Finding Obstacle-Avoiding Shortest Paths Using Implicit Connection Graphs

S. Q. Zheng, Joon Shink Lim, and S. Sitharma Iyengar, Fellow, IEEE

Abstract

We introduce a framework for a class of algorithms solving shortest path related problems, such as the one-to-one shortest path problem, the one-to-many shortest paths problem and the minimum spanning tree problem, in the presence of obstacles. For these algorithms, the search space is restricted to a sparse strong connection graph that is implicitly represented and its searched portion is constructed incrementally on-thefly during search. The time and space requirements of these algorithms essentially depend on actual search behavior. Therefore, additional techniques or heuristics can be incorporated into search procedure to further improve the performance of the algorithms. These algorithms are suitable for large VLSI design applications with many obstacles.

I. Introduction

FINDING shortest paths in the presence of obstacles is an important problem in robotics, VLSI design, and geographical information systems. In VLSI design, circuit components or previously laid out wires are treated as obstacles. Finding an obstacle-avoiding shortest path between a pair of nodes is a fundamental operation used in many layout algorithms. There are two basic classes of shortest path algorithms: maze-running algorithms and line-search algorithms. Maze-running algorithms can be characterized as target-directed grid propagation. The first such algorithm is Lee's algorithm [12], which is an application of the breadthfirst shortest path search algorithm. The major disadvantage of the original Lee's algorithm is that it requires $O(m n)$ memory and running time in the worst case for $m \times n$ grid graphs. In addition, each node requires $O(\log L)$ bits, where L is the length of the shortest path from a source node s to a target node t. It is desirable to reduce the memory requirement for each node. More importantly, the size of searched space must be reduced, since the running time is proportional to this size.
There are a large number of variations of the original Lee's algorithm. Interested readers may refer to [17] for a good survey of these algorithms. Akers [1] modified Lee's algorithm by introducing a coding scheme, which requires two bits per node regardless of the value of L. Using the A^{*} heuristic search idea proposed in [8], Hadlock obtained a shortest path algorithm, called Minimum Detour (MD) algorithm [7]. The search process of the MD algorithm is controlled by a parameter, detour number d, which is used to indicate a lower bound of the shortest path length. The MD algorithm

Manuscript received August 6, 1993; revised September 22, 1995. This work was supported in part by a US Army grant.
The authors are with the Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 USA.

Publisher Item Identifier S 0278-0070(96)01344-9.
guarantees finding a shortest path in time less than Lee's algorithm. Soukup [20] proposed a heuristic maze-running algorithm that combines depth-first search and breadth-first search. This algorithm executes the depth-first search from s toward t using a "don't change direction" heuristic until an obstacle is hit or the target node t is reached. When an obstacle is hit, the breadth-first search is used for searching around the obstacle until a grid node that directs toward the target node t is found, and this procedure is repeated until the target node t is reached. The paths found by Soukup's algorithm are not necessarily the shortest ones.
All partial paths generated by maze-running algorithms are represented by unit grid line segments. These algorithms are considered memory and time inefficient. Line-search algorithms have been proposed to achieve improved performance. Since such algorithms search a path by locating a sequence of line segments of variable lengths, they save memory and quickly find a simple-shaped path. Some line-search algorithms do not guarantee finding a shortest path. The firsts of such algorithms are reported in [9] and [15]. The linesearch algorithm given in [9] is similar to the one in [15]. The difference is that the algorithm in [9] generates fewer trial lines at every level. Several more recent line-search algorithms (e.g., [5], [16,] [18], [21]) are based on computational geometry techniques. Almost all of these algorithms are based on a graph that is sparser than the original grid and contains a path from s to t. Such a graph is named a connection graph in [13]: Wu et al. [21] introduced a rather small connection graph, called track graph. The track graph is not a strong connection graph in the sense that it may not contain a shortest path between a source node s and a target node t. However, their algorithm is able to detect the cases where the shortest paths are not contained by the track graph and handle such cases appropriately to obtain shortest paths. The run time and space of their algorithm are $O((e+k) \log t)$ and $O(e+k)$, respectively, where e is the total number of boundary sides of obstacles, t is the total number of extreme sides of all obstacles, and k is the number of intersections among obstacle tracks, which is bounded by $O\left(t^{2}\right)$. In the worst case, $t=(e)$ and $k=\left(e^{2}\right)$.
In this paper, we propose a new approach to solving the problem of finding rectilinear shortest paths in the presence of rectilinear obstacles using connection graphs. Unlike some existing algorithms (e.g., [5], [18], [21]), the connection graph used in algorithms based on this approach is not explicitly constructed prior to the path search process but generated by interrogating a rather small "database" that characterizes the
search space in an on-the-fly fashion during the search. The construction of the connection graph is avoided by the use of binary search trees that represent vertical and horizontal boundaries of obstacles and their extensions. These trees are constructed by using a plane-sweeping technique. These data structures allow the fairly simple determination of whether or not a point is in the connection graph. Only searched portion of the connection graph is represented so that further exploration of the graph is possible and a solution, once found, can be retrieved. The implicit representation and demanddriven elaboration of the connection graph open possibilities for incorporating heuristics into search procedures to further improve the overall algorithm performance. The heuristic used in our algorithm is the A^{*} heuristic search [8]. Like the MD algorithm, it uses the parameter detour length, which is a concept generalized from the detour number of [7], to control the search process. However, the A^{*} search of our algorithm is more target directed because of the use of an additional "don't change direction" heuristic and the underlying connection graph.

