
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. I , JANUARY 1996 103

Finding Obstacle- Avoiding Shortest
Paths Using Implicit Connection Graphs

S . Q. Zheng, Joon Shink Lim, and

Abstruct-We introduce a framework for a class of algorithms
solving shortest path related problems, such as the one-to-one
shortest path problem, the one-to-many shortest paths problem
and the minimum spanning tree problem, in the presence of
obstacles. For these algorithms, the search space is restricted to
a sparse strong connection graph that is implicitly represented
and its searched portion is constructed incrementally on-the-
fly during search. The time and space requirements of these
algorithms essentially depend on actual search behavior. There-
fore, additional techniques or heuristics can be incorporated into
search procedure to further improve the performance of the
algorithms. These algorithms are suitable for large VLSI design
applications with many obstacles.

I. INTRODUCTION

INDING shortest paths in the presence of obstacles is F an important problem in robotics, VLSI design, and
geographical information systems. In VLSI design, circuit
components or previously laid out wires are treated as ob-
stacles. Finding an obstacle-avoiding shortest path between
a pair of nodes is a fundamental operation used in many
layout algorithms. There are two basic classes of shortest
path algorithms: maze-running algorithms and line-search al-
gorithms. Maze-running algorithms can be characterized as
target-directed grid propagation. The first such algorithm is
Lee’s algorithm [12], which is an application of the breadth-
first shortest path search algorithm. The major disadvantage of
the original Lee’s algorithm is that it requires O(mn) memory
and running time in the worst case for m x 7~ grid graphs. In
addition, each node requires O(1ogL) bits, where L is the
length of the shortest path from a source node s to a target
node t . It is desirable to reduce the memory requirement for
each node. More importantly, the size of searched space must
be reduced, since the running time is proportional to this size.

There are a large number of variations of the original Lee’s
algorithm. Interested readers may refer to [17] for a good
survey of these algorithms. Akers [l] modified Lee’s algorithm
by introducing a coding scheme, which requires two bits per
node regardless of the value of L. Using the A* heuristic
search idea proposed in [8], Hadlock obtained a shortest
path algorithm, called Minimum Detour (MD) algorithm [7].
The search process of the MD algorithm is controlled by
a parameter, detour number d, which is used to indicate a
lower bound of the shortest path length. The MD algorithm

Manuscnpt received August 6, 1993, revised September 22, 1995. This

The authors are with the Department of Computer Science, Louisiana State

Publisher Item Identifier S 0278-0070(96)01344-9.

work was supported in part by a US Army grant.

University, Baton Rouge, LA 70803 USA.

S . Sitharma Iye:ngar, Fellow, IEEE

guarantees finding a shortest path in time less than Lee’s
algorithm. Soukup [20] proposed a heuristic maze-running
algorithm that combines depth-first search and breadth-first
search. This algorithm executes the depth-first search from
s toward t using a “don’t change direction” heuristic until an
obstacle is hit or the target node t is reached. When an obstacle
is hit, the breadth-first search is used for searching around the
obstacle until a grid node that directs toward the target node
t is found, and this procedure is repeated until the target node
t is reached. The paths found by Soukup’s algorithm are not
necessarily the shortest ones.

All partial paths generated by maze-running algorithms are
represented by unit grid line segments. These algorithms are
considered memory and time inefficient. Line-search algo-
rithms have been proposed to achieve improved performance.
Since such algorithms search a path by locating a sequence
of line segments of variable lengths, they save memory and
quickly find a simple-shaped path. Some line-search algo-
rithms do not guarantee finding a shortest path. The firsts
of such algorithms are reported in [9] and [15]. The line-
search algorithm given in [9] is similar to the one in [15]. The
difference is that the algorithm in [9] generates fewer trial lines
at every level. Several more recent line-search algorithms (e.g.,
[5], [16,] [18], [21]) are based on computational geometry
techniques. Almost all of these algorithms are based on a
graph that is sparser than the original grid and contains a
path from s to t. Such a graph is named a connection graph
in [13]. Wu et ,uZ. [21] introduced a rather small connection
graph, called track graph. The track graph is not a strong
connection graph in the sense that it may not contain a shortest
path between a source node s and a target node t. However,
their algorithm is able to detect the cases where the shortest
paths are not ciontained by the track graph and handle such
cases appropriately to obtain shortest paths. The run time and
space of their algorithm are O((e + k) log t) and O(e + I C) ,
respectively, where e is the total number of boundary sides
of obstacles, t is the total number of extreme sides of all
obstacles, and k is the number of intersections among obstacle
tracks, which is bounded by O(t2) . In the worst case, t = (e)
and k = (e’).

In this paper, we propose a new approach to solving the
problem of finding rectilinear shortest paths in the presence
of rectilinear obstacles using connection graphs. Unlike some
existing algoritlims (e.g., [5], [18], [21]), the connection graph
used in algorithms based on this approach is not explicitly
constructed prior to the path search process but generated by
interrogating a rather small “database” that characterizes the

0278-0070/96$05.00 0 1996 IEEE

104 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL 15, NO 1, JANUARY 1996

search space in an on-the-fly fashion during the search. The
construction of the connection graph is avoided by the use
of binary search trees that represent vertical and horizontal
boundaries of obstacles and their extensions.‘These trees are
constructed by using a plane-sweeping technique. These data
structures allow the fairly simple determination of whether
or not a point is in the connection graph. Only searched
portion of the connection graph is represented so that further
exploration of the graph is possible and a solution, once found,
can be retrieved. The implicit representation and demand-
driven elaboration of the connection graph open possibilities
for incorporating heuristics into search procedures to further
improve the overall algorithm performance. The heuristic used
in our algorithm is the A* heuristic search [8]. Like the MD
algorithm, it uses the parameter detour length, which is a
concept generalized from the detour number of [7], to control
the search process. However, the A* search of our algorithm is
more target directed because of the use of an additional “don’t
change direction” heuristic and the underlying connection
graph.

