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Finding Obstacle- Avoiding Shortest 
Paths Using Implicit Connection Graphs 

S .  Q. Zheng, Joon Shink Lim, and 

Abstruct-We introduce a framework for a class of algorithms 
solving shortest path related problems, such as the one-to-one 
shortest path problem, the one-to-many shortest paths problem 
and the minimum spanning tree problem, in the presence of 
obstacles. For these algorithms, the search space is restricted to 
a sparse strong connection graph that is implicitly represented 
and its searched portion is constructed incrementally on-the- 
fly during search. The time and space requirements of these 
algorithms essentially depend on actual search behavior. There- 
fore, additional techniques or heuristics can be incorporated into 
search procedure to further improve the performance of the 
algorithms. These algorithms are suitable for large VLSI design 
applications with many obstacles. 

I. INTRODUCTION 

INDING shortest paths in the presence of obstacles is F an important problem in robotics, VLSI design, and 
geographical information systems. In VLSI design, circuit 
components or previously laid out wires are treated as ob- 
stacles. Finding an obstacle-avoiding shortest path between 
a pair of nodes is a fundamental operation used in many 
layout algorithms. There are two basic classes of shortest 
path algorithms: maze-running algorithms and line-search al- 
gorithms. Maze-running algorithms can be characterized as 
target-directed grid propagation. The first such algorithm is 
Lee’s algorithm [12], which is an application of the breadth- 
first shortest path search algorithm. The major disadvantage of 
the original Lee’s algorithm is that it requires O(mn) memory 
and running time in the worst case for m x 7~ grid graphs. In 
addition, each node requires O(1ogL) bits, where L is the 
length of the shortest path from a source node s to a target 
node t .  It is desirable to reduce the memory requirement for 
each node. More importantly, the size of searched space must 
be reduced, since the running time is proportional to this size. 

There are a large number of variations of the original Lee’s 
algorithm. Interested readers may refer to [17] for a good 
survey of these algorithms. Akers [l]  modified Lee’s algorithm 
by introducing a coding scheme, which requires two bits per 
node regardless of the value of L. Using the A* heuristic 
search idea proposed in [8], Hadlock obtained a shortest 
path algorithm, called Minimum Detour (MD) algorithm [7]. 
The search process of the MD algorithm is controlled by 
a parameter, detour number d, which is used to indicate a 
lower bound of the shortest path length. The MD algorithm 
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guarantees finding a shortest path in time less than Lee’s 
algorithm. Soukup [20] proposed a heuristic maze-running 
algorithm that combines depth-first search and breadth-first 
search. This algorithm executes the depth-first search from 
s toward t using a “don’t change direction” heuristic until an 
obstacle is hit or the target node t is reached. When an obstacle 
is hit, the breadth-first search is used for searching around the 
obstacle until a grid node that directs toward the target node 
t is found, and this procedure is repeated until the target node 
t is reached. The paths found by Soukup’s algorithm are not 
necessarily the shortest ones. 

All partial paths generated by maze-running algorithms are 
represented by unit grid line segments. These algorithms are 
considered memory and time inefficient. Line-search algo- 
rithms have been proposed to achieve improved performance. 
Since such algorithms search a path by locating a sequence 
of line segments of variable lengths, they save memory and 
quickly find a simple-shaped path. Some line-search algo- 
rithms do not guarantee finding a shortest path. The firsts 
of such algorithms are reported in [9] and [15]. The line- 
search algorithm given in [9] is similar to the one in [15]. The 
difference is that the algorithm in [9] generates fewer trial lines 
at every level. Several more recent line-search algorithms (e.g., 
[5], [16,] [18], [21]) are based on computational geometry 
techniques. Almost all of these algorithms are based on a 
graph that is sparser than the original grid and contains a 
path from s to t. Such a graph is named a connection graph 
in [13]. Wu et ,uZ. [21] introduced a rather small connection 
graph, called track graph. The track graph is not a strong 
connection graph in the sense that it may not contain a shortest 
path between a source node s and a target node t. However, 
their algorithm is able to detect the cases where the shortest 
paths are not ciontained by the track graph and handle such 
cases appropriately to obtain shortest paths. The run time and 
space of their algorithm are O( ( e  + k) log t )  and O( e + I C ) ,  
respectively, where e is the total number of boundary sides 
of obstacles, t is the total number of extreme sides of all 
obstacles, and k is the number of intersections among obstacle 
tracks, which is bounded by O(t2 ) .  In the worst case, t = ( e )  
and k = (e’). 

