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Abstract - Fault-tolerance is an important issue in network 
design because sensor networks must function in a dynamic, un- 
certain world. A functional characterization of the fault-tolerant 
integration of abstract interval estimates is proposed. This model 
provides a preliminary version for a general framework that is 
hoped to develop to address the general problem of fault-tolerant 
integration of abstract sensor estimates. It is further proposed 
that a scheme for narrowing the width of the sensor output in 
a specific failure model and give it a functional representation. 
The main distinguishing feature of our model over the original 
Marzullo's model is in reducing the width of the output interval 
estimate significantly in most cases where the number of sensors 
involved is large. 

I. INTRODUCTION 
N RECENT years, the increasing sophistication of surveil- I lance systems and tracking mechanisms has generated a 

great deal of interest in the development of new computational 
structures and strategies for detecting and tracking multiple 
targets, using data from many sensors. 

The design of spatially distributed target-detection-and- 
tracking systems involves the integration of solutions obtained 
by solving subproblems in data-association, hypothesis-testing, 
data-fusion, etc. [13]. This must include the cooperative so- 
lution of problems by a decentralized and loosely coupled 
collection of processors, each of which integrates information 
received from a cluster of spatially distributed sensors into 
a manageable and reliable output for further integration at 
a higher level. Integration of information at the sensor level 
requires techniques to be developed to abstractly represent and 
integrate sensor information. Further these techniques have to 
be robust in the sense that even if some of the sensors are 
faul€y, the integrated output should still be reliable. For details 
on multisensor integration and fusion in intelligent systems, 
see [5]-[ll], [14]. 
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The aim of this paper is to present a fault-tolerant com- 
putational model for sensor integration in distributed sensor 
networks (DSN). 

A DSN consists of spatially distributed sensors that detect 
and measure a certain phenomenon via its changing param- 
eters. These readings are sent at regular intervals of time to 
processing units that integrate the readings from clusters of 
sensors and give outputs whose nature is much the same as 
the inputs of the sensors. Outputs from processors representing 
clusters of sensors are later integrated to get a complete picture 
of the spatially distributed phenomenon. However, before 
integration is performed at the processor level, it is necessary 
to have reliable estimates at each processor. Each sensor in 
a cluster measures the same set of parameters. It is possible 
that some of these sensors are faulty. Hence it is desirable to 
make use of the redundancy of the readings in the cluster to 
obtain a correct estimate of the parameter being read. In short, 
a fault-tolerant technique of sensor integration to obtain the 
correct estimate is sought. 

A. Scope of This Paper 

This paper has two objectives: The first is to propose 
a functional characterization of fault-tolerant integration of 
abstract interval estimates considered by Marzullo [4]; the 
second is to propose a modified computational scheme of 
integration carried out by Marzullo [4] in the case when the 
number of sensors is large, wherein it is possible to improve 
the accuracy of the integrated output. 

The main distinguishing feature of our model over the orig- 
inal Marzullo's model is in reducing the width of the output 
interval estimate significantly in most cases where the number 
of sensors involved is large. 

Elsewhere we intend to generalize Marzullo's approach to 
the cases when the sensor outputs are subsets of an abstract 
parameter space. The functional characterization of the fault- 
tolerant integration of abstract interval estimates described in 
this paper hints at an abstract framework. We hope to develop 
for addressing the general problem of fault-tolerant integration 
of sensor outputs. 

B. Organization of the Paper 

In Section 11, we describe Marzullo's work on sensor inte- 
gration and other related work. Our abstract model functional 
characterization is detailed in Section I11 and is an extension of 
the model proposed by Marzullo. In Section IV, we motivate 
the need for a new failure model and present the information 
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Fig. 1. Integrated interval estimates (a la Marzullo) ( a ,  < < a2 < bS < 
b i  < b2 < (16 < a j  < u4 < 66 < b- J < b 4)  

integration algorithm with a specific example. Finally, we 
close the paper with concluding remarks and future directions 
this research would take. 

