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The use of cryptography for data protection has received a great deal of 
attention in recent years. This paper presents computationally efficient 
algorithms for the implementation of a one-time pad scheme. The algorithms to 
encipher and decipher text were implemented on a PDP-I 1 computer using the 
programming language C. To study the behavior of the keys used to encipher 
and decipher text, we used the chi-square method, and the test results of two 
runs are presented with some statistical analysis. 
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1. I N T R O D U C T I O N  

The use of cryptography for data protection has received a great deal of 

attention in recent years (see, e.g., Refs. 7 -10  and 17). In today's complex 

society, as the need for fast electronic communicat ion has grown, so has the 
need to secure the information being communicated.  Furthermore,  interest in 

cryptography is expected to rise with increasing use of the electronic fund 

transfer system and other applications needing data security and 
protection. (9) 

This paper presents efficient algorithms for the implementat ion of a one- 
time pad scheme and is organized as follows. Section 2 describes definitions, 
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notations, and preliminary results�9 Section 3 presents an overview of the 
proposed scheme. Section 4 describes the mathematical formulation of the 
scheme. Section 5 presents some empirical results obtained during the study. 
Section 6 describes computational algorithms of the scheme and Section 7 
presents the conclusion of the study and some open questions. 

2. DEFINITIONS, NOTATIONS, AND PREVIOUS RESULTS 

In this section we review some terminology and some fundamental 
results concerning one-time pads. (1'2'4) 

2.1. Cryptographic Functions 

We define a cryptographic function to be one of the form E = g(k, m), 
where for fixed k, the funct ionfk(x  ) = g(k, x)  is one-to-one; m is a string of 
bits (the message to be sent), k is the key, and E is the enciphered message. 
The key structure determines a sequence (il,..., is) and has the following 
transformation scheme: 

E = g(k, m) 
(1) 

E = f~.l(fh (... f /s(m)) . . . )  

Normally, onef~ is a mixing transformation. In order to decode the message, 
the key and the enciphered message are used to undo the transformations f~j 
one-by-one in reverse order. For more information on this refer to Refs. 16 
and 18. 

2.2. Polynomial Equation 

In this paper, we define a real root x of a polynomial equation by a 
continued fraction of the following form: 

x = a ~ +  1 

a 2 +  1 

a 3 +  
�9 ~ . 

1 (2) 
a m + 1/y 
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Where a ~ , a  2 ..... a m are integers (partial quotients). The continued 
fraction can also be structured as follows: 

X-- PraY+Pro-1 (3) 
QmY+ Ore-, 

where P k / Q k  is the kth convergent to 

and 

alq- 1 

a 2 +  1 

a3-k 

Pk+ I = a k + l P k  + P k - ~  
(4) 

Ok+,  = a k + l O k  + O k - I  

We refer to the right-hand side of Eq. (3) as the "expression for the root of 
the polynomial." 

2.3. Floor Functions 

Let x be a positive real number. F is called the floor function of x if 

F ( x )  = 

where I is the greatest integer such that I ~  x;  F ( x )  is represented by Ix I. 

2.4. Key 

The key is used to encipher-decipher text. Without the knowledge of the 
key the ciphertext "cannot" be deciphered. 

2.5. One-Time Pad 

This is a cryptographic scheme according to which the ith ciphertext 
character C i is obtained by the formula C i = M i + Ki(mod 26), where M i is 
the ith plaintext character and K i is the ith key character. Since the key is 
never repeated, one-time pads are unconditionally crypto secure; their main 
drawback, however, is the key management (for obvious reasons). 

2.6. Partial Quotients 

The integers a l , a 2 , . . . , a  m in Eq. (2) are called partial quotients. 
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2.7, Unconditionally Crypto Secure 

This is a method for cryptography whose security is totally dependent 
on the knowledge of the keys used, and without the knowledge of which it is 
impossible to decipher the intercepted message. 