In this paper, we propose a new approach to solving the 
problem of finding rectilinear shortest paths in the presence 
of rectilinear obstacles using connection graphs. Unlike some 
existing algoritlims (e.g., [5], [18], [21]), the connection graph 
used in algorithms based on this approach is not explicitly 
constructed prior to the path search process but generated by 
interrogating a rather small “database” that characterizes the 
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search space in an on-the-fly fashion during the search. The 
construction of the connection graph is avoided by the use 
of binary search trees that represent vertical and horizontal 
boundaries of obstacles and their extensions.‘These trees are 
constructed by using a plane-sweeping technique. These data 
structures allow the fairly simple determination of whether 
or not a point is in the connection graph. Only searched 
portion of the connection graph is represented so that further 
exploration of the graph is possible and a solution, once found, 
can be retrieved. The implicit representation and demand- 
driven elaboration of the connection graph open possibilities 
for incorporating heuristics into search procedures to further 
improve the overall algorithm performance. The heuristic used 
in our algorithm is the A* heuristic search [8]. Like the MD 
algorithm, it uses the parameter detour length, which is a 
concept generalized from the detour number of [7], to control 
the search process. However, the A* search of our algorithm is 
more target directed because of the use of an additional “don’t 
change direction” heuristic and the underlying connection 
graph. 

We also show how to use our approach to design efficient 
algorithms for the problems of finding rectilinear one-to-many 
shortest paths and rectilinear minimum spanning trees (MST’s) 
in the presence of rectilinear obstacles. These two problems 
have important applications in VLSI design. Under the linear 
delay model of wire length minimization, minimum Steiner 
trees are sought for connecting nets. Since the minimum 
Steiner tree problem is NP-hard, a common method is to find 
an MST first and then obtain a near-optimal Steiner tree by 
modifying the spanning tree. The one-to-many shortest paths 
problem arises in timing-driven routing. The collection of 
shortest paths from one point to several other points form a 
shortest-path tree (SPT), in which paths may have overlapped 
edges. Such a tree connects a signal net such that the wire 
lengths for the source to all sinks of the net are minimized. 
A class of special rectilinear Steiner trees, called the A-trees, 
were proposed for performance-driven interconnect under the 
distributed RC delay model in [2]. An A-tree is a rectilinear 
Steiner tree in which the path connecting the source s and any 
node on the tree is a shortest path. A-trees are a generalization 
of the rectilinear Steiner arborescences of [19]. It is not known 
whether or not the minimum Steiner arborescence problem and 
the minimum A-tree problem are polynomial-time solvable. 
For the case that no obstacles are present, polynomial-time 
approximation and heuristic algorithms have been developed 
for these two problems [2], [19]. When obstacles are present, 
the problem becomes more difficult. Near optimal A-trees can 
be obtained by modifying SPT’s. 

The fact that our algorithms do not explicitly construct 
connection graphs may have a significant impact. In a large 
VLSI design with many obstacles, the construction of the 
entire connection graph could be too costly. The algorithms 
using our approach have time and space complexities similar 
to those of existing algorithms in the worst case. In most cases, 
however, our algorithms should prove significant speed and 
space improvement. For example, for our one-to-one shortest 
path algorithm, the time required for obtaining a shortest path 
is related more to the length of the path (which may be 

,, 
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Fig. 1. Grid G and its corresponding G c  for a given pair of s and t .  

relatively small) than to the size of the entire connection graph 
(which may be very large). 

11. A ONE-TO-ONE SHORTEST PATH ALGORITHM 
Let R be an mn uniform grid graph that consists of a 

set of grid nodes { (x ,g ) Ix  and y are integers such that 
1 5 x 5 n , l  5 y 5 m} and grid edges connecting grid 
nodes. The length of grid edges connecting adjacent nodes in 
R is assumed to be 1. Let B = {Bl ,  Bz, . . . , Bp}  be a set 
of mutually disjoint rectilinear polygons with boundaries on 
R. Each polygon in B is an obstacle. Let G denote a partial 
grid of R that consists of grid nodes that are not contained 
in the interior of any obstacle in B ,  and grid edges that are 
not incident to interior grid nodes of any obstacle in B (see 
Fig. l(a)). 