11. RELATED WORK 

Marzullo [4] considers the case of a processor receiving 
input from several sensors whose outputs are connected inter- 
vals. He gives a fault-tolerant integration algorithm that takes 
as input the intervals representing the sensors and gives as 
output of the processor a connected interval representing the 
sensor values. More precisely: Let there be n sensors, each of 
which yields an interval as its output. These sensors measure a 
certain physical value and their intervals contain the physical 
value unless they happen to be faulty sensors. 

Thus, a correct sensor is one that contains the actual physical 
value in its interval. Any two correct sensors must overlap 
since they both contain the physical value being measured. 

Marzullo considers the case when most f sensors are faulty 
and gives an algorithm that yields a connected interval as the 
output of the processor, containing the physical value. 

If at most f of the n sensors are faulty, then it follows that at 
least n - f sensors are correct. Marzullo considers all possible 
nonempty (n  - f)-intersections of the n-sensors. A sensor 
that does not belong to any of the (n  - f)-cliques is faulty 
since a correct sensor overlaps with at least ( n  - f - 1) other 
correct sensors. One and only one of the (n  - f)-intersections 
contains the physical value. Since it is not possible to decide 
which intersection has the physical value (which is as yet 
unknown to us) and since the processor output is required to be 
a connected interval, the smallest connected interval containing 
all the (n  - f)-intersections is taken to be the output of the 
processor. It is easy to see that it contains the actual physical 
value. The wider this interval is, the lesser the accuracy of the 
processor output. Marzullo proves the existence of bounds for 
the width of this interval in terms of f .  

The example described in Fig. 1 provides a description of 
integration process, where we have the intervals I ,  = [a, b,] 
1 5 j 5 6. Overlapping one another according to the strict 
chain of inequalities given previously. Here f = 3 and n = 6. 
So, taking all possible (n  - f )  intersections gives us the 
intervals [a21 b3] and [Q, b ~ ] ,  Then enclosing these intervals in 
the smallest possible connected interval, we have the integrated 
output interval I, given by Ip  = [a2 ,b6] .  

In the statistical literature, the popular methods for com- 
bining the point estimates of several (possibly faulty) sensors 
into a single point estimate come under the designation of 

bi 

O/ a i  

Fig. 2. Representation of intervals. 

robust estimation. This family includes the median, Huber 
function based methods, least median square methods, etc. [l], 
[2] Some of these methods have been applied to the sensor 
fusion problem in [3]. 

However, in methods like the median, there is no easy way 
of including the additional information such as “at most f out 
of n sensors are faulty.” Moreover, all of these methods are 
geared to the generation of point estimates whereas our paper 
concentrates on the interval estimates. 

The main thrust in our paper is in the derivation of com- 
putational schemes for narrowing the width of the processor 
output in a specific failure model and give it a functional 
representation. 

A .  Interval Representation of Sensor Readings 

A sensor reads a physical variable and gives a number as 
its output. However a sensor is prone to inaccuracies and 
there may be some uncertainty in the value of its output. The 
simplest modeling of this is achieved by looking upon sensor 
outputs as connected intervals on the real line rather than as 
points. The actual value representing the physical variable be- 
ing measured is taken to be contained in the interval associated 
with the sensor if the sensor is not faulty. No assumptions 
are made about the width of these intervals or their position 
on the real line. Thus each sensor value is represented by an 
interval estimate. We make this notion precise in the following 
definitions that are useful in characterizing one model of sensor 
integration. 

Definition 1: An abstract sensor is a sensor that reads a 
physical parameter and gives out an abstract interval estimate 
I,, which is a bounded and connected subset of the real line R. 

Definition 2: A correct sensor is an abstract sensor whose 
interval estimate contains the actual value of the parameter 
being measured. If the interval estimate does not contain the 
actual value of the parameters being measured, it is called a 
faulty sensor. 