2.8. Previous Results--Akritas" Approach 

Akritas (~) proposed a one-time pad scheme where the key management 
does not present a problem. In this scheme, based on Vincent's 
theorem, (1'6'2~ successive continued fraction transformations are used to 
isolate and approximate the single, irrational, positive root of a polynomial 
equation and the partial quotients themselves are used as the key. Thus the 
key is "concealed" in a polynomial equation that can be easily exchanged 
using the public key-distribution methods described in Ref. 14. 

Before we get into any further discussion, we would like to present an 
example using Akritas' scheme (4) in order to gain some insight into the 
problem. 

Let us consider "AIKBS" to be the text that party A wishes to 
communicate to party B. We call this the plaintext. Let A be in Washington, 
D.C., and B in Moscow. Party A does not want to send the plaintext as is, 
because anybody who intercepts it will also share the same information. So, 
he sends a different version of the text (ciphertext), from which B can easily 
retrieve (decipher) the original text (plaintext) by applying some predefined 
algorithm to obtain the key. Anybody else who intercepts the ciphertext 
would not be able to retrieve the plaintext without the knowledge of the key. 

In our case the key is contained in a polynomial equation with one 
irrational root; this equation should be securely exchanged between A and B 
before commencement of communications�9 

Let the polynomial equation be 

Pl(x)=x 3 -  2 = 0  (5) 

which has one sign variation in the sequence of its coefficients 1 0 0 - 2 .  
Party A does the following: 

Step 1: He computes the floor function al of the root of this 
polynomial; this turns out to be 1. This is the first partial quotient in the 
continued fraction expansion of the root 

x = l +  1 

a 2 +  1 

a 3 +  



Algorithms for a One-Time Pad Scheme 289 

Stop 2: 
'A '  of  the plaintext as follows: 

This a 1 is used as the first key to encipher the first character 

cipher symbol C 1 = (a I + 'A ' )  rood 26 

= (1 + 'A ' )  mod 26 

= 'B '  (6) 

Stop 3: The polynomial P~(x) is transformed to P 2 ( x ) ~ P ~ ( 1  + 1/x), 
where after computations we have 

P2(x) = --x 3 + 3x 2 + 3x + 1 (7) 

(The computations involved are explained in Section 4.) 
Now, Steps 1-3 are repeated with polynomial P2(x) in place of  Pl(x), 

and the second character in the plaintext T, this gives us 

a 2 = 3  

C2 = 'L '  (8) 

P3(x) = 10x 3 - 6x z - 6x - 1 

By repeating Steps 1-3 for each character in the plaintext, we obtain the 
following: 

a 3 = 1, C 3 - - ' L ' ,  

a4 = 5, C4 = ~ 

a 5 = 1, C 5 = 'T '  

P4(x) = - 3 x  3 + 12x 2 + 24x + 10 

Ps(x) = 55x 3 + 81x 2 + 3 3 x -  3 (9) 

Hence, the ciphertext is ' B L L G T '  and this is sent to B over an insecure 
channel. 

Now B, who receives this ciphertext, can easily decipher it, starting with 
the polynomial Pl(x). He performs Steps 1 and 3 exactly as mentioned 
above. However, Step 2 is modified so that 

plaintext symbol Pi = (Ci - ai) mod 26 

Thus, the original plaintext 'A IKBS '  will be recoved. 
In the above example, we can see that, after each execution of  Step 3, 

the coefficients of  the polynomial are becoming large (in absolute value) and 
also that out of  the five partial quotients, ai's, three were one. So most of  the 
time the key used to encipher or decipher was one. (13) Hence, to better 
conceal our message, these keys sould be made more random. 
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In the present study, we propose some modifications to the above 
scheme to keep the coefficients within one word of memory and to make the 
keys as random as possible. Several possibilities are considered and 
analyzed. Finally, an algorithm is presented that does accomplish our 
requirements. To do so, we have used the plaintext itself as part of our 
coding scheme. However, this does not make the system less secure. 

