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ABSTRACT 

The problem of partitioning a two-dimensional area into pieces having certain sizes with a 
minimum of wasted space is very important, especially in packing components tightly in the 
manufacture of very large-scale integrated circuits. The purpose of this paper is to examine the 
problem of placing rectangular objects in a rectangular area so as to minimize the wasted space. 
from the viewpoint of establishing maximum empty rectangles rather than the standard 
linear-programming approach. A comparison of our results with those of the Steudel [S] is 
reported. Empirical comparisons of our results indicate that our algorithm is very simple and 
efficient. 

INTRODUCTION 

The problem of partitioning a two-dimensional area into pieces having 
certain sizes with a minimum of wasted space is very important, especially in 

garment manufacture, metal fabrication, publication layout and, more recently, 

the packing of components tightly in very large-scale integrated circuits. Several 

aspects of this problem have been studied in great detail. The “knapsack 

problem,” for example, involves cutting an object into smaller pieces with each 
piece having a given length and some value associated with it in such a way as to 
maximize the total value of the pieces so produced. Gilmore and Gomory [2] 
examined this problem and showed that it was essentially a linear-programming 
problem. They note, however, that the number of columns will, in higher 
dimensions, be so large that this approach will be impractical. A more restrictive 
approach is the “cutting-stock problem,” in which only guillotine cuts (i.e., cuts 
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going completely from edge to edge) are allowed at any particular instant. 
This problem was examined by two methods: the tree-search method due to 
Christofides and Whitlock [ 1] and a heuristic approach due to Steudel[5]. 

The problem we shall consider is not contained in either of the above classes, 
but is important nevertheless. It consists of choosing a subset of rectangular 
objects from a given set and placing them in a rectangular area so as to 
minimize the wasted space. The objects are allowed to have any size, although a 
simple case for ex~nation is one in which they are identical. In linear-pro- 
gramming terms, we associate a shadow price, Pi, with each piece, and then the 
problem becomes: 

Maximize Zf!=,a,P,, subject to ui=O or aj=l, and so that {u,,u,,...,u~} 
corresponds to fitting each Ii-by-w, object into the L-by-W area. 

There currently exists no economical solution to the problem as stated. 
We shall attempt to make several propositions, examine some simple cases, 

and then propose our heuristic algorithm. 
The reminder of this paper is organized as follows: an informal proposal of 

the method, the heuristic method, a description of the algorithm, discussion of 
the results, and conclusions. 

1. INFORMAL DESCRIPTION OF THE PROPOSED METHOD 

We will use the notation of Jayakumar [4], defining the maximum empty 
rectangles (MERs) as that unique set of possibly overlapping rectangles bounded 
only by the edges of the area and by the objects within the area (see the 
Appendix). For a single object, the ~sig~ent appears in Figure 1. We will take 
the area to be initially L by W and let the dimensions of the ith object be I, by 
wi. Also, we will let B be the number of objects placed so far, and R be the 
number of MERs which currently exist. Initially, there will be no objects in the 
space and the area itself is a single MER, so that R =I: I and B = 0. 

As noted by Jayakumar [4], R is a function of L and W as well as B through 
the set ((ii, w,)}, for i between 0 and B. In any given situation, the functional 
dependence of R upon B is extremely complex, having many local extrema. 

We note first that both R and B are bounded. if lmin is the minimum of the 
set {Zi) and wmin that of {w,}, then 

B nmx = floor{ L/fmin) X floor( W/ W,i,). 

At this point, we may note that the special case in which 

(1) all objects are identical with size (I, w), and 
(2) L/I and W/w are both integers (with values M and N respectively 
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Fig. 1. MERs produwd from the placement of a single object in the rectangular area 

is ~~~~~urp~ic to the case of I-by-l objects placed in a.n M-by-N area. The 
quantity R is also bounded: Rtii, = I (except in certain cases for which R = 0 at 

B = &,,h and R mm = I&,, /2. The maximum of R(B) will be seen to occur for 
the perfectly antipacked case, the checkerboard pattern. The resulting maximal 
and minimal envelopes, along with severd other representative ones showing the 
typical behavior of R(B), are shown in Figure 2 for the case L = W = 4. 
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There are two things worth noticing: 

(I) following the maximal envelope will always generate the equivalent of the 
checkerboard pattern, and 

(2) following the minimal envelope will always reduce the L-by-W area to a 
smaller (rectangular) area L’ by W’, allowing simple recursive solutions. 

2. THE HEURISTIC METHOD 

The study of many cases suggested optimizing a certain integral. 

PROPOSITION 1. Optimal packing (antipacking) is obtained when 

BR B’ dB’ ( ) 

is a minimum (maximum). 

Justification of the Proposition. These facts can be seen by letting B = B,,,, 
and examining the minimal and maximal envelopes. For the discrete case, we 
carmot consider Bmax to be large, and by the trapezoidal rule, 

BR B’ dB’=; B$’ [R(B’)+R(B’+I)], ( ) 
B’-0 

or, using the definition of R(O), 

/‘R(B’)dB’= $ R(B’)-+[R(B)-I] 
0 B’=O 

We shall take as the heuristic rule that 

AR=R(B)-R(B-1) 

will be minimized at each step of the procedure. Note that this is not guaranteed 
to produce optimal packing, but it will make the best choice at each stage and 
should do fairly well overall. Later, we can recursively examine other cases and 
choose the one which is best. Figure 3 shows the decision tree for the case of 
identical l-by-l objects with L = 3 and W = 2. Here the choices have been 
reduced by symmetry considerations. 
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Fig. 3. The decision tree used in packing l-by-l objects into a 2-by-3 area. AR values are 
shown to the right of each node (where appropriate). Only nodes with minimum value(s) of AR 
are expanded. 
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Fig. 4. The tree which results From ncde A in Figure 3 when recursive redefinition of the area 
is allowed. The dashed lines indicate such a reduction. 
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PROPOSITION 2. Once a border is compiete!v filled, it may be brought inward to 
the edge of the most extended MER, thereby reducing the dimensions of the 
original area. 