Definition 3: Let sensors S I ,  . . . s, feed into a processor 
P. Let the abstract interval estimate of s, be I, 1 5 j 5 n, 
where I, is the closed interval [U,, b,] with endpoints U, and 
6,. Define the characteristic function x, of the j t h  sensor 
s, 1 5 j 5 n as follows: 

x, : R -+ ( 0 ,  l} 
I 1  V x E I ;  

Section 111 addresses the question of how the abstract sen- 
sors or abstract estimates are combined to yield new abstract 
estimates. 
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111. THE PROBLEM OF FAULT-TOLERANT 
SENSOR INTEGRATION 

Fault tolerance is a crucial requirement to be satisfied by a 
distributed sensor network for it to be reliable in a situation 
where one or more of its sensors fail and yield faulty readings. 
Fault tolerance in a distributed sensor network thus implies 
that the values of the parameters measured by the network 
are reliably reflected in its output even though some of the 
sensors may be faulty. We propose to introduce fault tolerance 
into the distributed sensor network by providing a method of 
integration of sensor values that yields a reliable output that 
reflects the correct values of the parameters being measured 
with high fidelity. 

Recall that our definition of a faulty sensor is one whose 
abstract sensor estimate (interval estimate) does not contain 
the actual physical value being measured. 

The problem of fault-tolerant sensor integration is the inte- 
gration of the I, (1 5 j 5 n) ,  to obtain an abstract interval 
estimate I, = [a,. b p ] ,  which is a “reliable” and “fairly 
accurate” estimate of the region in which the physical sensor 
value lies. This integration should be fault-tolerant in that 
its reliability should not be severely affected by some of 
the sensors being faulty. In other words, we seek to obtain 
a functional relationship between the characteristic function 
x p  of I, = [n,,b,] and the x j l  5 j 5 n : xp(x) = 
f(xl(x), “ ’ ,  xn(x)) such that x;’(l) is a fault-tolerant 
interval estimate of the physical value being measured. 

We now go about obtaining a functional representation of 
the integrated output estimate under the integration scheme 
of Marzullo. In order to do this we need to introduce a few 
relevant operations and functions. The following definition 
provide such operations for our integration problem: 

Definition I :  If f(x) is a real-valued function, define ( 1  f ( 1  = 
sup{I f (.)I I x E R} (norm of f ) .  Here sup stands for the 
supremum. That is, Ilf 1 1  is the smallest real number a such 
that f(x) 5 a V x E R. 

Definition 2: If f(x) is a real valued function define 

Definition 3: Let O ( x )  = E,”=, xj(z) be the “overlap 
function.” For each x E R, O ( x )  gives the number of intervals 
in which x lies or the number of intervals overlapping at the 
point x. 

If xi(.) and xj(x) are characteristic functions of intervals 
1, and Ij then the characteristic function of the interval 1, n 
I, denoted xlinlj(x) is given by the product xi(x)x,(x). 

If x;(x) is the characteristic function of I,, then the char- 
acteristic function of If (the complement set of Ii) is given 

Marzullo [4] assumes that there are at most f faulty sensors 
among n sensors, and considers the intersections of (n  - f )  
or more sensors as the regions in which the correct physical 
value lies. An interval that does not participate in any (n  - f ) -  
intersection is taken to be the estimate of a faulty sensor. The 
output is the smallest interval that contains all (n  - f )  or more 
intersections. 

A.  Computational Characterization 

SUPPf = {. I f ( x )  # 01 (support of f ) .  

by (1 - X i ( Z ) ) .  

We now obtain a functional characterization of the ( n  - f )  

intersections and this integrated output estimate as described 
in the previous section. More precisely, we give an explicit 
expression for this characteristic function of the (n  - f )  
intersection in terms of the characteristic function of the 
intervals corresponding to the sensor estimates. 

Remark 2: If at most f sensors are faulty, then we need to 
consider only those 13’s for which ((xjO(1 >_ (n  - f ) .  Thus the 
characteristic function of the set of all points lying in (n  - f )  
or more intersections of the intervals Ij (1 5 j 5 n)  is given 
by 

S(Z) = X[n-f,m](0(4). 

