

c
-- indicates that there IS a change I” the External Input

EXECUllON

+-- INTERRUPTED

v f
-- indicates that there is a change I” the Working Memory

Pl. P2, P3. P4 -- Process 1 to 4

Fig. 4. Concurrent execution of production cycle processes.

APS control architecture consists of four pro-
cesses. Three processes perform the function of
the MATCH, SELECT and EXECUTE of the
AI’S production cycle. The fourth process, the
inference engine of APS, monitors the real-time
environment and provides process synchroniza-
tion between the various processes. It also re-
solves global dataset access conflicts between
processes. The different processes execute con-
currently, as they are generally implemented in
separate processors. Fig. 4 indicates the concur-
rency in the execution of various processes. The
figure shows that while the set of processes
(MATCH, EXECUTE} or {SELECT, EXE-
CUTE} may be activated simultaneously, the set
{SELECT, MATCH) cannot. This is because the
SELECT process takes a small part of the total
production system cycle time and is activated only
when the Conflict Set is modified. This observa-
tion is important with respect to the “Retraction
of a fact,” discussed later.

5.1.1. Process sychroniza tion
The synchronization of the various processes

involves sensing the completion of one process
and activating the next process in the production
cycle. The various processes of the production
cycle are event-driven. An event declares a change
in the status of the system. There are two types of
events. An External Event and an Internal Event.
An External Event is one which indicates a signif-
icant occurrence in the External world or the
domain, such as a fire alarm or radiation leak,
which causes a change in the External data. An
Internal Event is one which indicates the comple-

tion of one of the processes which, in turn, im-
plies that there is change in one of the global
datasets. An Internal Event originates at a pro-
cess and is interpreted by the inference engine,
giving an activation signal to activate the process
which awaits the occurrence of that particular
Internal Event. The External Event is sensed only
by the fourth process, the inference engine. The
other events originate at the respective process
and are sent to the inference engine process
which then sends an activation signal to the next
corresponding process in the production cycle.
The process synchronization scheme is indicated
in Fig. 5.

5.2. Processor level separation

The essential criterion for achieving concur-
rency and task partitioning of the production
cycle is that the different concurrent processes
must be implemented on different processors in a

[SELECT]

Fig. 5. Event based process synchronization scheme.

S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems 371

distributed processing environment. Ideally each
process is implemented on a separate processor.
However, we may combine the SELECT and
EXECUTE processes and implement them on a
single processor. This is possible because SE-
LECT takes only a small part of the total produc-
tion system cycle time. At this level, the different
processors communicate through shared memory
and thus they influence the execution of each
other by altering the global datasets. Therefore
synchronization between the different processors
is essential for shared memory access. Apart from
the three processors for three production cycle
processes (viz MATCH, SELECT, EXECUTE),
another processor is necessary for implementing
the APS inference engine. The inference engine
controls the activation of the three processes of
the APS, arbitrates the shared memory access
requests from different processors, and asyn-
chronously monitors the external real-time in-
puts. Hence the multiprocessor architecture is an
essential part of the concurrent control architec-
ture.

5.2.1. Multiprocessor architecture
An APS requires a multi-processor architec-

ture where four processors work in MIMD mode
to host the different processes of the production
cycle and inference engine of APS. The proces-
sors exchange information through a global mem-
ory, access to which is controlled by the processor
which hosts the APS inference engine (Fig. 6).
We may implement the control structure using
three processors. One CPU for MATCH process,
another one for SELECT/ EXECUTE process,
and a third processor for Real time Monitoring
In this configuration, the third processor also

Fig. 6. Multiprocessor architecture (PROC 1 hosts MATCH
process; PROC 2 hosts SELECT process; PROC 3 hosts

EXECUTE process; and PROC 4 hosts inference engine).

hosts the APS inference engine. The global mem-
ory access requests are routed through this pro-
cessor. The MATCH processor will write the set
of selected rules (viz, Rule buffer) on to the
Shared Memory. This rule buffer will be read by
the SELECT/EXECUTE processor which in
turn writes the selected rule on to the shared
memory. The SELECT/ EXECUTE processor
also executes the RHS of the selected rule and
modifies the global memory.

5.3. State interrupt level separation

In order to activate a new MATCH process
when an External Event (Interrupt) occurs, the
process management techniques used by the op-
erating system may be employed. This technique
calls for spawning the current MATCH/ SELECT
process and thereby creating a child process. Then
a new foreground MATCH process is created for
the higher priority interrupt which occurred most
recently. When the new MATCH process corre-
sponding to the higher priority input is com-
pleted, the spawned process may be brought to
the foreground and executed, if it is still incom-
plete. The different processes must be prioritized
for proper scheduling at the process management
level.

6. Distributed processing for improved concur-
rency

An Autonomous Mobile Robot needs to per-
form several distinct tasks: navigation, analysis of
terrain topology, obstacle evasion, etc., each re-
quiring a certain type of knowledge base. A dis-
tributed expert system capable of integrating sev-
eral expert subsystems, each having a large inde-
pendent, knowledge base for handling different
prioritized tasks, will result in a higher level of
concurrency. Such a system consisting of a central
coordinating shell can invoke a number of expert
subsystems concurrently, each addressing a par-
ticular prioritized task. This results in better
real-time performance, as each one of them pro-
cesses only the relevant knowledge-base, thereby
avoiding garbage collection. This also avoids the
combinatorial explosion.

378 S.S. Iyengar et al. / Autonomous mobile robots using Asynchronous Production Systems

7. Salient features of the concurrent control ar-
chitecture

7.1. Interruptibility and state recovery of processes

As different processes are concurrently acti-
vated due to changes in the data structure, more
than one goal may contend for execution. This

can occur during an emergency input because the
MATCH process (which is the initial phase of the
production cycle) executes concurrently and in
turn gives rise to the execution of SELECT, EX-
ECUTE processes. Thus, a SELECT process may
complete its execution and the selected rule may
be awaiting execution while the execution of the
previously selected rule is still in progress. If the

SUPERVISOR RACK

Bit-3 Communication Link

I 1 Mb Memory I

VME 68202 CPU

I I

I VME 68020 CPU
I

Vertical Bus E 8 R
t

Parallel l/O

D/A Converters
3 x 4 Channels

t

Ethernet

Res
Power

, 1 RESOLVERS 1

Laser Range Finder . 11

Fig. 7. The HERMIES III robot.

S.S. Iyengar et al. / Autonomous mobile robots using Asynchronous Production Systems 379

emergency must be attended to immediately, then
the execution of the existing rule should be inter-
rupted, as the emergency event has the higher
priority. After processing this exception the exe-
cution process has to recover its previous state
and resume the execution of the previous rule. So
the system must have the capability to be inter-
rupted and also the capability to recover its old
state.

7.2. Prioritized execution

As discussed in the previous section, if there is
an execution contention the system must be capa-
ble of choosing one goal to execute from among
the goals which are in contention. This means
that each goal must have a priority assigned to it
before it reaches the execution stage. Also, there
must be perfect co-ordination among the various
processes in processing the prioritized goals.

7.3, Dynamic reconfiguration

Concurrency results in additional computing
load on the system due to invocation of multiple
processes simultaneously. This is because the sys-
tem has only limited resources. Concurrency re-
sults in meaningful improvements in real-time
performance only if the system dynamically re-
configures itself to the changing environment and
properly allocates resources according to the pri-
ority of the events.