We also show how to use our approach to design efficient
algorithms for the problems of finding rectilinear one-to-many
shortest paths and rectilinear minimum spanning trees (MST’s)
in the presence of rectilinear obstacles. These two problems
have important applications in VLSI design. Under the linear
delay model of wire length minimization, minimum Steiner
trees are sought for connecting nets. Since the minimum
Steiner tree problem is NP-hard, a common method is to find
an MST first and then obtain a near-optimal Steiner tree by
modifying the spanning tree. The one-to-many shortest paths
problem arises in timing-driven routing. The collection of
shortest paths from one point to several other points form a
shortest-path tree (SPT), in which paths may have overlapped
edges. Such a tree connects a signal net such that the wire
lengths for the source to all sinks of the net are minimized.
A class of special rectilinear Steiner trees, called the A-trees,
were proposed for performance-driven interconnect under the
distributed RC delay model in [2]. An A-tree is a rectilinear
Steiner tree in which the path connecting the source s and any
node on the tree is a shortest path. A-trees are a generalization
of the rectilinear Steiner arborescences of [19]. It is not known
whether or not the minimum Steiner arborescence problem and
the minimum A-tree problem are polynomial-time solvable.
For the case that no obstacles are present, polynomial-time
approximation and heuristic algorithms have been developed
for these two problems [2], [19]. When obstacles are present,
the problem becomes more difficult. Near optimal A-trees can
be obtained by modifying SPT’s.

The fact that our algorithms do not explicitly construct
connection graphs may have a significant impact. In a large
VLSI design with many obstacles, the construction of the
entire connection graph could be too costly. The algorithms
using our approach have time and space complexities similar
to those of existing algorithms in the worst case. In most cases,
however, our algorithms should prove significant speed and
space improvement. For example, for our one-to-one shortest
path algorithm, the time required for obtaining a shortest path
is related more to the length of the path (which may be

,,

(b)

Fig. 1. Grid G and its corresponding G c for a given pair of s and t .

relatively small) than to the size of the entire connection graph
(which may be very large).

11. A ONE-TO-ONE SHORTEST PATH ALGORITHM
Let R be an mn uniform grid graph that consists of a

set of grid nodes { (x ,g) Ix and y are integers such that
1 5 x 5 n , l 5 y 5 m} and grid edges connecting grid
nodes. The length of grid edges connecting adjacent nodes in
R is assumed to be 1. Let B = {Bl , Bz, . . . , Bp} be a set
of mutually disjoint rectilinear polygons with boundaries on
R. Each polygon in B is an obstacle. Let G denote a partial
grid of R that consists of grid nodes that are not contained
in the interior of any obstacle in B , and grid edges that are
not incident to interior grid nodes of any obstacle in B (see
Fig. l(a)).

Maze-running algorithms use grid G to find a path between a
pair of nodes. The main operation of maze-running algorithms
is node labeling. Starting from the source node s , nodes of G
are labeled in such a way that node w is labeled after at least
one of its neighboring nodes has been labeled, until the target
node t is labeled. Then, a path from s to t is generated from the
node labels. Because of this feature, maze-running algorithms
are usually called grid expansion algorithms (they are also
called “wave propagation” algorithms). Lee’s algorithm [121
is a customized Dijkstra’s breath-first search algorithm for
uniform grid graphs; Dijkstra’s algorithm can be applied to
arbitrary graphs. The Minimum Detour (MD) algorithm of
[7] is a combination of breath-first search and the A* search
proposed in [8]. Given a source node s and a target node t , we
denote the Manhattan distance between s and t by M (s , t) .
Let P be any obstacle-avoiding rectilinear path from s to t ,
the detour number d(P) is defined as the total number of
nodes on P that are directed away from t . The length of
P is M (s , t) + 2d(P). Then, P is a shortest path if and

ZHENG ef al.: FINDlNG OBSTACLE-AVOIDING SHORTEST PATHS USING IMPLICIT GRAPHS 105

only if d (P) is minimized among all paths connecting s and
t . During the grid expansion process of the MD algorithm,
detour numbers with respect to t , rather than the distances
from the s, are used to label the searched nodes, and those
nodes with smaller detour numbers are expanded with higher
priority. Since M (s , t) is fixed for a given pair of s and t , the
breath-first search in the increasing order of detour numbers
ensures that the detour number o f t can be correctly computed.
After the node labeling process of the MD algorithm, a shortest
path from s to t can be easily obtained by backtracking
the expanded grid nodes of G in decreasing order of detour
number labels of the expanded nodes. Fig. 2 shows how the
same example of [20] is solved using these two maze-running
algorithms. The grid is in its offset form, i.e., each face defined
by four unit segments corresponds to a grid node in the original
grid G. The faces labeled by a solid triangle and a white
triangle represent the source node s and the target node t ,
respectively. The faces labeled by solid circles represent a
shortest path, and the faces labeled by white circles represent
the remaining expanded nodes.