Now the correct physical value belongs to Supp(S(x)), 
i.e., to one of the intervals constituting it. Marzullo proposes 
the smallest connected interval containing Supp(S(x)) for the 
integrated output. 

More precisely the output interval estimate I, is given by 

I p  = [ min{z(S(x) = I}, max{xlS(x) = I}]. 

Proof: Indeed xf:Lf,ml = 1 * y 3 n - f 

... x[n-.f,m](o(zc)) = 1 * O ( 2 )  2 n - f 
(O(x)) 2 n - f e n lies in the intersection of n - f or more 
intervals, and 

... X[n-f,cO](0(4) = 1 

iff x lies in the intersection of n - f or more interva1s.Q.E.D. 
The previous integration technique does indeed give a 

connected interval within which the actual physical value 
lies. It however includes points that do not belong to the 
intervals constituting Supp( S ( x ) ) .  Furthermore, if the intervals 
constituting Supp( S ( x ) )  are widely scattered over U,“=,Ij, 
then there are wide gaps between these intervals that do not 
contain the physical value and yet are included in the output 
estimate. This results in the width of the smallest interval 
containing Supp( S(z)) being comparable to the smallest in- 
terval containing U,“=,I, (see Fig. 1) and this is of little value 
from the point of accuracy. We need to evolve a criterion by 
which we can pick only a few of the intervals constituting 
Supp(S(z))  with a fair amount of certainty that they enclose 
the correct physical value. The rest of our analysis is in this 
direction. 

Iv. A NEW FAILURE MODEL WITH SHARPER 
OUTPUT INTERVAL ESTIMATES 

We propose a failure model in which it is possible to 
choose in most cases a subset of Supp(S(z)) as the region 
of correct sensor value instead of the whole of Ip as defined 
previously. A sensor may fail wildly, in which case there is no 
correlation between the actual physical value being measured 
and the interval estimate of the faulty sensor. On the other 
hand, a sensor may fail tamely, in which case although the 
faulty sensor’s interval estimate does not contain the actual 
physical value, the interval estimate lies significantly close 
to the value in a certain sense. For example, mechanical 
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vibrations may induce a tame fault in dials and meters by 
shifting the needles’ fluctuations to a region that does not 
contain the correct value but lies close to it. Since we do 
not know the actual physical value, we cannot detect the 
tameness of a fault directly. However tamely faulty sensor 
estimates tend to overlap with correct sensor estimates because 
of their proximity to the actual physical value. We consider 
the case when the number of sensors to be integrated is very 
large and assume that most of the faulty sensors are tamely 
faulty. In this case, we observe that correct sensors have a 
relatively larger number of intervals overlapping with them 
as compared to undetected faulty sensors participating in the 
(n  - f)-intersections, since tamely faulty sensors overlap with 
correct sensor estimates. Thus the number of sensor estimates 
overlapping with a given sensor estimate is a good index of 
its correctness. We make use of this observation to narrow our 
output interval estimate, namely I p .  

Let Supp(S(z)) = Ut==lL; where Li = [a;,Pi] with 0; < 
a,+1 V 1 5 i 5 k - 1. We now perform an evaluation of 
the Li’s in order to attach a weight to each of them and 
choose those Li’s with maximum weight to be the intervals 
that have a high likelihood of containing the correct physical 
value. We then again enclose these Li’s of maximum weight 
by the smallest possible interval and take it to be the output 
estimate. 

Remark 3: Let X L ; ( I C )  be the characteristic function of L;. 
Then we can define the popularity of the j t h  sensor to be 
the number Pj = E:=, l l x k x j l l  - 1. Pj gives the number of 
sensor intervals overlapping with the j t h  sensor interval. 

Proof: Indeed 

Thus CL=, I ( x k x j ( 1 -  1 gives the number of intervals (apart 
Q.E.D. from 1,) intersecting with Ij .  