The above features indicate that the control
structure of an APS satisfy all the real-time re-
quirements of an Autonomous Mobile Robot.
From the foregoing discussion on the concur-
rency of control, it is evident that concurrency
can be added to some of the most important
criteria for the real-time performance (listed in
the introduction) of the Production systems.
Hence it can be seen that APS satisfies all the
major criteria for Real-time performance.

Part B: APS implementation issues

1. Software development environment

APS and the Autonomous Robot Simulation
System (ARSS) were developed in an environ-

ment rich in state of the art hardware and soft-
ware. Most noticeable was ORNL’s HERMIES
III robot-a high-technology autonomous mobile
platform complete with a laser range finder,
sonars and cameras. Development of APS cen-
tered on the Motorola 68020 processors found in
HERMIES, while ARSS was developed on a
Silicon Graphics IRIS workstation. An ethernet
LAN provided process communication and high-
speed data transfer between the two systems,
allowing the development team to test APS on
the ARSS simulator. Details of the development
hardware are provided in the following section.

Complementing the high-tech hardware, the
software development environment included the
Motorola OS-9 real-time operating system and
the powerful simulation software IGRIP. Details
of these packages are provided in Section 1.2.

1.1. Hardware

1.1.1. HERMES III
HERMIES III is a battery-powered mobile

robot designed to support the development of
autonomous capabilities in performing complex
navigation and manipulation under time con-
straints while dealing with imprecise sensory in-
formation [91.

In order to achieve the ultimate level of auton-
omy in a hostile environment, HERMIES is made
fully aware of its environment by the acquisition
and fusion of data from a sensor suite that in-
cludes an Odetics laser range finder, four ccd
cameras and thirty-two sonar transceivers.

Sensory processing and mechanical control are
handled by a 16 node Ncube hypercube machine
in conjunction with five Motorola 68020 proces-
sors mounted in VME bus racks. In the event
more computing power is necessary, HERMIES
can receive instructions and data via radio link to
other computer systems. For a detailed descrip-
tion of HERMIES III, the reader is referred to
[91 and Fig. 7.

1.1.2. Kslab ViklE system
Vislab (“Vision Laboratory”) is a standalone

computer system consisting of three Motorola
68020 processors mounted in a VME bus. Each
processor has 2 megabytes of resident random
access memory. An additional 2 megabytes is
shared between them. Vislab is a node in an

380 S.S. Iyengar et al. / Autonomous mobile robots using Asynchronous Production Systems

ethernet LAN shared by the Silicon Graphics motion velocities. The IGRIP software package is
workstation. Vislab was the main develop-and-test layered on top of Unix on the Silicon Graphics
platform for the APS system. workstation.

1.1.3. Silicon Graphics workstation
An IRIS 4D/60T workstation from Silicon

Graphics was used to develop the ARSS simula-
tion system.

2. Development of APS

1.2. Software

1.2.1. OS-9
The OS-9 operating system on HERMIES and

Vislab is a multiuser, multitasking operating sys-
tem featuring a real-time kernel. Because of the
time-critical nature of APS, OS-9 seemed an ap-
propriate choice for the project; however, be-
cause it is not multiprocessing, OS-9 lacked some
of the support tools needed for the development.

The development of APS followed a struc-
tured software engineering approach, framed
within the successive versions lifecycle model. This
section presents the details of APS construction-
from requirements specification and design deci-
sions through implementation and testing. It con-
cludes with an evaluation of the development
effort.

2.1. Requirements specification

Two problems with OS-9 proved constantly
irritating during development. A severe lack of
error handling by the operating system often lead
to VME bus errors, cryptic error messages, and
suspended processes due to the apparent corrup-
tion of the kernel. The second problem was the
most detrimental to the project. Because OS-9 is
not multiprocessing, there are no system-level
commands for handling processor synchroniza-
tion, i.e. no atomic hardware instructions (Test-
and-Set, Swap, semaphores) for dealing with the
critical sections of APS. A software solution to
APS’s Readers/Writers problem had to be im-
plemented. See Sections 2.3.3 and 2.4 for details.

2.1.1. Real-time, continuous monitoring for envi-
ronmental threats

APS shall immediately recognize any of a set
of predefined environmental threats and react to
them. This requirement presupposes the ability to
acquire and process data from the environment
in time to effect a favorable change.

2.1.2. Graceful suspension and resumption of non-
threat rules

1.2.2. Unix
Unix is known as an excellent portable devel-

opment platform. The inherent relationship be-
tween Unix and the C language was a definite
plus, offering an extensive library of system calls
for device control and communications. The Sili-
con Graphics workstation uses the Unix Operat-
ing system.

At the time when an environmental threat is
recognized, the currently executing non-threat
rule shall be suspended. After the threat is abated,
the suspended rule shall resume execution. This
requirement implies that a facility must exist to
capture and store the current state of the expert
system (and robot), execute the threat rule, re-
store the saved state, compensate for state
changes due to execution of the threat-rule, and
resume execution of the suspended rule.

2.1.3. Most dangerous threats attended first

1.2.3. IGRIP
IGRIP is the acronym for Interactive Graphic

Robot Instruction Program. This software pack-
age provides a convenient framework for building
the various components of a complete simulation
system, and offers an effective scheme for defin-
ing relationships between the components such as
degrees of freedom, positional dependencies, and

If during the execution of a threat rule a more
dangerous threat is recognized, the low-threat
rule shall be suspended and resumed after execu-
tion of the high-threat rule. This requirement is a
direct corollary of requirement 2.1.2. above,
adding the ability of APS to handle more than
one threat at a time in some predetermined pri-
oritized fashion.

2.1.4. Execution of existing rule bases
APS shall execute CLIPS rule bases with pre-

dictable results. This requirement is necessary

S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems 381

due to the large number of CLIPS rule bases
currently in use at Oak Ridge National Labs. The
rule implies that if an environmental threat is not
detected, APS will behave in exactly the same
manner as CLIPS.

2.1.5. Portable, platform-independent code
APS shall be coded using only ANSI-standard

C language functions, constructs and features.
This requirement guarantees that APS will be
portable across hardware platforms.

2.2. Lifecycle model: successive versions

2.2.1. Description
Product development by the method of succes-

sive versions is an extension of prototyping in
which an initial product skeleton is refined into
increasing levels of capability. In this approach,
each successive version of the product is a func-
tioning system capable of performing useful work
ma p. 52).

2.2.2. Choice justification
The successive versions lifecycle has several

advantages over the conventional waterfall model
of software development. It permits the explo-
ration of technical issues concerning implementa-
tion. It also allows evaluation before proceeding
to the next stage of development. Since all tech-
nical issues could not possibly be known or ac-
counted for before hand concerning APS, this
development model matched the requirements of
the project perfectly.

2.3. Design alternatives and decisions

2.3.1. Genesis-modification of CLIPS and start-
ing from scratch

The premier design decision for the project
was whether to modify the existing CLIPS pro-
duction system or to develop an entirely new
production system from the ground up.

CLIPS was developed by the Artificial Intelli-
gence Section of the Mission Planning and Analy-
sis Division of NASA. It represents state of the
art production systems- utilizing efficient RETE
pattern matching networks for high-speed selec-
tion and execution of complex rule bases and
providing easy extensibility and modification of
it’s C code.

Modifying CLIPS has the advantage of satisfy-
ing requirement D (execution of existing rule
bases) with little effort. In addition, the develop-
ment time of APS by modifying CLIPS would be
much shorter than constructing an entirely new
system from scratch.