It is a simple fact that to find a path from s to t . we only
need to consider a subset of nodes in G. Let V’ be a subset
of grid nodes of G , and H be a graph such that there exists
a subgraph G’ of G that spans V’, and G’ is homeomorphic
to H . According to [13], H is called a connection graph for
V‘ in G if all pairs of nodes in V’ are connected in H ; H
is called a strong connection graph for V’ in G , if H is a
connection graph for V’ in G and the lengths of all shortest
paths between pairs of nodes in V’ are the same in G and H .
In what follows, we introduce a strong connection graph G c
for a given pair of nodes s and t in G.

We say that two line segments overlap if they share more
than one point. Define a maximal horizontal (respectively, ver-
tical) line segment 1 = (U , v) in R as a horizontal (respectively,
vertical) line segment such that 1 does not cross any B, in
B, 1 does not overlap with any boundary of R, and obstacles
in B and U and v are the only two points in 1 that are on the
boundaries of R or obstacles in B. Let LE = (1 11 = (U , U)
is a maximal horizontal line segment in R such that at least
one of its endpoints U and v is a corner of some B, in B},
and LT = (111 = (U , v) is a maximal vertical line segment in
R such that at least one of its endpoints U and v is a comer
of some B, in B } . Let L(R, B) be the set of line segments
that form the boundaries of R and obstacles in B. Let L, be
the set of all maximal line segments that include s and Lt
be the set of all maximal line segments that include t . The
nodes of G c are the intersection points of the line segments
in set L = L(R, B) U LE U LV U L, U Lt, and the edges
of G c are the subsegments of the segments of L generated
by the intersections. The grid graph G c corresponding to
the grid graph G of Fig. l(a) is shown in Fig. l(b). Let
e = IL(R,B)I. Clearly, each of LE and LF contains O(e)
line segments. Therefore, ILI = O(e) and the numbers of
nodes and edges in G c are at most O(e2) . Consider any
rectilinear obstacle-avoiding path P from s to t. Note that
here we are not insisting that P must be on G c . It is easy
to verify that, starting from s, one can “bend” P to obtain
a modified path P’ in G c such that the length of P’ is

no larger than the length of P. This transformation implies
the following fact.

Lemma 1: G c is a strong connection graph for s and t in G.
It is important to note that for any problem instance in which

the coordinates of the comer points of R and obstacles in B ,
and a given pair of source and target points (s and t) are
not necessarily integers, G c (and G‘, defined in Section IV)
can be used to find optimal solutions. In fact, the algorithms
proposed in this paper work for such problem instances.

Based on strong connection graph G c , we propose a line-
search version of the MD algorithm. We first generalize the
concept of detour number. Consider a direction assigned to
an edge (U , w) of G c , say, the direction is from U to v. With
this direction assignment, we have a directed edge U -+ U. We
define the detour length of U + v with respect to a target node
t , denoted by d l (u + U), as follows. Let I be the line passing
through t and perpendicular to U ---t ii

dZ(U + w) =

f 0, if U and v are on the same side of 1
andu is further from 1 than v;

if U and v are on the same side of
the length of U + v,

1 and U is closer to 1 than v;
the length of w 4 v,

\ if I intersects U -+ v at w.

The detour lengtlh of a node U with respect to a source node s
and a target node t , denoted by S (U) , is the sum of the detour
lengths of all directed edges in any directed shortest path from
s to U in G c . Let P* be a shortest path from s to t in Gc.
Clearly, the length of P* is equal to M (s , t) + 2 S (t) .

Starting from the source node s , our algorithm explores G c
node by node. A global detour length d, which initially has
value 0, is used to control the search process. Each node U is
associated with a field DL[u], which contains an upper bound
of the detour length &(U) of U computed during the execution
of the algorithm. Two subsets of nodes of G c , VISITED and
CANDIDATES, are maintained. Initially, VISITED = 0. The
search starts with CANDIDATES containing all neighboring
node of s in G c . The search proceeds as follows: a node
U in CANDIDATES with the smallest D L value is selected
for grid expansion. For all neighboring nodes of U that are
not currently in VISITED, compute their new DI, values
and perform CA,VDIDATES update operations using procedure
update to ensure that they are in CANDIDATES with their
current smallest D L values. When a node U is detected that
DL[u] = S(u), it is inserted into VISITED, and this equality
remains unchanged thereafter. Each node U has another field
PRED[u] , which links node U to its predecessor in a path
from s to U . When the algorithm terminates, the chain of pre-
decessors originating at node t runs backward along a shortest
path from s to t . The node set CANDIDATES is implemented
as a priority queue. The nodes in CANDIDATES are ordered
in nonincreasing order of their D L values. In case that a tie
occurs (i.e., two or more nodes with the same D L value),
the nodes with the same D L value are ordered in First-In-
Last-Out (FILO) order. This implementation of CANDIDATES
enforces the invariant that nodes with smaller detour lengths
are inserted inlo VISITED before nodes with larger detour

106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL 15, NO 1, JANUARY 1996

Hadlock
(b)

Expanded nodes of Lee’s algorithm and the MD algorithm Fig. 2.

lengths. To increase the chance of reaching the target node
quickly, a guided depth-first search feature is incorporated
into the search process. A procedure forward and the ordering
maintenance method of CANDIDATES effect “don’t change
direction” search whenever possible. Our algorithm is given
below.