Maze-running algorithms use grid G to find a path between a 
pair of nodes. The main operation of maze-running algorithms 
is node labeling. Starting from the source node s ,  nodes of G 
are labeled in such a way that node w is labeled after at least 
one of its neighboring nodes has been labeled, until the target 
node t is labeled. Then, a path from s to t is generated from the 
node labels. Because of this feature, maze-running algorithms 
are usually called grid expansion algorithms (they are also 
called “wave propagation” algorithms). Lee’s algorithm [ 121 
is a customized Dijkstra’s breath-first search algorithm for 
uniform grid graphs; Dijkstra’s algorithm can be applied to 
arbitrary graphs. The Minimum Detour (MD) algorithm of 
[7] is a combination of breath-first search and the A* search 
proposed in [8]. Given a source node s and a target node t ,  we 
denote the Manhattan distance between s and t by M ( s , t ) .  
Let P be any obstacle-avoiding rectilinear path from s to t ,  
the detour number d(P) is defined as the total number of 
nodes on P that are directed away from t .  The length of 
P is M ( s , t )  + 2d(P). Then, P is a shortest path if and 
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only if d ( P )  is minimized among all paths connecting s and 
t .  During the grid expansion process of the MD algorithm, 
detour numbers with respect to t ,  rather than the distances 
from the s, are used to label the searched nodes, and those 
nodes with smaller detour numbers are expanded with higher 
priority. Since M ( s ,  t )  is fixed for a given pair of s and t ,  the 
breath-first search in the increasing order of detour numbers 
ensures that the detour number o f t  can be correctly computed. 
After the node labeling process of the MD algorithm, a shortest 
path from s to t can be easily obtained by backtracking 
the expanded grid nodes of G in decreasing order of detour 
number labels of the expanded nodes. Fig. 2 shows how the 
same example of [20] is solved using these two maze-running 
algorithms. The grid is in its offset form, i.e., each face defined 
by four unit segments corresponds to a grid node in the original 
grid G. The faces labeled by a solid triangle and a white 
triangle represent the source node s and the target node t ,  
respectively. The faces labeled by solid circles represent a 
shortest path, and the faces labeled by white circles represent 
the remaining expanded nodes. 

It is a simple fact that to find a path from s to t .  we only 
need to consider a subset of nodes in G. Let V’ be a subset 
of grid nodes of G ,  and H be a graph such that there exists 
a subgraph G’ of G that spans V’, and G’ is homeomorphic 
to H .  According to [13], H is called a connection graph for 
V‘ in G if all pairs of nodes in V’ are connected in H ;  H 
is called a strong connection graph for V’ in G ,  if H is a 
connection graph for V’ in G and the lengths of all shortest 
paths between pairs of nodes in V’ are the same in G and H .  
In what follows, we introduce a strong connection graph G c  
for a given pair of nodes s and t in G. 

We say that two line segments overlap if they share more 
than one point. Define a maximal horizontal (respectively, ver- 
tical) line segment 1 = ( U ,  v) in R as a horizontal (respectively, 
vertical) line segment such that 1 does not cross any B, in 
B, 1 does not overlap with any boundary of R, and obstacles 
in B and U and v are the only two points in 1 that are on the 
boundaries of R or obstacles in B.  Let LE = ( 1  11 = ( U ,  U) 
is a maximal horizontal line segment in R such that at least 
one of its endpoints U and v is a corner of some B, in B}, 
and LT = (111 = ( U ,  v) is a maximal vertical line segment in 
R such that at least one of its endpoints U and v is a comer 
of some B, in B } .  Let L(R,  B )  be the set of line segments 
that form the boundaries of R and obstacles in B. Let L, be 
the set of all maximal line segments that include s and Lt 
be the set of all maximal line segments that include t .  The 
nodes of G c  are the intersection points of the line segments 
in set L = L(R,  B )  U LE U LV U L,  U Lt, and the edges 
of G c  are the subsegments of the segments of L generated 
by the intersections. The grid graph G c  corresponding to 
the grid graph G of Fig. l(a) is shown in Fig. l(b). Let 
e = IL(R,B)I.  Clearly, each of LE and LF contains O(e)  
line segments. Therefore, ILI = O(e)  and the numbers of 
nodes and edges in G c  are at most O(e2) .  Consider any 
rectilinear obstacle-avoiding path P from s to t. Note that 
here we are not insisting that P must be on G c .  It is easy 
to verify that, starting from s, one can “bend” P to obtain 
a modified path P’ in G c  such that the length of P’ is 

no larger than the length of P. This transformation implies 
the following fact. 

Lemma 1: G c  is a strong connection graph for s and t in G. 
It is important to note that for any problem instance in which 

the coordinates of the comer points of R and obstacles in B ,  
and a given pair of source and target points ( s  and t )  are 
not necessarily integers, G c  (and G‘, defined in Section IV) 
can be used to find optimal solutions. In fact, the algorithms 
proposed in this paper work for such problem instances. 

Based on strong connection graph G c ,  we propose a line- 
search version of the MD algorithm. We first generalize the 
concept of detour number. Consider a direction assigned to 
an edge ( U ,  w )  of G c ,  say, the direction is from U to v. With 
this direction assignment, we have a directed edge U -+ U. We 
define the detour length of U + v with respect to a target node 
t ,  denoted by d l ( u  + U), as follows. Let I be the line passing 
through t and perpendicular to U ---t ii 

dZ(U + w) = 

f 0, if U and v are on the same side of 1 
andu is further from 1 than v; 

if U and v are on the same side of 
the length of U + v, 

1 and U is closer to 1 than v; 
the length of w 4 v,  

\ if I intersects U -+ v at w. 