We also show how to use our approach to design efficient algorithms for the problems of finding rectilinear one-to-many shortest paths and rectilinear minimum spanning trees (MST's) in the presence of rectilinear obstacles. These two problems have important applications in VLSI design. Under the linear delay model of wire length minimization, minimum Steiner trees are sought for connecting nets. Since the minimum Steiner tree problem is NP-hard, a common method is to find an MST first and then obtain a near-optimal Steiner tree by modifying the spanning tree. The one-to-many shortest paths problem arises in timing-driven routing. The collection of shortest paths from one point to several other points form a shortest-path tree (SPT), in which paths may have overlapped edges. Such a tree connects a signal net such that the wire lengths for the source to all sinks of the net are minimized. A class of special rectilinear Steiner trees, called the A-trees, were proposed for performance-driven interconnect under the distributed $R C$ delay model in [2]. An A-tree is a rectilinear Steiner tree in which the path connecting the source s and any node on the tree is a shortest path. A-trees are a generalization of the rectilinear Steiner arborescences of [19]. It is not known whether or not the minimum Steiner arborescence problem and the minimum A-tree problem are polynomial-time solvable. For the case that no obstacles are present, polynomial-time approximation and heuristic algorithms have been developed for these two problems [2], [19]. When obstacles are present, the problem becomes more difficult. Near optimal A-trees can be obtained by modifying SPT's.

The fact that our algorithms do not explicitly construct connection graphs may have a significant impact. In a large VLSI design with many obstacles, the construction of the entire connection graph could be too costly. The algorithms using our approach have time and space complexities similar to those of existing algorithms in the worst case. In most cases, however, our algorithms should prove significant speed and space improvement. For example, for our one-to-one shortest path algorithm, the time required for obtaining a shortest path is related more to the length of the path (which may be

Fig. 1. Grid G and its corresponding G_{C} for a given pair of s and t.
relatively small) than to the size of the entire connection graph (which may be very large).

II. A One-to-One Shortest Path Algorithm

Let R be an $m n$ uniform grid graph that consists of a set of grid nodes $\{(x, y) \mid x$ and y are integers such that $1 \leq x \leq n, 1 \leq y \leq m\}$ and grid edges connecting grid nodes. The length of grid edges connecting adjacent nodes in R is assumed to be 1 . Let $B=\left\{B_{1}, B_{2}, \cdots, B_{p}\right\}$ be a set of mutually disjoint rectilinear polygons with boundaries on R. Each polygon in B is an obstacle. Let G denote a partial grid of R that consists of grid nodes that are not contained in the interior of any obstacle in B, and grid edges that are not incident to interior grid nodes of any obstacle in B (see Fig. 1(a)).

Maze-running algorithms use grid G to find a path between a pair of nodes. The main operation of maze-running algorithms is node labeling. Starting from the source node s, nodes of G are labeled in such a way that node v is labeled after at least one of its neighboring nodes has been labeled, until the target node t is labeled. Then, a path from s to t is generated from the node labels. Because of this feature, maze-running algorithms are usually called grid expansion algorithms (they are also called "wave propagation" algorithms). Lee's algorithm [12] is a customized Dijkstra's breath-first search algorithm for uniform grid graphs; Dijkstra's algorithm can be applied to arbitrary graphs. The Minimum Detour (MD) algorithm of [7] is a combination of breath-first search and the A^{*} search proposed in [8]. Given a source node s and a target node t, we denote the Manhattan distance between s and t by $M(s, t)$. Let P be any obstacle-avoiding rectilinear path from s to t, the detour number $d(P)$ is defined as the total number of nodes on P that are directed away from t. The length of P is $M(s, t)+2 d(P)$. Then, P is a shortest path if and
only if $d(P)$ is minimized among all paths connecting s and t. During the grid expansion process of the MD algorithm, detour numbers with respect to t, rather than the distances from the s, are used to label the searched nodes, and those nodes with smaller detour numbers are expanded with higher priority. Since $M(s, t)$ is fixed for a given pair of s and t, the breath-first search in the increasing order of detour numbers ensures that the detour number of t can be correctly computed. After the node labeling process of the MD algorithm, a shortest path from s to t can be easily obtained by backtracking the expanded grid nodes of G in decreasing order of detour number labels of the expanded nodes. Fig. 2 shows how the same example of [20] is solved using these two maze-running algorithms. The grid is in its offset form, i.e., each face defined by four unit segments corresponds to a grid node in the original grid G. The faces labeled by a solid triangle and a white triangle represent the source node s and the target node t, respectively. The faces labeled by solid circles represent a shortest path, and the faces labeled by white circles represent the remaining expanded nodes.

It is a simple fact that to find a path from s to t, we only need to consider a subset of nodes in G. Let V^{\prime} be a subset of grid nodes of G, and H be a graph such that there exists a subgraph G^{\prime} of G that spans V^{\prime}, and G^{\prime} is homeomorphic to H. According to [13], H is called a connection graph for V^{\prime} in G if all pairs of nodes in V^{\prime} are connected in $H ; H$ is called a strong connection graph for V^{\prime} in G, if H is a connection graph for V^{\prime} in G and the lengths of all shortest paths between pairs of nodes in V^{\prime} are the same in G and H. In what follows, we introduce a strong connection graph G_{C} for a given pair of nodes s and t in G.