Algorithm PATHFINDER
begin

CANDIDATES := 0;

insert(VISITED, s);
for each neighbor U of s in G c do

DL[s] := 0;

DL[u] := dl (s i U) ;

PRED[u] := S ;

insert(CANDIDATES, U)

end for

repeat
U : = deletemin(CAiVDIDATES);
insert(VISITED, U) ;
d := DL[u];
if U = t then stop;
if U has a neighbor v in G c such that

d l (u -+ v) = 0 and v # VISITED then

update(CMDIDATES, U , U, d) ;
for each such neighbor v of U do

dir := direction of U -+ U;
fonuard(u, dir, d)

begin

endfor
end

for each neighbor v of U in G c such that v
else

VISITED do
update(CANDIDATES, U, v, DL[u] + dl(u ---f v))

endfor
endrepeat

end

The two procedures forward and update are as follows:

procedure forward (U , dir, d)
begin

newdl := d ;
while newdl = d and U has a neighboring node v in

G c such that the direction of U i v = dir
and v $2 VISITED do

newdl := D L [u] + d l (u + v) ;
update(CMDlDATES, U , v, newdl)
if newdl = d then

begin
DL[v] := d ;
PRED[v] := U ;

insert(VISlTED, v) ;
if v = t then stop

end

endwhile
U := v

end

procedure update (CANDIDATES, U , U, d l)
begin

if v CNDIDATES and dl < DL[v] then
delete(CMDIDATES, U) ;

DL[v] := d l ;
PRED[v] := U ;

insert(CANDIDATES, t i)

end

Theorem 1: Algorithm PATHFINDER finds an obstacle-
avoiding rectilinear shortest path from s to t in the presence
of rectilinear obstacles.

Pro08 By Lemma 1 , G c contains a shortest path from
s to t . There are three statements that insert nodes of G c into
VISITED. The first one is at the beginning of the algorithm,
which inserts only one node, s , into VISITED. The second one
appears after the deletemin operation in the repeat loop. The

ZHENG ef ul.: FINDING OBSTACLE-AVOIDING SHORTEST PATHS USING IMPLICIT GRAPHS 107

third such statement is in procedure forward. Since all the node
inserted into VISITED by this statement are also inserted into
the priority queue CANDIDATES, the effect of this statement
can be ignored, as far as the correctness of the algorithm is
concerned. The reason to include this statement in forward is
to improve the performance of the algorithm, since the while
loop implements the “don’t change direction” heuristic. In fact,
the removal of the if statement in forward will not affect the
correctness of the algorithm, and we may assume that this if
statement is not present. Also, it is easy to see that once a
node is inserted into set VISITED, the values of its D L and
PRED fields are not changed thereafter. Therefore, we focus
our attention on the insert operation that follows the deletemin
operation in the repeat loop. Consider the following algorithm:

algorithm FMD
begin

for each node U of Gc do
DL[u] := foo;
PRED[u] := nil;

endfor
DL[s] := 0;
VISITED := 0;
insert(CANDIDATES, s) ;
repeat

U := deletemin(CANDIDATES);
insert(VISITED,u) ;
if U = t then stop;
for each neighbor v of U in G c do

if DL[w] >,DL[u] + d l (u -+ U) then
begin

DL[v] := DL[u] + dl (u -+ w);
PRED[v] := U

end
endfor

endrepeat
end

It is not difficult to see that algorithm PATHFINDER finds
a shortest path if and only if FMD algorithm finds a shortest
path. Let Zength(u, w) denote the length of the edge connecting
two adjacent nodes U and U in Gc. If we replace dl(u -+ U)

with length(u, w), then FMD algorithm becomes Dijkstra’s
shortest path algorithm. Since the only difference between
FMD and Dijkstra’s algorithm is in the metrics used, and
both detour length and edge length are nonnegative, by the
correctness of Dijkstra’s algorithm, we conclude that algorithm
PATHFINDER correctly computes a shortest path from s to t
on G c . This completes the proof of the theorem.

0

111. ALGORITHM IMPLEMENTATION AND PERFORMANCE

We want to represent G c implicitly. A basic operation of
PATHFINDER is for a node U in Gc, find all its neighbors
in Gc. We name this operation as neighbor finding in the
connection graph. Suppose that we have all the line segments
in L available. Partition L into two subsets LV and L H , which
contain vertical and horizontal segments of L , respectively.