The major drawback of using CLIPS as a start-
ing point of APS lies in its data structures. CLIPS
is very efficient, and that efficiency is due to
several factors:
1. Strong common coupling: modules are tightly

bound together by the global data structures
([lo], p. 148). By separating the modules from
the global data, we increase the complexity of
interprocess communication.

2. Weak communicational cohesion: modules re-
fer often to the same set of input and/or
output data ([lo], p. 149). This condition made
it difficult to decompose the CLIPS system
into the separate, asynchronous modules
MATCH, SELECT, and EXECUTE.

3. Large “scope of effect”: a significant change in
the run-time behavior of CLIPS occurs when
the outcome of a decision within a module
(such as in an “IF-THEN-ELSE” construct) is
changed. Tracing the flow of execution through
CLIPS was difficult.

Another (slight) disadvantage of modifying CLIPS
is its extra code for supporting features that are
not useful to APS or that may slow its execution
speed. This code and its supporting data struc-
tures must be removed.

Starting from scratch offers the advantage of
designing a system that exactly satisfies the re-
quirements specification; a small, fast inference
engine with distinct, separate modules for each
phase of execution. However, starting from
scratch involves extensive time for planning and
design-time not available to the development
team. For these reasons, the APS project team
focused on the metamorphosis from CLIPS to
APS.

2.3.2. Load balancing-asynchronous processes
and processors

The decision to modify CLIPS lead to the next
major design alternative-determining the num-
ber of processors and processes running on those
processors in order to achieve the required level
of performance.

382 S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems

Adhering to the philosophy of Task Level Par-
titioning, there would be four processes in
APS-MATCH, SELECT, EXECUTE, and a
real-time monitor process RTM for detecting en-
vironmental threats. To run at the fastest possible
speed each process should be dedicated to a
separate processor; however, faced with only three
processors available for the APS system (the oth-
ers are dedicated to performing other necessary
robotic tasks), the four processes had to be com-
bined in such a way so that the CPU load was
distributed evenly among them. The logic behind
mapping processes onto processors is of some
interest.

By far, the most complex and computationally
expensive task in an expert system is the search
for matching rules. Therefore it is empirically
obvious that MATCH should have an entire pro-
cessor dedicated to it. That leaves either SE-
LECT or RTM to be shared with EXECUTE.

SELECT is simplistic and not computationally
intensive. It is also dataflow dependent with EX-
ECUTE, writing data to the Select Rule dataset.
RTM is I/O bound (constantly interrogating
physical devices for indications of threats) as is
EXECUTE (robotic motion commands), so these
should not be combined on a processor. That
forces SELECT and EXECUTE to share a pro-
cessor, with RTM having an entire processor to
itself. This is also a practical decision because it
gives APS the best chance of fulfilling require-
ment A (real-time continuous monitoring for en-
vironmental threats); the RTM runs at the fastest
possible speed on a processor with no other tasks
to perform.

Summarizing, MATCH will be alone on pro-
cessor #l. SELECT and EXECUTE will share
processor #2, and RTM will be alone on proces-
sor #3. Figure 8 graphically illustrates the pro-
cess-processor map.

2.3.3. Interprocess communications-pipes, shared
memory and signals

After determining the process-processor map
of APS, attention focused on how best to imple-
ment interprocess communications (ipc). The
choices available were pipes, shared memory, and
signals.

Pipes offer several useful features. Implemen-
tation is straightforward-processes read and
write to pipes just like to a file. The serialization

processor #l processor #3

/ \ f \
EXTERNAL INPUT

MATCH + RTM

\ / 1 /

iii
processor #2

Fig. 8. APS processor/process map.

of data through a pipe ensures that data will not
be stepped on or lost by the process at the
receiving end. A disadvantage of pipes is that
they are relatively slow-a fact that cannot be
ignored when constructing a real-time system.
And, although serialization may be viewed as an
advantage in some sense, it is its biggest disad-
vantage; incoming data is not randomly available,
i.e. important data is not revealed until all data
before it has been processed. This situation is not
acceptable, especially for communication with
RTM which must deal with prioritized threats
and notify SELECT/EXECUTE to handle it.
For these reasons pipes were removed from con-
sideration for ipc.

Signals offer efficient interprocess communica-
tions, but they are characterized by their inter-
rupt-like nature. Interrupting a rule in mid-ex-
ecution would leave APS in an uncertain state,
preventing its resumption after the interrupt is
handled. This would prevent satisfying the re-
quirement of Section 2.1.2, so signals were also
excluded from consideration.

The advantage of using shared memory is that
data is available to all processes without the work
involved in reading and writing though a pipe.
Setting up shared memory is not difficult, and is
much more efficient (faster) than the pipe archi-
tecture. Shared memory would seem a more ap-
propriate ipc implementation. The disadvantage

S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems 383

Table 1 code and to the data and control flow mecha-
APS environmental threats nisms within.
Threat category

Fire alarm
Security alarm
Power failure emminent
Radiation leak
Camera failure
End-effector failure
Collision emminent
Sonar failure

Priority

100
50

1000
150

1000
1000
1000
1000

Experimentation was conducted during this
version to establish the basis for the shared mem-
ory and to test the algorithm for handling the
read/write contention for the global datasets.

2.4.2. APS Version 2-one processor, three pro-
cesses

of shared memory is that, as mentioned in Sec-
tion 1.2, OS-9 lacks any multiprocessing capabili-
ties and as such lacks the atomic instructions
necessary to ensure data integrity when multiple
processes attempt to read/write a common mem-
ory address. To handle the read/write synchro-
nization between processes and global datasets a
Bakery algorithm should be implemented ([ll], p.
335).

In APS Version 2, MATCH, SELECT, and
EXECUTE were decoupled into separately com-
piled and executable modules. Shared memory,
tested during Version 1, was implemented with
success. At this point, CLIPS and APS executed
any rulebase with exactly the same results.

2.4.3. APS Version 3-two processors, three pro-
cesses

2.3.4. Environmental alarms: threat detection and
prioritization

The final design alternative is the choice of
environmental conditions that must be monitored
in order to identify the existence of a threat, and
the priority in which simultaneous threats will be
handled.

For testing purposes, eight environmental fac-
tors are continuously monitored: radiation detec-
tor, fire alarm, security alarm, collision detector,
power supply, sonar failure, ccd camera failure
and end-effector failure, These “threats” are pri-
oritized as shown in Table 1, with the higher
priority threats demanding the greatest attention.

APS Version 3 saw the addition of a 68020
processor to the system and migration of SE-
LECT and EXECUTE to it. It was at this point
that the problem of bus errors began to appear;
APS was in resource contention for the address
bus! The problems were intermittent, and no
solution was implemented. Also noticeable at this
point was the first variations in run-time behav-
iors between CLIPS and APS. The change in
execution proved to be caused by the change of
order in which facts are asserted by the EXE-
CUTE process. By prioritizing each rule in the
rulebase, comparable run-time behavior between
the two expert systems was reestablished.

2.4, Implementation

With the critical design decisions made, APS
implementation began. As discussed in Section
2.2, the Successive Versions lifecycle model was
used. All together, four distinct versions of APS
were created.