We say that two line segments overlap if they share more than one point. Define a maximal horizontal (respectively, vertical) line segment $l=(u, v)$ in R as a horizontal (respectively, vertical) line segment such that l does not cross any B_{j} in B, l does not overlap with any boundary of R, and obstacles in B and u and v are the only two points in l that are on the boundaries of R or obstacles in B. Let $L_{H}^{m}=\{l \mid l=(u, v)$ is a maximal horizontal line segment in R such that at least one of its endpoints u and v is a corner of some B_{i} in $\left.B\right\}$, and $L_{V}^{m}=\{l \mid l=(u, v)$ is a maximal vertical line segment in R such that at least one of its endpoints u and v is a corner of some B_{i} in $\left.B\right\}$. Let $L(R, B)$ be the set of line segments that form the boundaries of R and obstacles in B. Let L_{s} be the set of all maximal line segments that include s and L_{t} be the set of all maximal line segments that include t. The nodes of G_{C} are the intersection points of the line segments in set $L=L(R, B) \cup L_{H}^{m} \cup L_{V}^{m} \cup L_{s} \cup L_{t}$, and the edges of G_{C} are the subsegments of the segments of L generated by the intersections. The grid graph G_{C} corresponding to the grid graph G of Fig. 1(a) is shown in Fig. 1(b). Let $e=|L(R, B)|$. Clearly, each of L_{H}^{m} and L_{V}^{m} contains $O(e)$ line segments. Therefore, $|L|=O(e)$ and the numbers of nodes and edges in G_{C} are at most $O\left(e^{2}\right)$. Consider any rectilinear obstacle-avoiding path P from s to t. Note that here we are not insisting that P must be on G_{C}. It is easy to verify that, starting from s, one can "bend" P to obtain a modified path P^{\prime} in G_{C} such that the length of P^{\prime} is
no larger than the length of P. This transformation implies the following fact.

Lemma 1: G_{C} is a strong connection graph for s and t in G. It is important to note that for any problem instance in which the coordinates of the corner points of R and obstacles in B, and a given pair of source and target points (s and t) are not necessarily integers, G_{C} (and G_{C}^{\prime} defined in Section IV) can be used to find optimal solutions. In fact, the algorithms proposed in this paper work for such problem instances.

Based on strong connection graph G_{C}, we propose a linesearch version of the MD algorithm. We first generalize the concept of detour number. Consider a direction assigned to an edge (u, v) of G_{C}, say, the direction is from u to v. With this direction assignment, we have a directed edge $u \rightarrow v$. We define the detour length of $u \rightarrow v$ with respect to a target node t, denoted by $d l(u \rightarrow v)$, as follows. Let l be the line passing through t and perpendicular to $u \rightarrow v$
$d l(u \rightarrow v)=\left\{\begin{array}{c}0, \quad \text { if } u \text { and } v \text { are on the same side of } l \\ \quad \text { and } u \text { is further from } l \text { than } v ; \\ \text { the length of } u \rightarrow v, \\ \text { if } u \text { and } v \text { are on the same side of } \\ l \text { and } u \text { is closer to } l \text { than } v ; \\ \text { the length of } w \rightarrow v, \\ \text { if } l \text { intersects } u \rightarrow v \text { at } w .\end{array}\right.$
The detour length of a node u with respect to a source node s and a target node t, denoted by $\delta(u)$, is the sum of the detour lengths of all directed edges in any directed shortest path from s to u in G_{C}. Let P^{*} be a shortest path from s to t in G_{C}. Clearly, the length of P^{*} is equal to $M(s, t)+2 \delta(t)$.

Starting from the source node s, our algorithm explores G_{C} node by node. A global detour length d, which initially has value 0 , is used to control the search process. Each node u is associated with a field $D L[u]$, which contains an upper bound of the detour length $\delta(u)$ of u computed during the execution of the algorithm. Two subsets of nodes of G_{C}, VISITED and CANDIDATES, are maintained. Initially, VISITED $=\varnothing$. The search starts with CANDIDATES containing all neighboring node of s in G_{C}. The search proceeds as follows: a node u in CANDIDATES with the smallest $D L$ value is selected for grid expansion. For all neighboring nodes of u that are not currently in VISITED, compute their new $D L$ values and perform CANDIDATES update operations using procedure update to ensure that they are in CANDIDATES with their current smallest $D L$ values. When a node u is detected that $D L[u]=\delta(u)$, it is inserted into VISITED, and this equality remains unchanged thereafter. Each node u has another field $P R E D[u]$, which links node u to its predecessor in a path from s to u. When the algorithm terminates, the chain of predecessors originating at node t runs backward along a shortest path from s to t. The node set CANDIDATES is implemented as a priority queue. The nodes in CANDIDATES are ordered in nonincreasing order of their $D L$ values. In case that a tie occurs (i.e., two or more nodes with the same $D L$ value), the nodes with the same $D L$ value are ordered in First-In-Last-Out (FILO) order. This implementation of CANDIDATES enforces the invariant that nodes with smaller detour lengths are inserted into VISITED before nodes with larger detour