The line segmen1.s of L can be used to determine the degree
of U in Gc. Thiis can be done by the following operation:
Find all the line segments in LV (respectively, L H) that
include U . We can represent LV by a balanced two-level
binary search tree T$ in which each node corresponds to a
unique z-coordinate of line segments in Lv. Each node of
T$ has a pointer to a balanced binary search tree (secondary
structure) for the y-coordinates of lower endpoints of the
segments in LV that have the same z-coordinate. T$ can
be easily constructed in O(I LV I log I LV I) = O(e log e) time
and O((Lv1) = O(e) space. Using T;, all (at most two)
vertical line segments in L that include U can be found in
O(1og ILvl) time. Similarly, we can construct a binary tree
TA for horizontal segments in L. Therefore, the operation
of finding all the line segments in L that include U can
be carried out in time O(1og ILI), which is O(1og e) since
JLJ = O (J L (R , B)I) = O(e) . Then, the problem of finding
neighbors of a given node U in G c can be reduced to the
following operatiion: given a grid node U of G c and a direction
a , find the first line segment in L encountered by a line
emanating from U in direction a. For this operation, we can
represent LV (respectively, L H) by a special balanced binary
search tree T$ ((respectively, T i) of the structure described
in [6] or [14]. The construction of T$ (respectively, T i)
requires two steps. The first step normalizes the coordinates
of end points of segments in Lv (respectively, L H) to their
ranks, and the second step builds 2’; (respectively, T i) using
the normalized integer coordinates. Both steps take O(e log e)
time and O(e) space. Using T$ and T$, the above mentioned
operation can be carried out in O(1oge) time. Note that the
data structure Th, T;, Th, and T$ are static data structures,
i.e., once they are constructed, their structures are not changed
during subsequent search process.

Based on above discussions, we can use sets LV and LH
as a database to assist the search process. We can compute
LV and LH using a straightforward version of the powerful
plane-sweep technique developed in computational geometry
in O(e log e) time, using O(e) space. This preprocessing
algorithm is similar to the one described in [13, pp. 4071.

The operations related to set VISITED are the insertion and
the operation OS testing whether or not a given node of G c
is in VISITED. We can represent VISITED by a dynamically
balanced binary search tree T V I ~ I T E D using lexicographical
order of node coordinates. Each insertion and membership
testing operation can be carried out in O(log N) time, where
N is the number of nodes in VISITED when algorithm
PATHFINDER terminates. Since N 5 O(e2), O(log N) =
O(1og e). Similarly, the set CANDIDATES can be implemented
using two dynamically balanced binary search trees, one using
the D L values as keys (for deletemin), and the other using
the node coordinates as keys (for membership testing). An
insertion (respectively, deletion) operation on CANDIDATES
effects two insertion (respectively, deletion) operations, one on
each of these two trees. Since every node in CANDIDATES has
at least one neighbor in G c that is in VISITED, we know that
ICANDIDATES I 5 41VISITEDI = O (N) . Any of insertion,
deletion, deletemin, and membership testing operations on
CANDIDATES can be done in O(1ogN) time, which is no

108 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 1, JANUARY 1996

greater than O(log e). We summarize above discussions by
the following theorem.

Theorem 2: Algorithm PATHFINDER can be implemented
in O((e + N) log e) time and O(e + N) space, where e is the
number of boundary sides of obstacles in B and N is the total
number of searched grid nodes of G c when the algorithm
terminates.

The FMD algorithm introduced in the proof of Theorem 1
not only simplifies the proof but also can be used to verify the
effectiveness of algorithm PATHFINDER. We claim that, in
terms of searched space, PATHFINDER is more efficient than
FMD, and FMD is better than Dijkstra’s algorithm.

Let us compare the PATHFINDER with FMD. The FMD
algorithm is a generalization of the MD algorithm that works
on G c instead of G (and for this reason, the FMD algorithm
can be interpreted to stand for Fast Minimum Detour algo-
rithm). To our knowledge, the detour length concept and the
FMD algorithm are new, even though they appear to be simple
generalizations of detour number and the MD algorithm of
[7]. Since PATHFINDER uses an additional “don’t change
direction” heuristic, its searched space is less than that of
FMD.

Traditionally, Dijkstra’ s algorithm is used for the shortest
path problem on graphs with edges of variable lengths. For
comparisons, Dijkstra’s algorithm and the FMD algorithm can
be considered as a “coarse-grain’’ Lee’s algorithm and the MD
algorithm, respectively. As evidenced by the performances
of the fine-grain versions of FMD algorithm and Dijkstra’s
algorithm shown in Fig. 2, the performance of FMD is always
better than Dijkstra’s algorithm on G c due to the difference
between metrics used. In terms of the size of searched space,
the performance of FMD is better than Dijkstra’s algorithm.
This is because that the length of a shortest path from s
to a node U is always larger than the detour number of
U . An extreme case is that the length of a shortest path
from s to t is large, but the detour length of t is very
small. In such a case, the searched portion of Gc by FMD
algorithm can be significantly smaller than that by Dijkstra’s
algorithm. Therefore, comparing the FMD algorithm with
Dijkstra’s algorithm (replacing dE(u ---t U) with length (U , v)
in FMD) further verifies the advantage of the PATHFINDER
algorithm. For the same example in Fig. 2, the operations of
the PATHFINDER algorithm are shown in Fig. 3. The nodes
are explored in the direction of edges, and in increasing order
of sequence numbers. In Table I, the detour lengths of these
nodes are listed with their sequence numbers.