The detour lengtlh of a node U with respect to a source node s 
and a target node t ,  denoted by S ( U ) ,  is the sum of the detour 
lengths of all directed edges in any directed shortest path from 
s to U in G c .  Let P* be a shortest path from s to t in Gc.  
Clearly, the length of P* is equal to M ( s , t )  + 2 S ( t ) .  

Starting from the source node s ,  our algorithm explores G c  
node by node. A global detour length d, which initially has 
value 0, is used to control the search process. Each node U is 
associated with a field DL[u],  which contains an upper bound 
of the detour length &(U)  of U computed during the execution 
of the algorithm. Two subsets of nodes of G c ,  VISITED and 
CANDIDATES, are maintained. Initially, VISITED = 0. The 
search starts with CANDIDATES containing all neighboring 
node of s in G c .  The search proceeds as follows: a node 
U in CANDIDATES with the smallest D L  value is selected 
for grid expansion. For all neighboring nodes of U that are 
not currently in VISITED, compute their new DI, values 
and perform CA,VDIDATES update operations using procedure 
update to ensure that they are in CANDIDATES with their 
current smallest D L  values. When a node U is detected that 
DL[u] = S(u), it is inserted into VISITED, and this equality 
remains unchanged thereafter. Each node U has another field 
PRED[u] ,  which links node U to its predecessor in a path 
from s to U .  When the algorithm terminates, the chain of pre- 
decessors originating at node t runs backward along a shortest 
path from s to t . The node set CANDIDATES is implemented 
as a priority queue. The nodes in CANDIDATES are ordered 
in nonincreasing order of their D L  values. In case that a tie 
occurs (i.e., two or more nodes with the same D L  value), 
the nodes with the same D L  value are ordered in First-In- 
Last-Out (FILO) order. This implementation of CANDIDATES 
enforces the invariant that nodes with smaller detour lengths 
are inserted inlo VISITED before nodes with larger detour 
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Expanded nodes of Lee’s algorithm and the MD algorithm Fig. 2. 

lengths. To increase the chance of reaching the target node 
quickly, a guided depth-first search feature is incorporated 
into the search process. A procedure forward and the ordering 
maintenance method of CANDIDATES effect “don’t change 
direction” search whenever possible. Our algorithm is given 
below. 

Algorithm PATHFINDER 
begin 

CANDIDATES := 0; 

insert( VISITED, s); 
for each neighbor U of s in G c  do 

DL[s] := 0;  

DL[u] := dl (s  i U ) ;  

PRED[u] := S ;  

insert( CANDIDATES, U )  

end for 

repeat 
U : = deletemin(CAiVDIDATES); 
insert(VISITED, U )  ; 
d := DL[u]; 
if U = t then stop; 
if U has a neighbor v in G c  such that 

d l ( u  -+ v) = 0 and v # VISITED then 

update( CMDIDATES, U ,  U, d )  ; 
for each such neighbor v of U do 

dir := direction of U -+ U; 
fonuard(u, dir, d )  

begin 

endfor 
end 

for each neighbor v of U in G c  such that v 
else 

VISITED do 
update(CANDIDATES, U, v, DL[u] + dl(u ---f v)) 

endfor 
endrepeat 

end 

The two procedures forward and update are as follows: 

procedure forward ( U ,  dir, d )  
begin 

newdl := d ;  
while newdl = d and U has a neighboring node v in 

G c  such that the direction of U i v = dir 
and v $2 VISITED do 

newdl := D L [ u ]  + d l ( u  + v ) ;  
update(CMDlDATES, U ,  v, newdl) 
if newdl = d then 

begin 
DL[v] := d ;  
PRED[v] := U ;  

insert(VISlTED, v) ; 
if v = t then stop 

end 

endwhile 
U := v 

end 

procedure update (CANDIDATES, U ,  U, d l )  
begin 

if v CNDIDATES and dl < DL[v] then 
delete( CMDIDATES, U) ; 

DL[v] := d l ;  
PRED[v] := U ;  

insert(CANDIDATES, t i )  

end 

Theorem 1: Algorithm PATHFINDER finds an obstacle- 
avoiding rectilinear shortest path from s to t in the presence 
of rectilinear obstacles. 