A. Narrowing of the Output Interval Estimate Width 

The L,’s are (n  - f )  intersections. The reliability r, gives 
a measure of the clustering of sensors around the L,. Our 
assumption that most of the faulty sensors are tamely faulty 
implies that the L, with maximum clustering around it is most 
likely to contain the correct physical value measured by the 
sensors. The sum of the popularities of the sensors involved 
in the formation of L, is a good index of the clustering of 
sensors about L,. 

Hence, we would like to take the sum of the popularities 
of all sensors involved in the formation of L,, and call it the 
reliability r, of L,. 

Consider the set function W(L,)  = E,”=, IJx~,x,llP,, 
1 5 a 5 k defined on each L,. W(L,)  gives the sum of the 
number of intervals overlapping with each sensor estimate in 
the (n  - f)-or-more clique L,. i.e., r, = W ( L , )  V 1 5 z 5 k .  

Let T = max{r, 11 5 z 5 k } ,  m = min{z I T ,  = r }  and 
M = max { z  I T ,  = r } .  Consider the interval [a,, p ~ ] .  We 
take I; = [a,, ,BA[] as the integrated output estimate. 

It is clear that p M  - a,  = 11;1 5 \I,\, where ) I  1 is 
the width of the interval I .  Thus in our failure model we 

have in general a way of narrowing the output estimate I p  
to 1;. However if the number of wildly faulty sensors are as 
many as the tamely faulty ones, and if they happen to cluster 
somewhere else on I p ,  then it is possible that 11;l = (Ipl. 
Thus the worst case for 1; is I,. The chances that wildly 
faulty sensors mimic the clustering behavior of tamely faulty 
sensors are remote. Also if the number of sensors is very small, 
it is possible that (I;l = IIpl. 

For example, consider the case of three input sensor esti- 
mates 11 = [2.4,3.2], I ,  = [2.9,4], I3 = [3.6,5]. In this case 
I, = [2.9,4]. Here L1 = [2.9,3.2] and L2 = [3.6,4], but they 
both have the same reliability. Hence 1; = I, here. 

B. The Algorithm 

We now present the algorithm as follows. 
Algorithm: 
Input: Intervals 11. I z .  . . . . In, f (parameter denoting max- 
imum number of allowable faults). 
Output: Integrated output estimate. 
begin 

1) Take all ( n  - f)-intersections of the intervals to 
yield Intervals L1, . . . , L k ,  each of which is an 
(n  - f)-intersection: {L ,  = [ U , ,  b3]}; 

2) For each i (1 5 i 5 k )  
a) Count the number of intervals intersecting 

each of the intervals I, (1 5 j 5 n )  having 
nonempty intersection with L,; 

b) Add these numbers up to obtain a number 
r,{r, gives the sum of the number of inter- 
vals intersecting with intervals involved in the 
formation of the L,. a is a measure of the 
reliability of L,}; 

3) Choose the maximum of the T,  (1 5 z 5 k )  and 

4) Let m = min{i I T ,  = T-}  and M = max{i I r, = 

5 )  Assign 1; = [a,,bhf] to be the integrated output 

call it r ;  

r } ;  

estimate; 
end. 

C. A Comparison of Performance 

In this new model, we find that when the number of sensors 
is very large, by taking the clustering of the tamely faulty 
sensors into consideration, we reduce the output intervals 
width greatly, as compared to Marzullo’s [4] output interval 
estimate. 

Fig. 3 illustrates the superior performance of our model 
clearly. The numbers near each interval estimate gives the 
number of intervals overlapping with it. Here n = 13 and f 
(maximum number of fault intervals allowed) = 10. The thick 
lines in Fig. 3 are the intervals L; with the numbers on them 
indicating their reliabilities. We may pick either the interval 
with higher reliability or define a range for reliabilities and 
pick intervals that fall in these limits. The thick line of the 
bottom indicates the output interval estimate for this case in 
Marzullo’s model. 
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Fig. 3. A comparison of output estimates from Marzullo’s method of integration and our method. The shaded strip 
illustrates overlapping regions of three or more interval intersections, where 71 = 13, f = 10, and 71 - f = 3. 