IV. GENERALIZATIONS
Wu et al. [21] considered the problem of finding rectilinear

shortest paths from one point in a given point set S to all other
points in S (the one-to-many SP’s problem) and the problem
of finding a rectilinear minimum spanning tree of a set S
of points (the MST problem) in the presence of rectilinear
obstacles. These two problems can be stated as follows. Let
boundary R, a set B = {Bl , Bz, . . . , Bp} of obstacles and grid
G be defined as in Section 11, and let S be a set of n nodes of
G. The one-to-many SP’s problem is to find obstacle-avoiding

T l6
17

Fig. 3. Extended line segments by the PATHFINDER algorithm

TABLE I
DETOUR LENGTHS OF EXPLORED EDGES OF EXAMPLE SHOWN IN FIG 3

sq # dl sq # dl sq # dl sq # dl sq # dl
1 0 6 2 1 1 7 1 6 1 2 1 7
2 4 7 3 1 2 1 1 7 1 2 2 1
3 3 8 5 1 3 9 1 8 7 2 3 7
4 2 9 1 1 4 5 1 9 9 2 4 7
5 4 1 0 5 1 5 7 2 0 7 2 5 7

rectilinear shortest paths from a point s in S to all other points
in S. The minimum spanning tree considered is defined by
treating points in S as nodes and rectilinear shortest paths
among them as edges of an implicitly given complete graph.
The MST problem is to find a spanning tree of S in this graph
that has minimum total edge length. Their approach consists
of two phases. In the first phase, a grid-like connection graph,
called track graph GT, is completely constructed. In the second
phase, an optimal solution is computed using GT. For some
problem instances, the track graphs are not strong connection
graphs for S in G. In such a situation, an obstacle-avoiding
optimal solution may not be found in GT. The second phase
is able to detect cases where the optimality can be violated,
and handle them appropriately. The construction of GT takes
0 (n log n + e log t + k) time, and the space required for storing
GT is O (n + e + I C) , where n is the number of points in
S,e is the total number of boundary sides of obstacles, k is
the number of nodes in GT, and t is the total number of
extreme sides in the obstacles (for the definition of extreme
sides, refer to [21]). The second phase, for either the one-
to-many shortest paths problem or the MST problem, takes
O(n1ogn + Nlogt) time, where N is the total number of
nodes of GT searched when the algorithm terminates. The
total time and space complexities of these two algorithms are
O (n log n + (e + N) logt + k) and O(e + n + k) , respectively.
For some problem instances, t = O(e) and k = O (e 2) , the
performance of these algorithms is dominated by the term of
O (k) . Clearly, the preprocessing time is the bottle-neck of
their algorithms, since N < k for most cases. In a large VLSI

ZHENG et al.: FINDlNG OBSTACLE-AVOIDING SHORTEST PATHS USING lMPLICIT GRAPHS 109

design with many obstacles, the space requirement for GT is

We generalize our connection graph G c to obtain connec-
tion graph G’, , and show that Gl, can be implicitly represented
to solve the one-to-many SP’s problem and the MST problem.
Let LE and L v be as defined in Section 2. Let LS be the
set of all maximal line segments that include points in S. The
connection graph, GL, is defined as follows. The nodes of
G’, are the intersection points of the line segments in the set
L = L(R, B) U Lg U L v U L s , and the edges of G’, are the
subsegments of segments in L generated by their intersections.
By Lemma 1, we have the following fact.

Lemma 2: G‘, is a strong connection graph for S in G.
Let LSV and LSH be the subsets of vertical segments

and horizontal segments of Ls, respectively. Using the plane-
sweeping technique, segment sets LF U LSV and LF U LSV
can be computed in O((e + n) log(e + n)) time, where e is
the number of boundary sides of obstacles in B and n is the
number of points in S. This can be done by treating each point
in S as a degenerated obstacle. We would like to point out G&
is a superset of the track graph GT of [21].

Our algorithm for the one-to-many SP’s problem is obtained
from algorithm F M D given in the proof of Theorem 1 by
following modifications. We replace the underlying connection
graph G c with G’, and replace dZ(u -+ U) with Zength(u, w).
The termination condition of the new algorithm is that all
points of S are included into VISITED. Initially, CANDI-
DATES contains one point, s. The step for initializing all
nodes in G’, is not needed because a node is assigned a length
value only when it is included into CANDIDATES, The data
structures used are the same as the ones for PATHFINDER.
These data structures take O(e + n) space. They support
O(log(e + n))-time search and update operations on VISITED
and CANDIDATES, and the neighbor finding operation on
implicit G’,. Therefore, using implicit G’, , the shortest paths
from a point in S to all other points in S in the presence of
rectilinear obstacles can be found in O((e + n + N) log(e + n))
time and O(e+n+N) space using implicit G’,. We summarize
the performance of this algorithm in the following theorem.

Theorem 3: Obstacle-avoiding rectilinear shortest paths
from a point in S to all other points in S in the presence of
rectilinear obstacles can be found by performing Dijkstra’ s
search on implicit G& in O ((e + n + N)log(e + n)) time
and O(e + n + N) space, where e is the number of boundary
sides of obstacles, n is the number of points in S, and N
is the total number of visited grid nodes of G‘, when the
algorithm terminates.

Wu et al. also used the track graph GT to solve the MST
problem. Since GT is not a strong connection graph, their
algorithm transforms GT into a new graph by adding some
line segments. The resulting graph, which we denote as G&,
is a strong connection graph for S. The graph GI, is explicitly
represented, and searched in the second phase. Their search
procedure is a modified Kruskal’s algorithm [ll] . The basic
data structures used include a set VISITED and a priority
queue CANDIDATES similar to our algorithm for the one-
to-one SP problem. The primitive operations are insertion and
membership testing on VISITED, insertion and deletemin on

too costly.
CANDIDATES, and neighbor finding in Gh. Therefore, we
can use all our data structures for VISITED, CANDIDATES
and implicit representation of G’, to implement the modified
Kruskal’s algorithm given in [21]. The following claim directly
follows from the analysis of the modified Kruskal’ algorithm
given in [21].