Pro08 By Lemma 1 ,  G c  contains a shortest path from 
s to t .  There are three statements that insert nodes of G c  into 
VISITED. The first one is at the beginning of the algorithm, 
which inserts only one node, s ,  into VISITED. The second one 
appears after the deletemin operation in the repeat loop. The 
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third such statement is in procedure forward. Since all the node 
inserted into VISITED by this statement are also inserted into 
the priority queue CANDIDATES, the effect of this statement 
can be ignored, as far as the correctness of the algorithm is 
concerned. The reason to include this statement in forward is 
to improve the performance of the algorithm, since the while 
loop implements the “don’t change direction” heuristic. In fact, 
the removal of the if statement in forward will not affect the 
correctness of the algorithm, and we may assume that this if 
statement is not present. Also, it is easy to see that once a 
node is inserted into set VISITED, the values of its D L  and 
PRED fields are not changed thereafter. Therefore, we focus 
our attention on the insert operation that follows the deletemin 
operation in the repeat loop. Consider the following algorithm: 

algorithm FMD 
begin 

for each node U of Gc  do 
DL[u] := foo; 
PRED[u] := nil; 

endfor 
DL[s]  := 0;  
VISITED := 0; 
insert(CANDIDATES, s )  ; 
repeat 

U := deletemin(CANDIDATES); 
insert(VISITED,u) ; 
if U = t then stop; 
for each neighbor v of U in G c  do 

if DL[w] >,DL[u] + d l ( u  -+ U) then 
begin 

DL[v] := DL[u] + dl (u  -+ w); 
PRED[v] := U 

end 
endfor 

endrepeat 
end 

It is not difficult to see that algorithm PATHFINDER finds 
a shortest path if and only if FMD algorithm finds a shortest 
path. Let Zength(u, w) denote the length of the edge connecting 
two adjacent nodes U and U in Gc.  If we replace dl(u -+ U) 

with length(u, w),  then FMD algorithm becomes Dijkstra’s 
shortest path algorithm. Since the only difference between 
FMD and Dijkstra’s algorithm is in the metrics used, and 
both detour length and edge length are nonnegative, by the 
correctness of Dijkstra’s algorithm, we conclude that algorithm 
PATHFINDER correctly computes a shortest path from s to t 
on G c .  This completes the proof of the theorem. 

0 

111. ALGORITHM IMPLEMENTATION AND PERFORMANCE 

We want to represent G c  implicitly. A basic operation of 
PATHFINDER is for a node U in Gc,  find all its neighbors 
in Gc.  We name this operation as neighbor finding in the 
connection graph. Suppose that we have all the line segments 
in L available. Partition L into two subsets LV and L H ,  which 
contain vertical and horizontal segments of L ,  respectively. 

The line segmen1.s of L can be used to determine the degree 
of U in Gc.  Thiis can be done by the following operation: 
Find all the line segments in LV (respectively, L H )  that 
include U .  We can represent LV by a balanced two-level 
binary search tree T$ in which each node corresponds to a 
unique z-coordinate of line segments in Lv. Each node of 
T$ has a pointer to a balanced binary search tree (secondary 
structure) for the y-coordinates of lower endpoints of the 
segments in LV that have the same z-coordinate. T$ can 
be easily constructed in O( I LV I log I LV I) = O( e log e) time 
and O((Lv1) = O(e)  space. Using T;, all (at most two) 
vertical line segments in L that include U can be found in 
O(1og ILvl) time. Similarly, we can construct a binary tree 
TA for horizontal segments in L. Therefore, the operation 
of finding all the line segments in L that include U can 
be carried out in time O(1og ILI), which is O(1og e) since 
JLJ = O ( J L ( R ,  B)I) = O(e) .  Then, the problem of finding 
neighbors of a given node U in G c  can be reduced to the 
following operatiion: given a grid node U of G c  and a direction 
a ,  find the first line segment in L encountered by a line 
emanating from U in direction a. For this operation, we can 
represent LV (respectively, L H )  by a special balanced binary 
search tree T$ ((respectively, T i )  of the structure described 
in [6] or [14]. The construction of T$ (respectively, T i )  
requires two steps. The first step normalizes the coordinates 
of end points of segments in Lv (respectively, L H )  to their 
ranks, and the second step builds 2’; (respectively, T i )  using 
the normalized integer coordinates. Both steps take O(e log e) 
time and O(e)  space. Using T$ and T$, the above mentioned 
operation can be carried out in O(1oge) time. Note that the 
data structure Th, T;, Th, and T$ are static data structures, 
i.e., once they are constructed, their structures are not changed 
during subsequent search process. 

Based on above discussions, we can use sets LV and LH 
as a database to assist the search process. We can compute 
LV and LH using a straightforward version of the powerful 
plane-sweep technique developed in computational geometry 
in O(e log e) time, using O(e)  space. This preprocessing 
algorithm is similar to the one described in [13, pp. 4071. 