Fig. 2. Expanded nodes of Lee's algorithm and the MD algorithm.
lengths. To increase the chance of reaching the target node quickly, a guided depth-first search feature is incorporated into the search process. A procedure forward and the ordering maintenance method of CANDIDATES effect "don't change direction" search whenever possible. Our algorithm is given below.

```
Algorithm PATHFINDER
begin
    CANDIDATES := \varnothing;
    DL[s]:= 0;
    insert(VISITED, s);
    for each neighbor }u\mathrm{ of s in G}\mp@subsup{G}{C}{}\mathrm{ do
        DL[u]:= dl (s->u);
        PRED[u]:=s;
        insert(CANDIDATES, u)
    endfor
```

```
    repeat
    \(u:=\operatorname{deletemin}(C A N D I D A T E S) ;\)
    insert(VISITED, \(u\) );
    \(d:=D L[u]\);
    if \(u=t\) then stop;
        if \(u\) has a neighbor \(v\) in \(G_{C}\) such that
                \(d l(u \rightarrow v)=0\) and \(v \notin\) VISITED then
            begin
                update(CANDIDATES, \(u, v, d)\);
                for each such neighbor \(v\) of \(u\) do
                        dir \(:=\) direction of \(u \rightarrow v\);
                forward ( \(u, \operatorname{dir}, d\) )
            endfor
        end
    else
        for each neighbor \(v\) of \(u\) in \(G_{C}\) such that \(v \notin\)
                VISITED do
            update(CANDIDATES, \(u, v, D L[u]+d l(u \rightarrow v))\)
        endfor
    endrepeat
end
```

The two procedures forward and update are as follows:
procedure forward ($u, d i r, d$)
begin
newdl :=d;
while new $d l=d$ and u has a neighboring node v in
G_{C} such that the direction of $u \rightarrow v=\operatorname{dir}$
and $v \notin$ VISITED do
$n e w d l:=D L[u]+d l(u \rightarrow v)$;
update(CANDIDATES, u, v, newdl)
if $n e w d l=d$ then
begin
$D L[v]:=d ;$
$\operatorname{PRED}[v]:=u$;
insert(VISITED, v);
if $v=t$ then stop
end
$u:=v$
endwhile
end
procedure update (CANDIDATES, $u, v, d l$)
begin
if v CANDIDATES and $d l<D L[v]$ then
delete(CANDIDATES, v);
$D L[v]:=d l ;$
$\operatorname{PRED}[v]:=u ;$
insert(CANDIDATES, v)
end

Theorem 1: Algorithm PATHFINDER finds an obstacleavoiding rectilinear shortest path from s to t in the presence of rectilinear obstacles.

Proof: By Lemma 1, G_{C} contains a shortest path from s to t. There are three statements that insert nodes of G_{C} into VISITED. The first one is at the beginning of the algorithm, which inserts only one node, s, into VISITED. The second one appears after the deletemin operation in the repeat loop. The
third such statement is in procedure forward. Since all the node inserted into VISITED by this statement are also inserted into the priority queue CANDIDATES, the effect of this statement can be ignored, as far as the correctness of the algorithm is concerned. The reason to include this statement in forward is to improve the performance of the algorithm, since the while loop implements the "don't change direction" heuristic. In fact, the removal of the if statement in forward will not affect the correctness of the algorithm, and we may assume that this if statement is not present. Also, it is easy to see that once a node is inserted into set VISITED, the values of its $D L$ and $P R E D$ fields are not changed thereafter. Therefore, we focus our attention on the insert operation that follows the deletemin operation in the repeat loop. Consider the following algorithm:

```
algorithm \(F M D\)
begin
    for each node \(u\) of \(G_{C}\) do
        \(D L[u]:=+\infty\);
        \(\operatorname{PRED}[u]:=n i l ;\)
    endfor
    \(D L[s]:=0\);
    VISITED := \(\varnothing\);
    insert(CANDIDATES, \(s\) );
    repeat
        \(u:=\operatorname{deletemin}(\) CANDIDATES);
        insert(VISITED, u);
        if \(u=t\) then stop;
        for each neighbor \(v\) of \(u\) in \(G_{C}\) do
            if \(D L[v]>, D L[u]+d l(u \rightarrow v)\) then
                begin
                        \(D L[v]:=D L[u]+d l(u \rightarrow v) ;\)
                \(\operatorname{PRED}[v]:=u\)
            end
        endfor
    endrepeat
end
```

It is not difficult to see that algorithm PATHFINDER finds a shortest path if and only if FMD algorithm finds a shortest path. Let length (u, v) denote the length of the edge connecting two adjacent nodes u and v in G_{C}. If we replace $d l(u \rightarrow v)$ with length (u, v), then FMD algorithm becomes Dijkstra's shortest path algorithm. Since the only difference between FMD and Dijkstra's algorithm is in the metrics used, and both detour length and edge length are nonnegative, by the correctness of Dijkstra's algorithm, we conclude that algorithm PATHFINDER correctly computes a shortest path from s to t on G_{C}. This completes the proof of the theorem.

III. Algorithm Implementation and Performance

We want to represent G_{C} implicitly. A basic operation of PATHFINDER is for a node u in G_{C}, find all its neighbors in G_{C}. We name this operation as neighbor finding in the connection graph. Suppose that we have all the line segments in L available. Partition L into two subsets L_{V} and L_{H}, which contain vertical and horizontal segments of L, respectively.