Theorem 4: [Jsing implicit strong connection graph GI,, the
algorithm of [21] for finding an obstacle-avoiding rectilinear
minimum spanniing tree of a set S of n points in the presence
of rectilinear obstacles can be implemented in O((e + n +
N) log(e + n)) time and O(e + n + N) space, where e is the
number of boundary sides of obstacles, n is the number of
points in S, and N is the total number of visited grid nodes
of Gl, when the algorithm terminates.

If e 2 n, thein the time and space required by our one-to-
many SP’s algorithm and MST algorithm are O((e+ N) log e)
and O(e + N) , respectively, If n 2 e, then the time and space
required by our algorithms are O((n+N) log n) and O(n+N),
respectively. Since the input size is O(e + n) , our algorithms
can be expected1 more time and space efficient than the ones
given in [21] in most cases.

V. CONCLUSION

In this paper, we introduced a framework for a class of
algorithms for shortest path related problems in the presence of
obstacles. There are two major features of such an algorithm.

1) The search space is restricted to a sparse strong con-
nection graph. The connection graph is implicitly repre-
sented and its searched portion is constructed incremen-
tally on-the-fly during the actual search process.

2) As a result of (l), the time and space requirements of
the algorithm essentially depend on its search behavior.
Additional techniques or heuristics can be incorporated
into the search procedure of the algorithm to achieve
better performance.

The effectiveness of our approach was demonstrated by
our algorithm for the one-to-one SP problem. This algorithm
combines an implicit strong connection graph G c with the
A* search method. Since the detour length as a lower bound
in our algorithms can be substituted by the number of bends
in the rectilinear link metric [3], [lo], [22] or the channel
wiring density [4], our algorithm can be extended to solve
these problems.

To verify the generality of our approach, we also presented
algorithms for the one-to-many SP’s problem and the MST
problem. Our <algorithms are based on a strong connection
graph G&, and they require O((e+n+N) log(e+n)) time and
O(e+n+N) space. The dominating term in these complexities
is O (N) . It can be reduced by replacing G‘, with a sparser
strong connection graph that can be represented in an implicit
form from which the actual graph is constructable dynamically
and efficiently, and/or incorporating effective heuristics into
the search process. We would like to point out that the
track graph G;r of [21] can be represented implicitly in the
same way as our connection graphs G c and G’,. By adding
procedures for handling special cases, the algorithms of [21]
for the one-to-]many SP’s problem and the MST problem can

110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 1, JANUARY 1996

be transformed into new algorithms that do not require the
construction of entire GT. We omit the descriptions of these
transformations. The time and space complexities of these new
algorithms are O(n log 72 + (e + N) logt) and O (n + N) ,
respectively, where
number of boundary sides of obstacles, t is the total number

[19] S. K. Rao, P. Sadayappan, F.K. Hwang, and P.W. Shor, “The rectilinear
steiner arborescence problem,” Algorithmica, vol. 7, 1992, pp. 277-288.

[20] J. Soukup, “Fast maze router,” in Proc. 15th Design Automation Con$,
1978, pp. 1OG102.

[21] Y.-F. Wu, P. Widmayer, M. D. F. Schlag, and C. K. Wong, “Rectilinear
shortest paths and minimum spanning trees in the presence of rectilinear
obstacles,” ZEEE Trans. Comput., vol. ‘2-36, pp. 321-31, 1987.

[22] C. D. Yang, D. T. Lee, and c. K. Wong, “On bends and lengths of

is the number of points in s, e is the

of extreme sides of obstacles, and N is the total number of
searched nodes of G~ when these terminate. since

rectilinear paths: A graph-theoretic appro&h,” in Proc. Algorithms and
Data Structures, 2nd Wkshp. WADS 191, Lect. Notes in Computer Sci.,
519. New York: Springer-Verlag, 1991, pp. 320-330.

GT is sparser than GL, these new versions of the algorithms
given in [21] can bemore efficient than the ones presented
in Section 4.

ACKNOWLEDGMENT
The authors wish to thank the anonymous referees for their

valuable comments and suggestions which made the signifi-
cant improvement ‘of this paper over the original manuscript
possible.

REFERENCES

S. B. Akers, “A modification of Lee’s path connection algorithm,” ZEEE
Trans. Electron. Comput., vol. EC-16, pp. 97-98, 1967.
J. Cong, K.-S. Leung, and D. Zhou, “Performance-driven interconnect
design based on distributed RC delay model,” in Proc. 30th Design
Automation Cot$, 1993, pp. 606-611.
M. T. De Berg, M. J. Van Kreveld, B. J. Nilsson, and M. H. Overmars,
“Finding shortest paths in the presence of orthogonal obstacles using a
combined L1 and link metric,” in Proc. Second Scand. Wkshp. Algorithm
Theory, 1990, pp. 213-24.
A. D. Brown and M. Zwolinski, “Lee router modified for global
routing,” Computer-Aided Design, vol. 22, no. 5, pp. 296300, June
1990.
K. L. Clarkson, S. Kapoor, and P. M. Vaidya, “Rectilinear shortest
paths through polygonal obstacles in O(n(1og n)’) time,” in Proc. Third
Annual Conj! Computational Geometry, 1987, pp. 25 1-57.
H. Edelsbrunner and M. H. Overmars, “Some methods of computational
geometry applied to computer graphics,” Computer Vision, Gmaphics,
andZmage Processing, vol. 28, pp. 92-108, 1984. Circuit Boards,” ZEEE
Trans. Circuit Theory, vol. CT-18, pp. 95-100, 1971.
F. 0. Hadlock, “The shortest: Path algorithm for grid graphs,” Nemorks,
vol. 7, pp. 323-34, 1977.
P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” ZEEE Trans. Syst., Sci., Cybern.,