The operations related to set VISITED are the insertion and 
the operation OS testing whether or not a given node of G c  
is in VISITED. We can represent VISITED by a dynamically 
balanced binary search tree T V I ~ I T E D  using lexicographical 
order of node coordinates. Each insertion and membership 
testing operation can be carried out in O(log N )  time, where 
N is the number of nodes in VISITED when algorithm 
PATHFINDER terminates. Since N 5 O(e2), O(log N )  = 
O(1og e). Similarly, the set CANDIDATES can be implemented 
using two dynamically balanced binary search trees, one using 
the D L  values as keys (for deletemin), and the other using 
the node coordinates as keys (for membership testing). An 
insertion (respectively, deletion) operation on CANDIDATES 
effects two insertion (respectively, deletion) operations, one on 
each of these two trees. Since every node in CANDIDATES has 
at least one neighbor in G c  that is in VISITED, we know that 
ICANDIDATES I 5 41VISITEDI = O ( N ) .  Any of insertion, 
deletion, deletemin, and membership testing operations on 
CANDIDATES can be done in O(1ogN) time, which is no 
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greater than O(log e). We summarize above discussions by 
the following theorem. 

Theorem 2: Algorithm PATHFINDER can be implemented 
in O( (e + N )  log e) time and O(e + N) space, where e is the 
number of boundary sides of obstacles in B and N is the total 
number of searched grid nodes of G c  when the algorithm 
terminates. 

The FMD algorithm introduced in the proof of Theorem 1 
not only simplifies the proof but also can be used to verify the 
effectiveness of algorithm PATHFINDER. We claim that, in 
terms of searched space, PATHFINDER is more efficient than 
FMD, and FMD is better than Dijkstra’s algorithm. 

Let us compare the PATHFINDER with FMD. The FMD 
algorithm is a generalization of the MD algorithm that works 
on G c  instead of G (and for this reason, the FMD algorithm 
can be interpreted to stand for Fast Minimum Detour algo- 
rithm). To our knowledge, the detour length concept and the 
FMD algorithm are new, even though they appear to be simple 
generalizations of detour number and the MD algorithm of 
[7]. Since PATHFINDER uses an additional “don’t change 
direction” heuristic, its searched space is less than that of 
FMD. 

Traditionally, Dijkstra’ s algorithm is used for the shortest 
path problem on graphs with edges of variable lengths. For 
comparisons, Dijkstra’s algorithm and the FMD algorithm can 
be considered as a “coarse-grain’’ Lee’s algorithm and the MD 
algorithm, respectively. As evidenced by the performances 
of the fine-grain versions of FMD algorithm and Dijkstra’s 
algorithm shown in Fig. 2, the performance of FMD is always 
better than Dijkstra’s algorithm on G c  due to the difference 
between metrics used. In terms of the size of searched space, 
the performance of FMD is better than Dijkstra’s algorithm. 
This is because that the length of a shortest path from s 
to a node U is always larger than the detour number of 
U .  An extreme case is that the length of a shortest path 
from s to t is large, but the detour length of t is very 
small. In such a case, the searched portion of Gc by FMD 
algorithm can be significantly smaller than that by Dijkstra’s 
algorithm. Therefore, comparing the FMD algorithm with 
Dijkstra’s algorithm (replacing dE(u ---t U )  with length ( U ,  v) 
in FMD) further verifies the advantage of the PATHFINDER 
algorithm. For the same example in Fig. 2, the operations of 
the PATHFINDER algorithm are shown in Fig. 3. The nodes 
are explored in the direction of edges, and in increasing order 
of sequence numbers. In Table I, the detour lengths of these 
nodes are listed with their sequence numbers. 

IV. GENERALIZATIONS 
Wu et al. [21] considered the problem of finding rectilinear 

shortest paths from one point in a given point set S to all other 
points in S (the one-to-many SP’s problem) and the problem 
of finding a rectilinear minimum spanning tree of a set S 
of points (the MST problem) in the presence of rectilinear 
obstacles. These two problems can be stated as follows. Let 
boundary R, a set B = {Bl ,  Bz, . . . , Bp}  of obstacles and grid 
G be defined as in Section 11, and let S be a set of n nodes of 
G. The one-to-many SP’s problem is to find obstacle-avoiding 