The line segments of L can be used to determine the degree of u in G_{C}. This can be done by the following operation: Find all the line segments in L_{V} (respectively, L_{H}) that include u. We can represent L_{V} by a balanced two-level binary search tree T_{V}^{1} in which each node corresponds to a unique x-coordinate of line segments in L_{V}. Each node of T_{V}^{1} has a pointer to a balanced binary search tree (secondary structure) for the y-coordinates of lower endpoints of the segments in L_{V} that have the same x-coordinate. T_{V}^{1} can be easily constructed in $O\left(\left|L_{V}\right| \log \left|L_{V}\right|\right)=O(e \log e)$ time and $O\left(\left|L_{V}\right|\right)=O(e)$ space. Using T_{V}^{1}, all (at most two) vertical line segments in L that include u can be found in $O\left(\log \left|L_{V}\right|\right)$ time. Similarly, we can construct a binary tree T_{H}^{1} for horizontal segments in L. Therefore, the operation of finding all the line segments in L that include u can be carried out in time $O(\log |L|)$, which is $O(\log e)$ since $|L|=O(|L(R, B)|)=O(e)$. Then, the problem of finding neighbors of a given node u in G_{C} can be reduced to the following operation: given a grid node u of G_{C} and a direction a, find the first line segment in L encountered by a line emanating from u in direction a. For this operation, we can represent L_{V} (respectively, L_{H}) by a special balanced binary search tree T_{V}^{2} (respectively, T_{H}^{2}) of the structure described in [6] or [14]. The construction of T_{V}^{2} (respectively, T_{H}^{2}) requires two steps. The first step normalizes the coordinates of end points of segments in L_{V} (respectively, L_{H}) to their ranks, and the second step builds T_{V}^{2} (respectively, T_{H}^{2}) using the normalized integer coordinates. Both steps take $O(e \log e)$ time and $O(e)$ space. Using T_{V}^{2} and T_{H}^{2}, the above mentioned operation can be carried out in $O(\log e)$ time. Note that the data structure $T_{V}^{1}, T_{V}^{2}, T_{H}^{1}$, and T_{H}^{2} are static data structures, i.e., once they are constructed, their structures are not changed during subsequent search process.

Based on above discussions, we can use sets L_{V} and L_{H} as a database to assist the search process. We can compute L_{V} and L_{H} using a straightforward version of the powerful plane-sweep technique developed in computational geometry in $O(e \log e)$ time, using $O(e)$ space. This preprocessing algorithm is similar to the one described in [13, pp. 407].

The operations related to set VISITED are the insertion and the operation of testing whether or not a given node of G_{C} is in VISITED. We can represent VISITED by a dynamically balanced binary search tree $T_{\text {VISITED }}$ using lexicographical order of node coordinates. Each insertion and membership testing operation can be carried out in $O(\log N)$ time, where N is the number of nodes in VISITED when algorithm PATHFINDER terminates. Since $N \leq O\left(e^{2}\right), O(\log N)=$ $O(\log e)$. Similarly, the set CANDIDATES can be implemented using two dynamically balanced binary search trees, one using the $D L$ values as keys (for deletemin), and the other using the node coordinates as keys (for membership testing). An insertion (respectively, deletion) operation on CANDIDATES effects two insertion (respectively, deletion) operations, one on each of these two trees. Since every node in CANDIDATES has at least one neighbor in G_{C} that is in VISITED, we know that \mid CANDIDATES $|\leq 4|$ VISITED $\mid=O(N)$. Any of insertion, deletion, deletemin, and membership testing operations on CANDIDATES can be done in $O(\log N)$ time, which is no
greater than $O(\log e)$. We summarize above discussions by the following theorem.

Theorem 2: Algorithm PATHFINDER can be implemented in $O((e+N) \log e)$ time and $O(e+N)$ space, where e is the number of boundary sides of obstacles in B and N is the total number of searched grid nodes of G_{C} when the algorithm terminates.

The FMD algorithm introduced in the proof of Theorem 1 not only simplifies the proof but also can be used to verify the effectiveness of algorithm PATHFINDER. We claim that, in terms of searched space, PATHFINDER is more efficient than FMD, and FMD is better than Dijkstra's algorithm.

Let us compare the PATHFINDER with FMD. The FMD algorithm is a generalization of the MD algorithm that works on G_{C} instead of G (and for this reason, the FMD algorithm can be interpreted to stand for Fast Minimum Detour algorithm). To our knowledge, the detour length concept and the FMD algorithm are new, even though they appear to be simple generalizations of detour number and the MD algorithm of [7]. Since PATHFINDER uses an additional "don't change direction" heuristic, its searched space is less than that of FMD.

Traditionally, Dijkstra's algorithm is used for the shortest path problem on graphs with edges of variable lengths. For comparisons, Dijkstra's algorithm and the FMD algorithm can be considered as a "coarse-grain" Lee's algorithm and the MD algorithm, respectively. As evidenced by the performances of the fine-grain versions of FMD algorithm and Dijkstra's algorithm shown in Fig. 2, the performance of FMD is always better than Dijkstra's algorithm on G_{C} due to the difference between metrics used. In terms of the size of searched space, the performance of FMD is better than Dijkstra's algorithm. This is because that the length of a shortest path from s to a node u is always larger than the detour number of u. An extreme case is that the length of a shortest path from s to t is large, but the detour length of t is very small. In such a case, the searched portion of G_{C} by FMD algorithm can be significantly smaller than that by Dijkstra's algorithm. Therefore, comparing the FMD algorithm with Dijkstra's algorithm (replacing $d l(u \rightarrow v)$ with length (u, v) in FMD) further verifies the advantage of the PATHFINDER algorithm. For the same example in Fig. 2, the operations of the PATHFINDER algorithm are shown in Fig. 3. The nodes are explored in the direction of edges, and in increasing order of sequence numbers. In Table I, the detour lengths of these nodes are listed with their sequence numbers.

IV. GENERALIZATIONS

Wu et al. [21] considered the problem of finding rectilinear shortest paths from one point in a given point set S to all other points in S (the one-to-many SP's problem) and the problem of finding a rectilinear minimum spanning tree of a set S of points (the MST problem) in the presence of rectilinear obstacles. These two problems can be stated as follows. Let boundary R, a set $B=\left\{B_{1}, B_{2}, \cdots, B_{p}\right\}$ of obstacles and grid G be defined as in Section II, and let S be a set of n nodes of G. The one-to-many SP's problem is to find obstacle-avoiding

Fig. 3. Extended line segments by the PATHFINDER algorithm.