D. W. Hightower, “A solution to line routing problems on the continuous
plane,” in Proc. IEEE Sixth Design Automation Wkshp., 1969, pp. 1-24.
Y. Ke, “An efficient algorithm for link-distance problems,” in Proc. 5th
ACM Symp., Lect. Notes in Computer Sci., 447. New York: Springer-
Verlag, 1990, pp. 213-224.
J.B. Kruskal, “On the Shortest spanning subtree of a graph and the
traveling salesman problem,” in Proc. Amer. Mathemat. Soc., vol. 7, pp.
48-50, 1956.
C. Y. Lee, “An Algorithm for Path Connections and Its Applications,”
IRE Trans. Electron. Comput., vol. EC-10, pp. 3 4 M 5 , 1961.
T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout.
Reading, England: Wiley, 1990.
E. M. McCreight, “Priority search trees,” Tech. Rep. Xerox PARC
CSL-81-5, 1981.
K. Mikami and K. Tabuchi, “A computer program for optimal routing of
printed circuit connectors,” ZF1PS Proc., vol. H-47, pp. 1475-78, 1968.
J. S. B. Mitchell, “An optimal algorithm for shortest rectilinear paths
among obstacles in the plane,” in Abstracts First Canadian Con$
Computational Geometry, 1989, p. 22.
T. Ohtsuki, “Maze-running and Line-search Algorithms,” in T. Ohtsuki,
Ed., Advances in CADfor VLSI, vol. 4: Layout Design and Verification.
New York: North- Holland, 1986, pp. 99-131.
P. J. Rezend, D. T. Lee, and Y.-F. Wu, “Rectilinear shortest paths with
rectangular barriers,” in Proc. Second Annual Con$ Computat. Geom.,
pp. 204-13, ACM, 1985. ,

vol. SCC-4, pp. 100-107, 1968.

S. Q. Zheng received the M S degree in mathemat-
ical sciences from the University of Texas at Dallas
in 1982, and the Ph D degree in computer science
from the University of California, Santa Barbara, in
1987

In 1987 he joined the faculty of the Department
of Computer Science, Louisiana State University,
Baton Rouge Currently, he is an associate profes-
sor of computer science, and an adjunct associate
professor of electnal and computer engineenng at
LSU His research interests include VLSI, parallel

and Qstnbuted computmg, computer networks, and computational geometry

Joon Sbink Lim received the B S degree from Inha University, Korea, in
1986, the M.S degree in computer science from University of Alabama
at Bimngham in 1989, and the P h D degree in computer science from
Louisiana State university, Baton Rouge, in 1994

His research interests include VLSI, parallel computing and heuristic search
methods

S. Sitharama Iyengar (M’88-SM’89-F’95)
received the Ph D degree in 1974

He is the Chairman of the Computcr Science
Department and a Professor of computer science at
Louisiana State University, Baton Rouge He has
directed LSU’s Robotics Research Laboratory since
its inception in 1986 He has been achvely involved
with research in high-performance algorithms and
data stmctures since and has directed more than
18 P h D dissertations at LSU He has served
as pnnciple investigator on research projects

supported by the Office of Naval Research, the National Aeronautics and
Space Adwst raf ion , the National Science FoundatiodLaSer Program, the
Califoma Institute of Technology’s Jet Propulsion Laboratory, the Department
of Navy-NORDA, the Department of Energy (through Oak Ridge National
Laboratory, Tennessee), the LEQFS-Board of Regents, and Apple Computers
He has edited a two-volumn tutonal on autonomous Mobile Robots and has
edited two other books and more than 150 publications-including 90 archival
journal papers m areas of high-performance parallel and distributed algonthms
and data structures for image processing and pattern recognition, autonomous
navigation, and distnbuted sensor networks He was a visiting professor
(fellow) at JPL, the Oak Ridge National Laboratory, and the Indian Institute
of Science He is also an Association for Computing Machinery national
lecturer, a senes editor for Neuro Computing of Complex Systems, and area
edtor for Journal of Computer Science and Information He has served as
Guest Editor for IEEE TRANSACTIONS ON SOFTWARE ENGINEERING (1988),
Computer Magazine (1989), IEEE TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,
and Journal of Computers and Electrical Engineering

Dr Iyengar was awarded the Phi Delta Kappa Research Award of
Distincuon at LSU in 1989, won the Best Teacher Award in 1978, and
received the Williams Evans Fellowship from the University of Otago, New
Zealand, in 1991 He was awarded an IEEE Fellowship for his contribuhons
in data structures and algonthms in 1995