2.4.1. APS Version 1 -one processor, one process
In the initial version of APS, the MATCH,

SELECT, and EXECUTE processes were modu-
larized into separate, callable routines. No at-
tempt was made to decouple the data structures
or to alter the control flow of CLIPS. Version
One provided the initial exposure to the CLIPS

The problem of rule suspension and resump-
tion was also studied in Version 3. The difficulty
lies not in suspending the currently executing
rule, but in resuming execution at some later
time. The state of the expert system must be
preserved in some structure for resolution when
the rule is reactivated. Another problem arises at
the time of reactivation because the possibility
exists that the robot itself is no longer in the same
state as before (it has probably moved), so some
plan must be in place to resolve the differences in
state so that the rule may resume execution.
Though this problem is solvable, time constraints
and the focus on real-time execution prevented
the implementation of this requirement.

2.4.4. APS Version I-three processors, four pro-
cesses

The final version of APS was marked by the
addition of the real-time monitor process RTM

3x4 S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems

and its processor. Environmental alarms and trig-
gers were simulated using keyboard input to the
APS system. After an alarm goes off, RTM ac-
cesses the shared memory module and initializes
a flag indicating the occurrence of the proper
threat. MATCH reacts to the flag, finding all
rules that will handle the threat. Next, it signals
SELECT/EXECUTE to suspend the current
rule and execute the threat rule. This method of
handling the external input proved the most reli-
able. Response time of HERMIES to the threats
was excellent. No problems were detected in this
final phase of development.

3. Testing

Throughout the development lifecycle of APS,
exhaustive testing was conducted to ensure proper
execution of existing CLIPS rulebases. To test the
APS requirements of Section 2.1, a new rulebase
had to be constructed.

3.1. Test data

APS was designed to run on the HERMIES
III autonomous mobile robot at ORNL. Unfortu-
nately, at the time of APS development the robot
was unavailable. Testing proceeded using the
ARSS that was developed as part of this project.
The test “data” used for APS consisted of the
rulebase found in APPENDIX A. Note the prior-
itization of the rules (known as “salience” in
CLIPS) used to maintain a stable behavior of the
rulebase. Also note the calls to external subrou-
tines. These routines are provided for reference
in APPENDIX B.

Of interest in the rulebase is the mechanism
employed to determine if, after a hardware fail-
ure, the current task can be executed to success-
ful completion. For example, a series of rules is
executed with the goal of closing a radiation
valve. One of the rules requires the use of the
end-effector. While executing the navigation rule
to travel to the valve location, the RTM detects a
servo failure in the end-effector-it is damaged
and will not function correctly. The navigation
rule is suspended so that the hardware failure
can be attended by its special rule. One of the rhs
actions of the failure rule is to retract any rule
that requires the end-effector; the rule to close
the radiation valve is retracted. An alternative

plan of action may now be executed to achieve
the same goal-perhaps the robot will flip an
electrical breaker. This feature of APS will prove
very useful in the real world of robot hardware
failures, contingency plans, redundancy and sur-
vivability.

3.2. Test results

Requirement 1.2.1.
Real-time, continuous monitoring of environ-

mental threats was achieved. The response time
to the external events was almost instantaneous.

Requirement 1.2.2.
Graceful suspension and resumption of non-

threat rules was not pursued due to time con-
straints and focus upon the real-time responsive-
ness of the system. Initial design was completed
however, and this requirement should be met in
the next version of APS.

Requirement 1.2.3.
Most dangerous threat attended first was

achieved. APS successfully handled the simulta-
neous occurrence of multiple threats-interrupt-
ing the current threat rule after notification by
RTM of a higher-priority event, executing the
new rule, and invalidating consequential rules
after a hardware failure would have prevented its
successful completion.

Requirement 1.2.4.
Execution of existing rulebases was achieved.

Test rulebases included tic-tat-toe, an automotive
diagnostics system and the rulebase found in Ap-
pendix A.

Requirement 1.2.5.
Portable, platform independent code was par-

tially achieved. Syntactic implementation of
shared memory was specific to the OS-9 operat-
ing system and is not part of the ANSI-standard
C definition. These system-dependent modules
were isolated to a separate object file.

4. Autonomous robot simulation system

Testing the APS on the Autonomous Mobile
Robot in a real-world situation may endanger the
equipment and the people involved. In order to

S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems 38.5

avoid this problem it is necessary to use simula-
tion techniques to characterize the problem and
find the best model which can be used for testing
the robotic system. For this purpose a front-end
simulation software package called the Au-
tonomous Robot Simulation System (ARSS) was
developed. ARSS is layered on top of the generic
simulation product IGRIP.

The ARSS system allows the testing of robotic
systems in theoretical situations and environ-
ments. Further, this system allows us to test the
actual real-time data in a simulated environment.
An elegant feature of the ARSS is that it allows
the user to click a mouse on menu buttons such
as zoom, translate and rotate while the simula-
tion is in progress to obtain varying visual per-
spectives.

4.1. APS interface to IGRIP using command sets

Two sets of commands were designed and im-
plemented into ARSS to support the HERMIES
robot commands given by the APS. SET A com-
mands require movement of the robot or one of
its peripherals, whereas SET B commands re-
quire no movement. These sets are:

SETA
FMOVE(x,i)

BMOVE(x,i)

FRMOVE(x,i)

RTURN(i)
LTURNG)
MJOINTx(i)

LCAMx(i)

RCAMx(i)

UTILTx(i)

DTILTx(i)

ZTILTx

LHEAD(i)

Move forward x feet
and i inches
Move backward x feet
and i inches
Move forward x feet
and i inches, fire the
forward looking sonar
Turn right i degrees
Turn left i degrees
Move joint x of the arm
by i degrees
Turn pan table to the
left by i degrees
Turn pan table to the
right by i degrees
Turn tilt table x up by i
degrees
Turn tilt table x down
by i degrees
Return tilt table x to 0
degrees
Turn the LRF pan
table to the left i de-
grees

RHEAD(i)

ZHEAD

MATCH

SELECT

SET B
GET_ JOINT(a)

SNAPx_ TO _ CUBE(a)

SNAPL_ TO _ CUBE(b)

SONARx(y)

WIDE_ SCAN(b)

A parser program was
HERMIES commands
mand sets.

Turn the LRF pan
table to the right i de-
grees
Return the LRF pan
table to 0 degrees

Rotates the match
graph-ic by ten degrees

Rotates the select
graph-ic by ten degrees

Get joint degrees and
store in array a
Acquire CCD camera
x data and store in ar-

ray
Acquire LRF data and
store in array b
Fire single sonar x and
store range in y
Fire all sonars and
store the data in array
b

constructed to translate
into these ARSS com-

4.2. Features of IGRIP applied to the simulation

4.2.1. Parts
In IGRIP each piece of equipment having a

degree of freedom must be created and stored
separately as parts, which are composed of ob-
jects such as blocks, polygons and cylinders. For
instance, the robotic arm has seven degrees of
freedom and so it has seven different parts with
each part made up of any combination of blocks,
cylinders, polygon etc. Similarly the laser range
finder, the cameras etc, are created and stored
separately.

4.2.2. Devices
A Device is constructed by attaching a series

of parts to each other and defining their relation-
ship to each other. The HERMIES III used in
simulation is a single device consisting of the
seven parts of the robot arm, cameras, tilt tables,
laser range finder, wheels and the body of the
robot. Each part is attached to its position and
later its attributes such as the link type (either

386 S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems

rotational or translational) and link speed etc are
defined.

4.2.3. Work-cells
Work-cells comprise of devices, positioned in

arbitrary locations. The work-cell created consists
of three devices, the HERMIES II, match graphic,
and execute graphic. HERMIES II moves across
a grid that has lines spaced seven feet apart when
it receives commands from the APS. On the
other hand, the match and select graphics rotate
by ten degrees in order to show the amount of
work being performed by each processor. This is
achieved a Graphics Simulation Language Pro-
gram which reacts to the incoming commands by
joining the links of the appropriate parts of a
particular device.