TABLE I
Detour Lengths of Explored Edges of Example Shown in Fig. 3

sq	\#	dl	$\mathrm{sq} \#$	dl	sq \#	dl	sq \#	dl	sq \#
1	0	6	2	11	7	16	7	21	7
2	4	7	3	12	7	17	7	22	7
3	3	8	5	13	9	18	7	23	7
4	2	9	7	14	5	19	9	24	7
5	4	10	5	15	7	20	7	25	7

rectilinear shortest paths from a point s in S to all other points in S. The minimum spanning tree considered is defined by treating points in S as nodes and rectilinear shortest paths among them as edges of an implicitly given complete graph. The MST problem is to find a spanning tree of S in this graph that has minimum total edge length. Their approach consists of two phases. In the first phase, a grid-like connection graph, called track graph G_{T}, is completely constructed. In the second phase, an optimal solution is computed using G_{T} : For some problem instances, the track graphs are not strong connection graphs for S in G. In such a situation, an obstacle-avoiding optimal solution may not be found in G_{T}. The second phase is able to detect cases where the optimality can be violated, and handle them appropriately. The construction of G_{T} takes $O(n \log n+e \log t+k)$ time, and the space required for storing G_{T} is $O(n+e+k)$, where n is the number of points in S, e is the total number of boundary sides of obstacles, k is the number of nodes in G_{T}, and t is the total number of extreme sides in the obstacles (for the definition of extreme sides, refer to [21]). The second phase, for either the one-to-many shortest paths problem or the MST problem, takes $O(n \log n+N \log t)$ time, where N is the total number of nodes of G_{T} searched when the algorithm terminates. The total time and space complexities of these two algorithms are $O(n \log n+(e+N) \log t+k)$ and $O(e+n+k)$, respectively. For some problem instances, $t=O(e)$ and $k=O\left(e^{2}\right)$, the performance of these algorithms is dominated by the term of $O(k)$. Clearly, the preprocessing time is the bottle-neck of their algorithms, since $N<k$ for most cases. In a large VLSI
design with many obstacles, the space requirement for G_{T} is too costly.

We generalize our connection graph G_{C} to obtain connection graph G_{C}^{\prime}, and show that G_{C}^{\prime} can be implicitly represented to solve the one-to-many SP's problem and the MST problem. Let L_{H}^{m} and L_{V}^{m} be as defined in Section 2. Let L_{S} be the set of all maximal line segments that include points in S. The connection graph, G_{C}^{\prime}, is defined as follows. The nodes of G_{C}^{\prime} are the intersection points of the line segments in the set $L=L(R, B) \cup L_{H}^{m} \cup L_{V}^{m} \cup L_{S}$, and the edges of G_{C}^{\prime} are the subsegments of segments in L generated by their intersections. By Lemma 1, we have the following fact.

Lemma 2: G_{C}^{\prime} is a strong connection graph for S in G.
Let $L_{S V}$ and $L_{S H}$ be the subsets of vertical segments and horizontal segments of L_{S}, respectively. Using the planesweeping technique, segment sets $L_{V}^{m} \cup L_{S V}$ and $L_{V}^{m} \cup L_{S V}$ can be computed in $O((e+n) \log (e+n))$ time, where e is the number of boundary sides of obstacles in B and n is the number of points in S. This can be done by treating each point in S as a degenerated obstacle. We would like to point out G_{C}^{\prime} is a superset of the track graph G_{T} of [21].

Our algorithm for the one-to-many SP's problem is obtained from algorithm $F M D$ given in the proof of Theorem 1 by following modifications. We replace the underlying connection graph G_{C} with G_{C}^{\prime} and replace $d l(u \rightarrow v)$ with length (u, v). The termination condition of the new algorithm is that all points of S are included into VISITED. Initially, CANDIDATES contains one point, s. The step for initializing all nodes in G_{C}^{\prime} is not needed because a node is assigned a length value only when it is included into CANDIDATES. The data structures used are the same as the ones for PATHFINDER. These data structures take $O(e+n)$ space. They support $O(\log (e+n))$-time search and update operations on VISITED and CANDIDATES, and the neighbor finding operation on implicit G_{C}^{\prime}. Therefore, using implicit G_{C}^{\prime}, the shortest paths from a point in S to all other points in S in the presence of rectilinear obstacles can be found in $O((e+n+N) \log (e+n))$ time and $O(e+n+N)$ space using implicit G_{C}^{\prime}. We summarize the performance of this algorithm in the following theorem.

Theorem 3: Obstacle-avoiding rectilinear shortest paths from a point in S to all other points in S in the presence of rectilinear obstacles can be found by performing Dijkstra's search on implicit G_{C}^{\prime} in $O((e+n+N) \log (e+n))$ time and $O(e+n+N)$ space, where e is the number of boundary sides of obstacles, n is the number of points in S, and N is the total number of visited grid nodes of G_{C}^{\prime} when the algorithm terminates.