Justification. For example, we can reduce node A of Figure 3 to an area that 
is 2-by-2 (Figure 4). 

In Figure 5, we show the dependence of R upon B for this case. Curve A is 
the maximal envelope, and curves B and C are two minimal envelopes. The total 
integrals involved are 12.5 for Curve A and 7.5 for both B and C. 

3. ANALYSIS OF THE ALGORITHM 

The algorithm itself is very simple. At each step we maintain two lists: one of 
the MERs sorted in order of increasing area, and the other of the pieces not yet 
placed, in order of decreasing area. For efficiency, these lists should be linked. 
We then merely place each object in the smallest MER able to contain it, with 
the restriction that the number of MERs remaining after the placement is a 
minimum. After the placement of n objects there will never be more than 
B,,,,/2 MERs (in the worst case), and normally quite a few less than this 
estimate, since it actually applies to the maximal envelope. Thus, on the average, 
we need only B,,,,/4 comparisons for each placement, making this an order-N 
process, since B,,,, = N. Therefore, the placement of N objects is of order N’. 
These estimates ignore any recursive searches for optimal solutions, which 
would add another order of N; however, in many cases such searches are 
unnecessary. For optimal placement of objects, the algorithm is shown to be 
proportional to the perimeter of the region. 

4. DISCUSSION OF THE RESULTS 

We have compared the results of this algorithm with the pallet-loading data 
found in Steudel’s paper. Although our problem is not the same as his, we 
wanted to evaluate our algorithm, and his data seemed to be a worthwhile 
starting point. However, since we do not allow objects to be rotated, we must 
assume that some fraction of the objects are in each (i.e., horizontal and vertical) 
orientation. For a 40-by-48 in. pallet, using 10 objects in the 9-by-6 in. 
orientation and 24 in the 6-by-9 in orientation, our algorithm places them all 
and produces an almost identical pattern to that found in Steudel (see Figure 6) 
with the same space-utilization efficiency (99.6% of available space used). When 
we tried to place nearly square objects (7.5 by 8.5 in.) using his proportions (14 
as 7.5 by 8.5 in. and 15 as 8.5 by 7.5 in.), our algorithm was unable to reproduce 
his pattern, and in fact, fell far short of his efficiency (96.38, 29 objects). 
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Fig. 6. A comparison of our pallet-loading pattern (A) with that obtained by Steudel(3) for a 
40-by-48-in. paliet and 6-by-9-h. objects. 
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Fig. 7. A comparison of our pallet-loading pattern (A) with that obtained by Steudel (B) for a 
40-by-48-in. pallet and 7.5by-M-in. objects. The dashed portion extends over the edge of the 
pallet (see the text for an explanation). 
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However, he notes that the Navy loading patterns (obtained from Haynes [3]) 
allow a slightly oversized load with the overhang not to exceed half of the 
object’s dimension in that direction. For uniformity, we adopt the convention 
that the overhang will not exceed 3 in. in either direction. On this basis, we can 
place 30 objects (efficiency 99.6%); the pattern is compared with his in Figure 7. 
We also reproduce the other pattern he has shown (12 items of length 15.5 in., 
width 9.5 in.; 92.0% efficiency) in a single pass, where his algorithm required a 
recursive solution. 

5. CONCLUDING REMARKS 

The method we have suggested, based on the MER concept, has been 
examined for several cases and has been found to work well and to be 
reasonably efficient. For the pallet-loading problem, it produces results which 
were on the whole as good as those of Steudel. Empirical comparisons of our 
results indicate that our algorithm is very simple and efficient. 

APPENDIX 

There exists another description of the free space surrounding an object, 
which might be called minimal empty rectangles (mERs). These are defined by 
the boundaries of the area and the extensions of the sides of the objects. For 
example, in Figure 1, we would have 8 mERs. The advantage of these is that the 
sum of the areas of the objects placed plus the sum of the areas of the mERs 
produced afways equals L times W, the area of the original rectangle. However, 
they possess two disadvantages that make them less desirable than MERs for 
use in object placement. These are: 

(1) they are, in general, more numerous than MERs (e.g., 8 mERs versus 4 
MERs in Figure l), and, more importantly, 

(2) they must be concatenated when trying to place objects. 

We wish to thank Professor Jayakumar for suppbing a copy of his paper. 
Laurent was a graduate student in the Department of Physics and Astronomy, 

Louisiana State University, when this work was done. 

REFERENCES 

1. Nicos Christofides and Charles Whitlock, An algorithm for two-dimensional cutting prob- 
lems, Oper. Res. 25:30-44 (1977). 



OPTIMAL PLACEMENT OF REZTANGULAR OBJECTS 

2. P. C. Gilmore and R. E. Gomory, MuIfistage cutting stock problems of two or more 
dimensions, Oper. Res. 13:94- 120 ( 1965). 

3. D. 0. Haynes, Material Handling Equipmenz, Clinton, Philadelphia, 1957. 
4. Jayakumar, paper to be presented at the 15th Design Automation Conference. [For further 

information, contact the authors.] 
5. Harold J. Steudel, Generating pallet loading patterns: A special case of the tw~dimensional 

cutting stock problem, Management Sci., 25( 10):997- 1004 (1979). 

Received Ma.v I9gI; revised 7 November 1981 