4.2.4. GSL-A simulation language
IGRIP is a powerful tool for graphic simula-

tion. It supports an efficient simulation language
called GSL. IGRIP and GSL provide a conve-
nient framework for building the various compo-
nents of the simulation and offers an effective
scheme for defining the relationship between
them.

GSL is a procedural language used to con-
struct programs for individual devices in a simula-
tion system to govern their actions. GSL syntax is
similar to that of PASCAL with specific enhance-
ments for device motion, display control, view-
point choreography, etc. Apart from processing
the input, GSL is used in the ARSS for opening
windows to graphically display the simulation and
its status messages and for spawning the commu-
nications program and command parser.

OS/9 Operatmg
System

commands

e g FMOVE (115) arguments
FMOVE, 11, 6

II
Fig. 9. Integration of graphics software to APS.

4.2.5. Communication between APS and ARSS
In order to simulate the robotic action during

the execution of the selected rule APS must
communicate with ARSS. Both Vislab and the
Iris workstation were connected to ethernet. The
design team built up communications primitives
on using the socket facilities found on both sys-
tems. Figure 9 shows the integration of the
ARSS/IGRIP graphics software with the APS
expert system.

5. Conclusion

We have discussed the need for using a real-
time expert system with a concurrent control ar-
chitecture for the control of an autonomous mo-
bile robot operating in a complex hostile environ-
ment. We have described the various factors con-
tributing to the concurrency of control of Asyn-
chronous Production System-a powerful expert
system base built with real-time capabilities. We
have also observed how concurrency of control
enhances the real-time response of the mobile
robots. We have described in detail how the
concept of concurrency of control can be effec-
tively implemented in the real-world situation for
controlling an Autonomous Mobile Robot, partic-
ularly for controlling the HERMIES III robot
which is used for experiments in a hostile do-
main.

The following key ideas were established dur-
ing the discussion:

The real-time response by an Autonomous
Mobile Robot to environmental threats de-
pends on the parallelization of the control
system used on the robot.
The expert system used for time-critical, intel-
ligent control of an Autonomous Mobile Robot
must possess an inference engine with a con-
current control architecture in order to pro-
vide real-time response to environmental
threats.
APS-a real-time expert system-possesses a
concurrent control architecture and is there-
fore ideally suited for the control of Au-
tonomous Mobile Robots.
The concurrency of control of APS is due to
the following factors:
(a) partitioning of the control task into four

independent processes, with one process

S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems 381

(b)

Cc)

for the control and coordination between
different processes;
partitioning of the database into four dis-
tinct global datasets which are uniquely
associated with the various processes of
the control mechanism. Inclusion of a spe-
cial data structure for external events;
using a multi-processor architecture which
ensures the concurrent execution of differ-
ent processes and the continuous monitor-
ing of the real-time events in the robot
environment.

The implementation of the concept of APS on
HERMIES III and the thorough testing of the
overall robot system calls for effective mod-
elling of real-world problems such as domain
modelling, path planning, etc. This requires
the development of a graphic simulation soft-
ware package.
The Autonomous Robot Simulation System
provides a convenient and portable platform
for characterizing the problem and for exhaus-
tive testing of the entire robot system under
theoretical and real-world conditions, using
both theoretical and actual data.

Acknowledgments

This research was sponsored by the Office of
Basic Energy Sciences, US Department of En-
ergy, under Contract Number DE-ACOS-

870R21400 with Martin Marietta Energy Sys-
tems Inc. through the Oak Ridge National Labo-
ratory.

References

[l] A. Sabharwal, S.S. Iyengar, F.G. Pin and C.R. Weisbin,
“Asynchronous production systems”, J. Knowledge Based
Systems 2 (2) (June 1989).

[2] A. Sabharwal, S.S. Iyengar, F.G. Pin and C.R. Weisbin,
“Asynchronous production system for real time expert
systems”, Proc. AVIGNON,88: 8th Int. Workshop on Ex-
pert Systems and their Applications, Avignon, France, 1988.

[3] A. Sabhatwal, A. Amawy, S.S. Iyengar, G. de Saussure,
F.G. Pin and C.R. Weisbin, “Asynchronous production
system: implementation issues”, Proc. Communication
and Control Conf., October 21-23, 1988.

[4] T.J. Laffey, P.A. Cox, J.L. Schmidt, S.M. Kao and J.Y.
Read, “Real-time knowledge-based systems”, The AI
Magazine (Spring 1988) 27-36.

[5] R.A. Brooks, “A robust layered control system for a
mobile robot”, IEEE J. Robotics and Automation Ra-2 (1)
(March 1986).

[61 R.A. Brooks, “A hardware retargetable distributed Iat-
ered architecture for mobile robot control”, IEEE Truns.
Systems, Man and Cybernetics (March 1987) 106-110.

171 Y. Kanayama, “Concurrent programming of intelligent
robots”, Proc. IJCAI (1983) 834-838.

[S] A. Elfes and S.N. Talukdar, “A distributed control sys-
tem for the CMU rover”, Proc. IJCAI (1983) 830-833.

191 C.R. Weisbin et al., “Hermies III: a step toward au-
tonomous mobility, manipulation and perception” Robot-
ica, 8 (19901 7-12.

[lo] Richard Fairley, Software Engineering Concepts (Mc-
Graw-Hill, New York, 19851 pp. 52-53.

[ll] J. Peterson and A. Silberschatz, Operating System Con-
cepts (Addison-Wesley, Reading, MA, 1985) pp. 334-344.

388 S.S. Iyengar et al. / Autonomous mobile robots using Asynchronous Production Systems

Appendix A. Asynchronous Production System rulebase

Cdefrule file-based "the terrain reader"

=>

Cfprintout t crlf "*** ASYNCHRONOUS PRODUCTION SYSTEM DEMO

(read map)

Cfprintout t crlf "the robot starts at 0.0 facing North", crtf)

(bind ?xs 0)

(bind ?ys 0)

(bind ?dir I)

Cfprintout t "what are the robot", goat co-ords?" crtf)

Cfprintout t "x = "1

(bind ?xd (read))

Cfprintout t "y = "1

(bind ?yd (read))

(assert Crobpos ?xs ?ys))

(assert Crobdir ?dir))

(assert (goat ?xd ?yd))

(assert Cdest ?xd ?yd)

;;; flags for the following facts are ordered "power vision effector"

;;; value TRUE=l, value FALSE=0

;;; for the initial task of navigating to goat, only power is required

(assert (task-requires 1 0 0)

(assert (task-available 1 1 I)

(assert Crtm-Location-fire 2 0))

(assert Crtm-Location-security 4 2))

(assert Crtm-Location-pouer 2 4))

(assert Crtm-location-radiation 0 2))

***"crtf)

Cfprintout t crlf "*** hermies begins navigation to goat

(plan ?xs ?ys ?xd ?yd ?dir)

(assert (navigate))

(assert (plan-exec 0))

1

;;;**
;;;; navigation using the current plan

;;;**

Cdefrute navigate "using the plan"

(declare (salience 10000))

?nav <- (navigate)

?ptan <- (plan-exec ?num)

(total-plan ?totat&: C<= ?num ?totat))

?currplan <- (plan ?num ?prim ?paraI

=>

(retract ?ptanI

(bind ?var I)