Wu et al. also used the track graph G_{T} to solve the MST problem. Since G_{T} is not a strong connection graph, their algorithm transforms G_{T} into a new graph by adding some line segments. The resulting graph, which we denote as G_{T}^{\prime}, is a strong connection graph for S. The graph G_{T}^{\prime} is explicitly represented, and searched in the second phase. Their search procedure is a modified Kruskal's algorithm [11]. The basic data structures used include a set VISITED and a priority queue CANDIDATES similar to our algorithm for the one-to-one SP problem. The primitive operations are insertion and membership testing on VISITED, insertion and deletemin on

CANDIDATES, and neighbor finding in G_{T}^{\prime}. Therefore, we can use all our data structures for VISITED, CANDIDATES and implicit representation of G_{C}^{\prime} to implement the modified Kruskal's algorithm given in [21]. The following claim directly follows from the analysis of the modified Kruskal' algorithm given in [21].
Theorem 4: Using implicit strong connection graph G_{T}^{\prime}, the algorithm of [21] for finding an obstacle-avoiding rectilinear minimum spanning tree of a set S of n points in the presence of rectilinear obstacles can be implemented in $O((e+n+$ $N) \log (e+n))$ time and $O(e+n+N)$ space, where e is the number of boundary sides of obstacles, n is the number of points in S, and N is the total number of visited grid nodes of G_{C}^{\prime} when the algorithm terminates.
If $e \geq n$, then the time and space required by our one-tomany SP's algorithm and MST algorithm are $O((e+N) \log e)$ and $O(e+N)$, respectively. If $n \geq e$, then the time and space required by our algorithms are $O((n+N) \log n)$ and $O(n+N)$, respectively. Since the input size is $O(e+n)$, our algorithms can be expected more time and space efficient than the ones given in [21] in most cases.

V. CONCLUSION

In this paper, we introduced a framework for a class of algorithms for shortest path related problems in the presence of obstacles. There are two major features of such an algorithm.

1) The search space is restricted to a sparse strong connection graph. The connection graph is implicitly represented and its searched portion is constructed incrementally on-the-fly during the actual search process.
2) As a result of (1), the time and space requirements of the algorithm essentially depend on its search behavior. Additional techniques or heuristics can be incorporated into the search procedure of the algorithm to achieve better performance.
The effectiveness of our approach was demonstrated by our algorithm for the one-to-one SP problem. This algorithm combines an implicit strong connection graph G_{C} with the A^{*} search method. Since the detour length as a lower bound in our algorithrns can be substituted by the number of bends in the rectilinear link metric [3], [10], [22] or the channel wiring density [4], our algorithm can be extended to solve these problems.

To verify the generality of our approach, we also presented algorithms for the one-to-many SP's problem and the MST problem. Our algorithms are based on a strong connection graph G_{C}^{\prime}, and they require $O((e+n+N) \log (e+n))$ time and $O(e+n+N)$ space. The dominating term in these complexities is $O(N)$. It can be reduced by replacing G_{C}^{\prime} with a sparser strong connection graph that can be represented in an implicit form from which the actual graph is constructable dynamically and efficiently, and/or incorporating effective heuristics into the search process. We would like to point out that the track graph G_{T} of [21] can be represented implicitly in the same way as our connection graphs G_{C} and G_{C}^{\prime}. By adding procedures for handling special cases, the algorithms of [21] for the one-to-many SP's problem and the MST problem can
be transformed into new algorithms that do not require the construction of entire G_{T}. We omit the descriptions of these transformations. The time and space complexities of these new algorithms are $O(n \log n+(e+N) \log t)$ and $O(n+N)$, respectively, where n is the number of points in S, e is the total number of boundary sides of obstacles, t is the total number of extreme sides of obstacles, and N is the total number of searched nodes of G_{T} when these algorithms terminate. Since G_{T} is sparser than G_{C}^{\prime}, these new versions of the algorithms given in [21] can be more efficient than the ones presented in Section 4.

ACKNOWLEDGMENT

The authors wish to thank the anonymous referees for their valuable comments and suggestions which made the significant improvement of this paper over the original manuscript possible.