T l6 
17 

Fig. 3. Extended line segments by the PATHFINDER algorithm 

TABLE I 
DETOUR LENGTHS OF EXPLORED EDGES OF EXAMPLE SHOWN IN FIG 3 

sq # dl sq # dl sq # dl sq # dl sq # dl 
1 0 6 2 1 1 7 1 6 1 2 1 7  
2 4 7 3 1 2 1 1 7 1 2 2 1  
3 3 8  5 1 3 9  1 8 7  2 3 7  
4 2 9 1 1 4 5 1 9 9 2 4 7  
5 4 1 0 5  1 5 7  2 0 7  2 5 7  

rectilinear shortest paths from a point s in S to all other points 
in S. The minimum spanning tree considered is defined by 
treating points in S as nodes and rectilinear shortest paths 
among them as edges of an implicitly given complete graph. 
The MST problem is to find a spanning tree of S in this graph 
that has minimum total edge length. Their approach consists 
of two phases. In the first phase, a grid-like connection graph, 
called track graph GT,  is completely constructed. In the second 
phase, an optimal solution is computed using GT. For some 
problem instances, the track graphs are not strong connection 
graphs for S in G. In such a situation, an obstacle-avoiding 
optimal solution may not be found in GT. The second phase 
is able to detect cases where the optimality can be violated, 
and handle them appropriately. The construction of GT takes 
0 (n log n + e log t + k )  time, and the space required for storing 
GT is O ( n  + e + I C ) ,  where n is the number of points in 
S,e  is the total number of boundary sides of obstacles, k is 
the number of nodes in GT, and t is the total number of 
extreme sides in the obstacles (for the definition of extreme 
sides, refer to [21]). The second phase, for either the one- 
to-many shortest paths problem or the MST problem, takes 
O(n1ogn + Nlogt) time, where N is the total number of 
nodes of GT searched when the algorithm terminates. The 
total time and space complexities of these two algorithms are 
O ( n  log n + (e + N )  logt + k )  and O(e + n + k ) ,  respectively. 
For some problem instances, t = O(e)  and k = O ( e 2 ) ,  the 
performance of these algorithms is dominated by the term of 
O ( k ) .  Clearly, the preprocessing time is the bottle-neck of 
their algorithms, since N < k for most cases. In a large VLSI 
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design with many obstacles, the space requirement for GT is 

We generalize our connection graph G c  to obtain connec- 
tion graph G’, , and show that Gl, can be implicitly represented 
to solve the one-to-many SP’s problem and the MST problem. 
Let LE and L v  be as defined in Section 2. Let LS be the 
set of all maximal line segments that include points in S. The 
connection graph, GL, is defined as follows. The nodes of 
G’, are the intersection points of the line segments in the set 
L = L(R,  B )  U Lg U L v  U L s ,  and the edges of G’, are the 
subsegments of segments in L generated by their intersections. 
By Lemma 1, we have the following fact. 

Lemma 2: G‘, is a strong connection graph for S in G. 
Let LSV and LSH be the subsets of vertical segments 

and horizontal segments of Ls,  respectively. Using the plane- 
sweeping technique, segment sets LF U LSV and LF U LSV 
can be computed in O((e + n) log(e + n)) time, where e is 
the number of boundary sides of obstacles in B and n is the 
number of points in S. This can be done by treating each point 
in S as a degenerated obstacle. We would like to point out G& 
is a superset of the track graph GT of [21]. 

Our algorithm for the one-to-many SP’s problem is obtained 
from algorithm F M D  given in the proof of Theorem 1 by 
following modifications. We replace the underlying connection 
graph G c  with G’, and replace dZ(u -+ U )  with Zength(u, w). 
The termination condition of the new algorithm is that all 
points of S are included into VISITED. Initially, CANDI- 
DATES contains one point, s. The step for initializing all 
nodes in G’, is not needed because a node is assigned a length 
value only when it is included into CANDIDATES, The data 
structures used are the same as the ones for PATHFINDER. 
These data structures take O(e + n) space. They support 
O(log(e + n))-time search and update operations on VISITED 
and CANDIDATES, and the neighbor finding operation on 
implicit G’,. Therefore, using implicit G’, , the shortest paths 
from a point in S to all other points in S in the presence of 
rectilinear obstacles can be found in O( (e + n + N )  log( e + n))  
time and O(e+n+N) space using implicit G’,. We summarize 
the performance of this algorithm in the following theorem. 

Theorem 3: Obstacle-avoiding rectilinear shortest paths 
from a point in S to all other points in S in the presence of 
rectilinear obstacles can be found by performing Dijkstra’ s 
search on implicit G& in O ( ( e  + n + N)log(e + n))  time 
and O(e + n + N )  space, where e is the number of boundary 
sides of obstacles, n is the number of points in S, and N 
is the total number of visited grid nodes of G‘, when the 
algorithm terminates. 