(assert (plan-exec =C+ ?num ?var)))

(retract ?nav)

(retract ?currptan)

(assert Cnav ?prim ?para)

***" crtf)

S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems 389

;;;**

;;; robot primatives on hermies
;;;**

*

(defrule formove “move forward”

?nav <- (nav 0 ?para)

?pos <- (robpos ?x ?y)

(robdir ?dir)e (dest ?xd ?yd)

=7

(fprintout t “fmove ” ?para ” 0”, crlf)

(ahparam ?x ?y ?xd ?yd ?dir)

(fmove ?para 0)

(retract ?pos)

(if (= ?dir 0) then (assert (robpos (+ ?x (/ ?para 4)) ?y)))

(if (= ?dir I) then (assert (robpos ?x =(+ ?y (/ ?para 4)))))

(if (= ?dir 2) then (assert (robpos (- ?x (/ ?para 4)) ?y)))

(if (= ?dir 3) then (assert (robpos ?x =(- ?y (/ ?para 4)))))

(retract ?nav)

(assert (navigate))

)

(defrule rightturn “turn right”

?nav <- (nav 2 ?para)

?rob C- (robdir ?dir)

=7

(fprintout t “rturn ” ?para crlf)

(rturn ?para)

(retract ?rob)

(bind ?diff (- ?dir

(if (< ?diff 0) then

(assert (robdir ?dif

(retract ?nav)

(assert (navigate))

)

(/ ?para 90)

(bind ?diff

f))

))

(+ 4 ?diff)))

(defrule Leftturn “turn left”

?nav <- (nav 1 ?para)

?rob <- (robdir ?dir)

)

(fprintout t “lturn ” ?para crlf)

(Lturn ?para)

(retract ?rob)

(bind ?diff (4 ?dir (/ ?para 90)))

(if 0 ?diff 3) than (bind g?diff (- 4 ?diff)))

(assert (robdir ?diff))

(retract ?nav)

(assert (navigate))

1

;;;**

;;; high-level rules for alarms
;;;**

(defrule alarm-fire ” ”

(declare (salience 100)) ?rtm rule <- (rtm alarm fire) - -
task-available ?ap ?av ?ae)

?taskr <- (task-requires ? ? ?)

=7

(if (= ?ap ?ay ?ae I) then

(retract ?taskr)

390 S.S. Iyengar et al. / Autonomous mobile robots using Asynchronous Production Systems

(assert (clean work-mem))

(assert (task-requires 1 1 I))

(assert (process fire)

else

(fprintout t crlf "ignoring fire... hardware insufficient", crlf))

(retract ?rtm rule) -
1

(defrute alarm-security M U

(declare (salience 50))

?rtm rule <- (rtm alarm security)

(task-available ?ip ?a"-?ae)

?taskr <- (task-requires ? ? ?)

=>

(if (= ?ap ?ay I) then

(retract ?taskr)

(assert (clean work-mem))

(assert (task-requires 1 1 0))

(assert (process security))

else

(fprintout t crtf "ignoring security,... hardware insufficient" crlf))

(retract ?rtm rule) -
)

(defrute alarm-power w w

(declare (salience 10000))

?rtm rule <- (rtm alarm power) - - _
?taska <- (task-available ?ap ?ay ?ae)

=>

(retract ?rtm rule ?taska)

(assert (clean work-mem))

(assert (task-available 0 7av ?ae)

(assert (process power))

)

(defrule alarm-radiation M M

(declare (salience 150))

?rtm rule <- (rtm alarm radiation)

(task-available ?ap ?ay-?ae)

?taskr i- (task-requires ? ? ?)

=>

(if (= ?ap ?ay ?ae I) then

(retract ?taskr)

(assert (clean work-mem))

(assert (process radiation))

else

(fprintout t crlf "ignoring radiation... hardware insufficient", crlf))

(retract ?rtm_rule)

;;;*************************************~~~~~~~~~~~~*

;;; high-level rules for handling hardware failures

;;;**

(defrule failure-vision "handle failure of sonar end ccd camera"

(declare (salience 1000))

?rtm rule <- (rtm failure vis - -
?taska <- (task-available*ap 1

(task-requires ? ?trv ?)

=>

(if (= ?trv I) then

(fprintout t crlf "vision fa

on)

?ae)

led and was required" crlf)

S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems 391

else

(fprintout t crlf "vision failed... continuing" crlf))

(retract ?rtm rule ?taska)

(assert (taskTavailable ?ap 0 ?ae))

1

(defrule failure-effector "handle fa

?rtm rule <- (rtm failure effector) -
?taska <- (task-available-?ap ?ay 1

(task-requires ? ? ?tre)

=>

ilure of end-effector" (declare (salience 1000))

)

(if (= ?tre I) then

(fprintout t crlf "effector failed

else

and was required" crlf)

(fprintout t crlf "effector failed... continuing" crlf))

(retract ?rtm_rule ?taska)

(assert (task-available ?ap ?ay 0)

)

;;;**
;;; mid-level rules for processing the interrupts

;;;**

(defrule replan-fire "move to location of fire"

(declare (salience 100))

?clean <- (clean-over)

(robpos ?xs ?ys)

(rtm-location-fire ?xfire ?yfire)

(robdir ?dir)

?rtm-rule <- (process fire)

?dest <- (dest ? ?I

=>

(plan ?xs ?ys ?xfire ?yfire ?dir)

(assert (navigate))

(assert (plan-exec 0))

(retract 7clean ?rtm-rule ?dest)

(assert (dest ?xfire ?yfire))

(assert (rtm-event-occurred))

(fprintout t crlf "*** hermies extinguished the fire ***" crlf)

(defrule replan-security "move to location of security intrusion"

(declare (salience 50))

?clean C- (clean-over)

(robpos ?xs ?ys)

(rtm-location-security ?xsecurity ?ysecurity)

(robdir ?dir)

? rtm-rule <- (process security)

?dest <- (dest ? ?)

=>

(plan ?xs ?ys ?xsecurity ?ysecurity ?dir)

(assert (navigate))

(assert (plan-exec 0))

(retract ?clean ?rtm-rule ?dest)

(assert (dest ?xsecurity ?ysecurity)

(assert (rtm-event-occurred))

(fprintout t crlf "*** hermies shot the intruder in the foot

1

***" crlf)

392 S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems

(defrule replan-power "move to location of battery charger"

(declare (salience 10000))

?ctean <- (clean-over)

(robpos ?xs ?ys)

(rtm-location-power ?xpower ?ypouer)

(robdir ?dir)

7 rtm-rule <- (process power)

?dest <- (dest ? ?)

?taska <- (task-available ?ap ?av ?ae)

=>

(plan ?xs ?ys ?xpower ?ypouer ?dir)

(assert (navigate)

(assert (plan-exec 0))

(retract ?clean ?rtm=rule ?dest ?taska)

(assert (dest ?xpover ?ypouer))

(assert (rtm-event-occurred))

(assert (task-available 1 ?av ?ae))

(fprintout t crlf "*** hermies recharged his batteries

1

(defrule replan-radiation "move to location of radiation leak"

(declare (salience 150))

?clean <- (clean-over)

(robpos ?xs ?ys)

(rtm-location-radiation ?xradiation ?yradiation)

(robdir ?dir)

?rtm-rule <- (process radiation)

?dest <- (dest ? ?I

=>

(plan ?xs ?ys ?xradiation ?yradiation ?dir)

(assert (navigate))

(assert (plan-exec 0))

(retract ?clean ?rtm-rule ?dest)

(assert (dest ?xradiation ?yradiation)

(assert (rtm-event-occurred))

(fprintout t crlf "*** hermies sealed the radiation leak

;;;**
;;; Lou level rules for real time processing *

;;;**

(defrule clean "the working memory"

(declare (salience 10000))

(clean work-mem)

?plan <- (plan-exec ?num)

(total-plan ?total&: (<= ?num ?total))

?currplan C- (plan ?num ?prim ?para)

=>

(retract ?currplan)

(retract ?plan)

(assert (plan-exec =(t ?num ?)))