REFERENCES

[1] S. B. Akers, "A modification of Lee's path connection algorithm," IEEE Trans. Electron. Comput., vol. EC-16, pp. 97-98, 1967.
[2] J. Cong, K.-S. Leung, and D. Zhou, "Performance-driven interconnect design based on distributed RC delay model," in Proc. 30 th Design Automation Conf., 1993, pp. 606-611.
[3] M. T. De Berg, M. J. Van Kreveld, B. J. Nilisson, and M. H. Overmars, "Finding shortest paths in the presence of orthogonal obstacles using a combined L_{1} and link metric," in Proc. Second Scand. Wkshp. Algorithm Theory, 1990, pp. 213-24.
[4] A. D. Brown and M. Zwolinski, "Lee router modified for global routing," Computer-Aided Design, vol. 22, no. 5, pp. 296-300, June 1990.
[5] K. L. Clarkson, S. Kapoor, and P. M. Vaidya, "Rectilinear shortest paths through polygonal obstacles in $O\left(n(\log n)^{2}\right)$ time," in Proc. Third Annual Conf. Computational Geometry, 1987, pp. 251-57.
[6] H. Edelsbrunnier and M. H. Overmars, "Some methods of computational geometry applied to computer graphics," Computer Vision, Graphics, and Image Processing, vol. 28, pp. 92-108, 1984. Circuit Boards," IEEE Trans. Circuit Theory, vol. CT-18, pp. 95-100, 1971.
[7] F. O. Hadlock, "The shortest: Path algorithm for grid graphs," Networks, vol. 7, pp. 323-34, 1977.
[8] P. Hart, N. Nilsson, and B. Raphael, "A formal basis for the heuristic determination of minimum cost paths," IEEE Trans. Syst., Sci., Cybern., vol. SCC-4, pp. 100-107, 1968.
[9] D. W. Hightower, "A solution to line routing problems on the continuous plane," in Proc. IEEE Sixth Design Automation Wkshp., 1969, pp. 1-24.
[10] Y. Ke, "An efficient algorithm for link-distance problems," in Proc. 5th ACM Symp., Lect. Notes in Computer Sci., 447. New York: SpringerVerlag, 1990, pp. 213-224.
[11] J.B. Kruskal, "On the Shortest spanning subtree of a graph and the traveling salesman problem," in Proc. Amer. Mathemat. Soc., vol. 7, pp. 48-50, 1956.
[12] C. Y. Lee, "An Algorithm for Path Connections and Its Applications," IRE Trans. Electron. Comput., vol. EC-10, pp. 346-65, 1961.
[13] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout. Reading, England: Wiley, 1990.
[14] E. M. McCreight, "Priority search trees," Tech. Rep. Xerox PARC CSL-81-5, 1981.
[15] K. Mikami and K. Tabuchi, "A computer program for optimal routing of printed circuit connectors," IFIPS Proc., vol. H-47, pp. 1475-78, 1968.
[16] J. S. B. Mitchell, "An optimal algorithm for shortest rectilinear paths among obstacles in the plane," in Abstracts First Canadian Conf. Computational Geometry, 1989, p. 22.
[17] T. Ohtsuki, "Maze-running and Line-search Algorithms," in T. Ohtsuki, Ed., Advances in CAD for VLSI, vol. 4: Layout Design and Verification. New York: North- Holland, 1986, pp. 99-131.
[18] P. J. Rezend, D. T. Lee, and Y.-F. Wu, "Rectilinear shortest paths with rectangular barriers," in Proc. Second Annual Conf. Computat. Geom., pp. 204-13, ACM, 1985.
[19] S. K. Rao, P. Sadayappan, F.K. Hwang, and P.W. Shor, "The rectilinear steiner arborescence problem," Algorithmica, vol. 7, 1992, pp. 277-288.
[20] J. Soukup, "Fast maze router," in Proc. 15th Design Automation Conf., 1978, pp. 100-102.
[21] Y.-F. Wu, P. Widmayer, M. D. F. Schlag, and C. K. Wong, "Rectilinear shortest paths and minimum spanning trees in the presence of rectilinear obstacles," IEEE Trans. Comput., vol. C-36, pp. 321-31, 1987.
[22] C. D. Yang, D. T. Lee, and C. K. Wong, "On bends and lengths of rectilinear paths: A graph-theoretic approach," in Proc. Algorithms and Data Structures, 2nd Wkshp. WADS 191, Lect. Notes in Computer Sci., 519. New York: Springer-Verlag, 1991, pp. 320-330.

S. Q. Zheng received the M.S. degree in mathematical sciences from the University of Texas at Dallas in 1982, and the Ph.D. degree in computer science from the University of California, Santa Barbara, in 1987.

In 1987 he joined the faculty of the Department of Computer Science, Louisiana State University, Baton Rouge. Currently, he is an associate professor of computer science, and an adjunct associate professor of electrial and computer engineering at LSU. His research interests include VLSI, parallel and distributed computing, computer networks, and computational geometry.

Joon Shink Lim received the B.S. degree from Inha University, Korea, in 1986, the M.S. degree in computer science from University of Alabama at Birmingham in 1989, and the Ph.D. degree in computer science from Louisiana State University, Baton Rouge, in 1994.
His research interests include VLSI, parallel computing and heuristic search methods.

S. Sitharama lyengar (M'88-SM'89-F'95) received the Ph.D. degree in 1974.

He is the Chairman of the Computer Science Department and a Professor of computer science at Louisiana State University, Baton Rouge. He has directed LSU's Robotics Research Laboratory since its inception in 1986. He has been actively involved with research in high-performance algorithms and data structures since and has directed more than $18 \mathrm{Ph} . \mathrm{D}$. dissertations at LSU. He has served as principle investigator on research projects supported by the Office of Naval Research, the National Aeronautics and Space Administration, the National Science Foundation/LaSer Program, the Califormia Institute of Technology's Jet Propulsion Laboratory, the Department of Navy-NORDA, the Department of Energy (through Oak Ridge National Laboratory, Tennessee), the LEQFS-Board of Regents, and Apple Computers. He has edited a two-volumn tutorial on autonomous Mobile Robots and has edited two other books and more than 150 publications-including 90 archival journal papers in areas of high-performance parallel and distributed algorithms and data structures for image processing and pattern recognition, autonomous navigation, and distributed sensor networks. He was a visiting professor (fellow) at JPL, the Oak Ridge National Laboratory, and the Indian Institute of Science. He is also an Association for Computing Machinery national lecturer, a series editor for Neuro Computing of Complex Systems, and area editor for Journal of Computer Science and Information. He has served as Guest Editor for IEEE Transactions on Software Engineering (1988); Computer Magazine (1989); IEEE Transactions on Systems, Man, and Cybernetics; IEEE Transactions on Knowledge and Data Engineering; and Journal of Computers and Electrical Engineering.
Dr. Iyengar was awarded the Phi Delta Kappa Research Award of Distinction at LSU in 1989, won the Best Teacher Award in 1978, and received the Williams Evans Fellowship from the University of Otago, New Zealand, in 1991. He was awarded an IEEE Fellowship for his contributions in data structures and algorithms in 1995.