Wu et al. also used the track graph GT to solve the MST 
problem. Since GT is not a strong connection graph, their 
algorithm transforms GT into a new graph by adding some 
line segments. The resulting graph, which we denote as G&, 
is a strong connection graph for S. The graph GI, is explicitly 
represented, and searched in the second phase. Their search 
procedure is a modified Kruskal’s algorithm [ll] .  The basic 
data structures used include a set VISITED and a priority 
queue CANDIDATES similar to our algorithm for the one- 
to-one SP problem. The primitive operations are insertion and 
membership testing on VISITED, insertion and deletemin on 

too costly. 
CANDIDATES, and neighbor finding in Gh. Therefore, we 
can use all our data structures for VISITED, CANDIDATES 
and implicit representation of G’, to implement the modified 
Kruskal’s algorithm given in [21]. The following claim directly 
follows from the analysis of the modified Kruskal’ algorithm 
given in [21]. 

Theorem 4: [Jsing implicit strong connection graph GI,, the 
algorithm of [21] for finding an obstacle-avoiding rectilinear 
minimum spanniing tree of a set S of n points in the presence 
of rectilinear obstacles can be implemented in O((e  + n + 
N )  log(e + n))  time and O(e + n + N )  space, where e is the 
number of boundary sides of obstacles, n is the number of 
points in S, and N is the total number of visited grid nodes 
of Gl, when the algorithm terminates. 

If e 2 n, thein the time and space required by our one-to- 
many SP’s algorithm and MST algorithm are O( (e+ N )  log e) 
and O(e + N ) ,  respectively, If n 2 e, then the time and space 
required by our algorithms are O( (n+N) log n) and O(n+N), 
respectively. Since the input size is O( e + n) , our algorithms 
can be expected1 more time and space efficient than the ones 
given in [21] in most cases. 

V. CONCLUSION 

In this paper, we introduced a framework for a class of 
algorithms for shortest path related problems in the presence of 
obstacles. There are two major features of such an algorithm. 

1) The search space is restricted to a sparse strong con- 
nection graph. The connection graph is implicitly repre- 
sented and its searched portion is constructed incremen- 
tally on-the-fly during the actual search process. 

2) As a result of (l), the time and space requirements of 
the algorithm essentially depend on its search behavior. 
Additional techniques or heuristics can be incorporated 
into the search procedure of the algorithm to achieve 
better performance. 

The effectiveness of our approach was demonstrated by 
our algorithm for the one-to-one SP problem. This algorithm 
combines an implicit strong connection graph G c  with the 
A* search method. Since the detour length as a lower bound 
in our algorithms can be substituted by the number of bends 
in the rectilinear link metric [3], [lo], [22] or the channel 
wiring density [4], our algorithm can be extended to solve 
these problems. 

To verify the generality of our approach, we also presented 
algorithms for the one-to-many SP’s problem and the MST 
problem. Our <algorithms are based on a strong connection 
graph G&, and they require O((e+n+N) log(e+n)) time and 
O(e+n+N) space. The dominating term in these complexities 
is O ( N ) .  It can be reduced by replacing G‘, with a sparser 
strong connection graph that can be represented in an implicit 
form from which the actual graph is constructable dynamically 
and efficiently, and/or incorporating effective heuristics into 
the search process. We would like to point out that the 
track graph G;r of [21] can be represented implicitly in the 
same way as our connection graphs G c  and G’,. By adding 
procedures for handling special cases, the algorithms of [21] 
for the one-to-]many SP’s problem and the MST problem can 
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be transformed into new algorithms that do not require the 
construction of entire GT. We omit the descriptions of these 
transformations. The time and space complexities of these new 
algorithms are O(n  log 72 + ( e  + N )  logt) and O ( n  + N ) ,  
respectively, where 
number of boundary sides of obstacles, t is the total number 

[19] S. K. Rao, P. Sadayappan, F.K. Hwang, and P.W. Shor, “The rectilinear 
steiner arborescence problem,” Algorithmica, vol. 7, 1992, pp. 277-288. 

[20] J. Soukup, “Fast maze router,” in Proc. 15th Design Automation Con$, 
1978, pp. 1OG102. 

[21] Y.-F. Wu, P. Widmayer, M. D. F. Schlag, and C. K. Wong, “Rectilinear 
shortest paths and minimum spanning trees in the presence of rectilinear 
obstacles,” ZEEE Trans. Comput., vol. ‘2-36, pp. 321-31, 1987. 

[22] C. D. Yang, D. T. Lee, and c. K. Wong, “On bends and lengths of 

is the number of points in s, e is the 

of extreme sides of obstacles, and N is the total number of 
searched nodes of G~ when these terminate. since 

rectilinear paths: A graph-theoretic appro&h,” in Proc. Algorithms and 
Data Structures, 2nd Wkshp. WADS 191, Lect. Notes in Computer Sci., 
519. New York: Springer-Verlag, 1991, pp. 320-330. 

GT is sparser than GL, these new versions of the algorithms 
given in [21] can bemore efficient than the ones presented 
in Section 4. 
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