TABLE I 
POPULARITIES OF INTERVALS 

The essential gain in the model proposed previously is 
that the (n  - f)-intersections are assigned weights that are 
in the previous mentioned sense reliability estimates of these 
intersections. We may now impose any convenient rule for 
choosing these segments according to their reliabilities. 

In Table I, we have each interval assigned a numbering that 
is its popularity. 

The (n  - f) or more intersections (i.e., 3 to 4 intersections 
here) that form the output have reliabilities 8, 12, 15, 15, 10. 

Thus, the advantage here is that we have the intersection 
weighted to help us judiciously choose the output intervals. We 
may employ any convenient rule depending upon our faith in 
the tameness of the faults to pick these intervals and enclose 
them by a connected interval. For instance, we may choose 
only those intervals with maximum reliability (in this case, the 
intervals with reliability 15) and enclose them by a connected 
interval. It is clear that the worst possible width for the final 
output interval estimate is the smallest interval containing all 
intersections irrespective of their weights. 

So far, we have treated f as a fixed number. It is clear that 
as f increased, the output interval width increased, and as f 
decreased, output width decreased. This is so because output 
intervals are intersections of (n  - f )  or more intervals. To 
improve performance, it is better to treat f as a parameter and 
perform integration for different values of f simultaneously 
and use only that f, for which outputs are within bounds. 

in the event of the sensor giving a unimodal probability 
distribution of physical value over its interval estimate, say, for 
example, a normal distribution, then we may use this additional 
information to narrow the interval widths beforehand by 
resorting to confidence interval estimates of the physical value. 
The resulting subset of this estimation is a connected interval 
whose width is less than the original interval. More precisely, 
if S is a sensor with its interval estimate I = [a,b] and p(x) 
is a unimodal probability distribution on I of the physical 
value measured by the sensor, and further if (1 - a )  is a high 
probability, we need to compute numbers L ( a ) , U ( a )  such 
that 

P [ x  E [L(cy),U(a)]] = 1 - a 
L’(a) 

= 1 P ( X ) d X  

L ( a )  

where [L(a) ,  U ( a ) ]  is called l O O ( 1  - cy)% confidence interval 
for the physical value x, and (1 - a )  is called the level of 
confidence associated with the interval. 

Now, [L(a ) ,  U ( a ) ]  4 [a,  b] if n # 0 with a high probability 
of containing the physical value (if S is not faulty) and if is 
narrower than the original interval [a,  b] .  It is obvious that the 
widths of the Li decrease if the width of one or more of the 
input intervals decrease. Thus the narrowing of the intervals 
before integration when possible increases the accuracy of the 
output. 

D. Narrowing Widths of Intervals in the Case 
of Nonuniform Distributions 

So far we have assumed that a sensor does not give any 
information about the probability distribution of the correct 
physical value over the interval (abstract sensor estimate) that 
represents it. In this case, we assume that each value in this 
interval is equally likely, i.e., we assume a uniform distribution 
of the physical value over each interval estimate. However, 

V. CONCLUSION 
In order to address the general problem of fault-tolerant 

sensor integration for a large class of sensors, it is necessary 
to evolve a broad-based computational framework that can 
accommodate a wide range of sensors and a variety of fault 
tolerant integration techniques depending upon the phenome- 
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non being sensed and the method of sensing. We intend to 
develop a calculus of sensor integration by regarding the 
sensor estimates as subsets of an abstract parameter space and 
obtaining functional representations of the characteristics of 
these estimates. We then intend to obtain rules for combining 
these functions to get functions describing the characteristics 
of the output according to the kind of integration that is 
required to be performed. This paper is a preliminary exercise 
in concert with this effort. We have recast the fault-tolerant 
integration of abstract interval estimates a la Marzullo [4] in 
a computational framework, and considered a failure model 
wherein we could reduce the width of the output interval 
estimate significantly in most cases where the number of 
sensors involved is large. 
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