***" crlf)

***" crtf)

(defrule finish-clean "no plans Left"

(declare (salience 10000))

?clean <- (clean work-mem)

?plan <- (plan-exec ?num)

?atotal <- (total-plan ?total&: (> ?num ?total))

=>

(retract ?clean ?plan ?atotal)

S.S. Iyengar et al. / Autonomous mobile robots using Asynchronous Production Systems

(fprintout t "took out "all the plans" crlf)

(assert (nav-clean))

1

(defrule no-plans-exist "no plans existed"

(declare (salience 10000))

?clean <- (clean work-mem)

(not (plan-exec ?)I

(not (total-plan ?I)

=>

(retract ?clean)

(fprintout t "took out all the plans" crlf)

(assert (nav-clean))

1

(defrule nav-clean "if navs were generated"

(declare (salience 10000))

?clean <- (nav-clean) 7nav <- (nav ?prim ?para)

=>

(retract ?clean ?nav)

(assert (navigate-clean))

)

(defrule no-navs "no navs were found"

(declare (salience 10000))

?clean <- (nav-clean)

(not (nav ?prim ?para))

=>

(retract ?clean)

(assert (navigate-clean))

)

(defrule navigate-clean "if navigate is present"

(declare (salience 10000))

?clean <- (navigate-clean)

?nav <- (navigate)

=>

(retract ?clean ?nav)

(assert (clean-over)

)

(defrule no-navigate "no navigate present"

(declare (salience 10000))

?clean C- (navigate-clean)

(not (navigate))

>

(retract ?clean)

(assert (clean-over))

defrule nav-finish "no plans left"

?nav <- (navigate)

?plan C- (plan-exec ?num)

?atotal <- (total-plan ?total&: (> ?num ?total)
=>
(retract ?nav ?plan ?atotal)

(fprintout t “navigation camp

(assert (recover))

1

(defrule success "robot at dest

? ret <- (recover)

eted" crlf)

ination"

393

394 S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems

(not (rtm-event-occurred))

(robpos ?xs ?ys.)

(goal ?xs ?ys)

=>

(retract ?rec)

(fprintout t crlf "*** success !!! hermies arrived at goal

)

(defrule rtm-event-recover "recovery"

? ret <- (recover)

? rtm-rule <- (rtm-event-occurred)

(robpos ?xs ?ys)

(goat ?xd ?yd&: (11 (!= ?xs ?xd) (!= ?ys ?yd)))

(robdir ?dir)

?dest <- (dest ? ?)

=>

(retract ?rec ?rtm-rule ?dest)

(fprintout t crtf "*** recovering from real-time interrupt

(plan ?xs ?ys ?xd ?yd ?dir)

(assert (navigate))

(assert (dest ?xd ?yd))

(assert (plan-exec 0))

Appendix B. Asynchronous Production System external functions

#include <stdio.h>

#include "cLips.h"

#define HUGE 10000.0

int terrainCSlC51;

struct unit C

int x;

int y;

int dir;

float g;

int h;

float f;

int parx;

int pary;

struct unit *parent;

);

int xstart, ystart, xdest, ydest, robdir, robdist;

int solution C25lC31, Lastsol;

int primsotC21C21, index;

extern int s socket;

char bufC481;

int rc, buf_ten;

/**1

I* Lou level robot routines */

/**~****f

***" crtf)

***" crtf)

ahparam0

xstart = rftoat(1);

ystart = rftoat(2);

S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems

xdest = rfloat(3);

ydest = rfloat(4);

robdir = rfloat(5);

return (0);

bmove0

float x,y;

x = rfloat (I);

y = rfloat(2);

sprintfcbuf, “BMOVE (Xd,Xd)\O”, (int) x, (int) y);

buf_len = strlen(buf)+l;

rc = send(s_socket, &buf Len, sizeofcbuf ten), 0);

rc = send(s socket, buf, -buf Len, 0); -

sleep(5);

return(O);

LaZOfmoveO

c

float x,y;

x = rfloatcl);

y = rfloat(2);

sprintfcbuf, “FMOVE (Xd,Xd)\O”, (int) x, (int) y);

buf_len = strlen(buf)+l;

rc = send(s_socket, &buf Len, sizeof (buf_len), 0);

rc = send(s_socket, buf, -buf Len, 0);

sleep(5);

return (0);

LturnO

c

float x;

x = rfloat(1);

sprintfcbuf, “LTURN (%d)\O”, (int) x);

buf Len = strlen(buf)+l; -
rc = send(s socket, &buf Len, sizeoftbuf Len), 0);

rc = send(s_socket, but, -but Len, 0); -

sleep(5);

return(O);

rturn0

c

float x;

x = rfloat(1);

395

sprintfcbuf, “RTURN (%d)\O”, (int) x);

buf Len strlen(buf)+l; -
rc = send(s_socket, &buf Len, sizeofcbut Len), 0); -
rc = send(s socket, buf, buf Ten, 0);

396 S.S. Iyengar et al. / Autonomous mobile robots using Asynchronous Production Systems

sleep(5);

return(O);

)

aplan

float a, b, c, d, e;

a q rfloat(1);

b = rfLoat(2);

c = rfloat0);

d = rftoat(4);

e = rftoat(5);

plan (int) a, (int) b, lint) c, (int) d, (int) e);

return(O);

)

/**1

I* high Level robot routines */

/**1

read map0

c -

FILE *terdat, *fopenO;

int i, j;

if ((terdat = fopen("terrain.dat", "r")) == NULL)

c

printf("can 't open terrain.dat\n");

return(O);

1

else

c

printf("\n\n\n");

printf("The Terrain N \n”) . ,

printf(" W + E\n"). I

printfc" X s \n"). I
printf("0 1 2 3 4 \n\n"). I

for Cj = 4; j>-1; j--j

C

for (i = 0; i<5; it+)

c

fscanfcterdat, "%d", &terrainCilCjl);

printf("%d I', terrainCilCj1);

>

if Cj =I 2)

printfc" %d Y\n",j);

else

printfc" %d\n",j);

)

)

fctose (terdat);

printf ("\n");

return 1);

1

plant xs, ys, xd, yd, dir)

int xs, ys, xd, yd, dir;

C

int sot;

if CterrainCxslCysl == 1)

c

printf("bad start position\n"l;

S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems 397

return(O);

1

if CterrainCxdlCydl == I)

c

printf("bad destination position\n");

return(O);

)

xstart = xs;

ystart = ys;

xdest = xd;

ydest = yd;

robdir = dir;

printf("goa1 = %d, %d\n", xdest, ydest);

printf("start = %d, %d, %d\n", xstart, ystart, robdir);

sol = astar0;

if (sol == 0)

printf("no solution av&ilable\n");

else if (sol q = I)

c

modsolO;

assertsolO;

)

return(l);

)

astar

c

struct unit *openC251;

struct unit *close C253;

struct unit *successor;

int i = 0, j q 0, k, 1, m, openi, found;

struct unit *init, *bestnode, *succeedO, *try;

init = (struct unit l) malloc (sizeof (*init));

init->x = xstart;

init->y = ystart;

init-7dir q robdir;

init- = 0.0;

init-7h = estimatecinit);

init-7f q init-7g + (float) init-7h;

init-7parx = -1;

init-7pary = -1;

init-7parent = NULL;

openCi1 = (struct unit *) malloc (sizeof (*try));

equalnode(openCi3, init);

it+;

bestnode = (struct unit *) malloc (sizeof (*bestnode));

successor = (struct unit *) malloc (sizeof (*successor));

while (I) C

equalnode (bestnode, opentO]);

openi = 0;

for (k = 1; k < i; k++) C

if CopenCkl-7f <= bestnode-7f) C

equalnode (bestnode, openCk1);

openi = k;

1

)

if (bestnode-7f == HUGE) return (0);

398 S.S. Iyengar et al. / Autonomous mobile robots using Asynchronow Production Systems

openCopenil->f = HUGE;

openCopenil->x = 5;

openCopenil->y = 5;

closeCj1 = (struct unit *) malloc (sizeof (*try));

equalnode CcloseCjl, bestnode);

jtt;

if (bestnode->x = xdest && bestnode->y == ydest) C

try = (struct unit *) malloc (sizeof (*try));

equalnode (try, bestnode);

lasts01 = -1;

while (!((try->x = - xstart) && (try->y == ystart))) C
lastsot++;
solutionCtastsollC0l = try->x;
solutionCLastsollC1l = try->y;

soLutionClastsollC21 = try->dir;

for (k = 0; k Cj; k++) C

if ((closeCkl->x == try->parx) &&

ctose[kl->y == try->pary))

equatnode (try, ctosetkl);

>

1

return (I);

It

else C

for (k=O; k (4; kt+) C

if CsucceedCbestnode, k) != NULL) C

equatnode (successor, succeed(bestnode, k));

found = 0;

for (l=O; 1 <i: I++) C

if (CopenCll->x == successor->x) &&

CopenCll->y successor->y)) <

found = 1;

if (successor->f < openCll->f)

equalnode(openC11, successor);

1

1

if (found == 0) C

for (l=O; ICj; I++) C

if ((closeCll-> =: successor->x) &&

(ctoseCll>y == successor->y)) C
found = 2;

if (successor->f < closeCll->f)

equalnode (closeC11, successor);
1
1

>
if (found == 0) C

open[il = (struct unit *) maltoc (sizeof (*try));

equatnode(openCi1, successor);

it+;

>

?

1

1

)

1

int estimate(point)

struct unit *point;

c

int x, y;

if ((

x =

if CC

Y =

retur

1

S.S. Iyengar et al. / Autonomous mobile robots using Asynchronous Production Systems

x = xdest = point-7x) (0)

-x;

y = ydest = point->y) <O)

-Y;

n (x + y);

struct unit *succeed(point, dir)

struct unit 9int;

int dir;

c

struct unit *temp;

int tempx, tempy;

float rot;

tempx = point->x;

tempy = point-7y;

if ((dir == 0) &&

((tempxtl > 4))

return(NULL);

if ((dir == I) &&

1 1 CterrainCtempx +llCtempy 1 == 1)))

(tempytl > 4))) (terrainCtempxl)tempy +I1 == 1)))

return(NULL);

if ((dir == 2) &&

((tempx - 1 (0) 1 1 CterrainCtempx -llCtempyl == 1)))

return(NULL);

if ((dir == 3) &&

(tempy - 1 (0) (1 CterrainCtempxlCtempy -11 == 1)))

return(NULL);

temp = (struct unit *I malloc (sizeof (*temp));

switch (dir) I

case 0: temp-7x = tempx +I;

temp-7y = tempy;

break;

case 1: temp-7x = tempx;

temp->y = tempy +I;

break;

case 2: temp-7x = tempx -1;

temp-7y = tempy;

break;

case 3: temp-7x = tempx;

temp-7y = tempy -1;

break;

1

temp->dir = dir;

if (point->dir - dir == 0) rot

if ((point-7dir - dir == I) 1
2 2 (point->dir - dir == 3)

rot = 0.5;

= 0.0;

1 (point-7dir

1 1 (point-7d

- dir == -1)

r - dir == -3))

if ((point-7dir - dir == 2) () (point7dir - dir == -2))

rot = 1.0;

temp-7g = point-79 t 1.0 + rot;

temp-7h = estimateftemp);

temp-7f = temp-7g + (float) temp-7h;

temp-7parent = point;

temp-7parx = point-7x;

temp-7pary = point-7y;

return (temp);

)

equalnode(blank, full)

struct unit *blank, *full;

i

399

400 S.S. Iyengar et al. /Autonomous mobile robots using Asynchronous Production Systems

blank-)x = full->x;

blank->y = full->y;

blank-> dir = full->dir;

blank->9 q full->g;

blank->h = full->h;

blank->f = full->f;

blank->parent = full->parent;

blank->parx = full->parx;

blank->pary = full->pary;

>

prints010

c

int i;

printf("the solution\n");

for (i = lastsol; i >= 0; i--) C

printf("%d, %d, %d\n", solutionCilC01, solutionCilC11,

solutionCilC21);

modsol

c

int curr, next, dist = 0, i, diff;

curr = robdir;

index = -1;

for (i = Lastsol; i >= 0; i--) C

next = solutionCilC21;

diff = next - curr;

curr = next;

suitch (diff) C

case 0: C

dist++;

break;

1

case 1:

case -3: C

if (dist > 0) C

index++;

primsolCindexlC01 = 0;

primso~CindexlC11 = d

>

index++;

primsolCindexlC01 = 1;

primsolCindexlCl1 = 90

dist = 1;

break;

1

case -1:

case 3: C

if (dist > 0) C

index++;

primsolCindexlC01 = 0;

St;

primsolCindexlC11 = dist;

)

index++;

primsolCindexlC01 = 2;

primsolCindexlC11 = 90;

dist = 1;

break;

)

S. S. Iyengar et al. / Autonomous mobile robots using Asynchronous Production Systems 401

case 2:

case -2: c
if (dist > 0) C

index++;

primsolCindexlC03 = 0;

primsolCindexlC11 = dist;

>

index++;

primsolCindexlC01 = 2;

primsolCindexlC11 = 180;

dist = 1;

break;

1

)

>

it (dist > 0) C

index++;

primsolCindexlC0l = 0;

primsolCindexlC1l = dist;

>

robdir = curr;

printprim

c

int i, prim, para;

printf("the solution in terms of primitives\n");

for (i = 0; i <= index; it+) C

prim primsotCilC0l;

para = primsolCilC1l;

if (prim == 0) printf("fmoves Zd O\n", para*4);

else if (prim == I) printf("lturnXd\n", para);

else if (prim == 2) printf("rturnXd\n", para);

1

1

asserts01 0

c

int i, prim,.para;

char factC501;

for (i = 0; i <= index; it+)

<

prim = primsolCilCO1;

para = primsolCilC1l;

if (prim == 0)

sprintfcfact, "plan Xd 0 Xd", i, para*4);

else if (prim == I)

sprintfcfact, "plan Xd 1 Xd", i, para);

else if (prim == 2)

sprintfcfact, "plan Xd 2 Xd", i, para);

assert fact);

1

sprintfcfact, "total-plan Xd", index);

assert (fact);

1