3. AN OVERVIEW OF THE PROPOSED SCHEME 

In this section we present an overview of our scheme and the 
mathematics involved. The ideas are further explained and analyzed in full 
detail with empirical results in subsequent sections. 

3.1. One-time Pads in Cryptography 

As we saw above, one-time pads are unconditionally crypto secure, i.e., 
since we use a different key to encipher each character in the plaintext, it is 
impossible to recover the plaintext without the knowledge of the whole key. 
For example, consider the scheme C i = (Mi + K t )  rood 26, where the ith 
ciphertext symbol C i is obtained by adding rood 26 the ith message symbol 
M~ and the ith key symbol K i. Clearly, without knowledge of the Ki's it is 
impossible to recover the Mt's. However, one is faced with the difficult task 
of generating and distributing enormous amounts of key, an operation that 
renders the scheme very expensive to use. 

3.2. Use of a Polynomial Equation to Generate the Key 

A polynomial equation with one sign variation in the sequence of its 
rational coefficients has exactly one positive root; choose the equation so 
that the root is a nonquadratic irrational number (this will guarantee that the 
sequence of partial quotients is never repeated). Akritas, based on Vincent's 
theorem, ~1) uses continued fractions and the idea that each partial quotient is 
the floot function of the positive root of a polynomial to approximate the 
real root. As this root can be approximated to any degree of tolerance, and 
the partial quotients do not repeat, theoretically, we can get an infinite 
number of them, which can be used as the key. However, we have the 
following interesting fact. 
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3.3. Behavior of the Partial Quotients 

For almost all real numbers, the probability that the nth partial quotient 
a~ in the continued fraction expansion of a real number is equal to a positive 
integer j is given by 

log 2 (J + 1) 2 
j ( j  + 2) 

F o r j  = 1 and almost all numbers, this means that the probability that a ,  = 1 
is approximately 0.41J TM Therefore, in order to better conceal message, our 
scheme has to be modified. Instead of using the partial quotients themselves 
as the key, we now use the number obtained from exclusive-ORing rood p 
the denominator and numberator of the updated expression for the root of 
the equation. That is, after the ith transformation of the polynomial equation 
has been performed, the root is represented by 

x = n i / d  t, where n i = P m Y + P m _  1 and d i = Q m Y + Q m _  l (10) 

we then choose K i=  (n i X O R  dr) rood p to be our key. This scheme is 
explained in detail below (see Section 3.6). 

3.4. Coefficients of the Transformed Polynomial Equation 

In the above-mentioned scheme, to approximate the real root, the 
polynomial equation P(x) --- 0 goes through successive transformations of the 
form P(x) ~ P(b + 1/x), which is equivalent to the pair of transformations 
P(x) ~ (b + x) and P(x) ~P(1 /x ) ,  where b is some partial quotient a , .  In 
this process, the coefficients of the polynomial start to get large, and even- 
tually it becomes impossible to store them in one computer word of memory. 
As we intend to implement our method on a reasonably small system, we 
decided to use modular arithmetic, thus guaranteeing that the coefficients can 
always be stored in one word of memory (i.e., after each transformation we 
make sure that the coefficients stay within a given range). By modifying the 
polynomial in the above manner after each transformation, we found that the 
polynomial repeats itself after a certain number of transformations and so 
does our key. The cycle length of the partial quotients was found to be an 
integer multiple of the cycle length of the polynomial. So, we need some 
further modifications. 

3.5. Use of the Plaintext Itself as Key 

The plaintext itself can be (and has been) used to generate the key. For 
example, consider the scheme C i = (M i I + M i )  rood 26, where the M i lth 

828/12/4-6 
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character is used as the key to encipher the M~th character in the plaintext. 
Initially we have C O = (M 0 + K) rood 26, where K is some constant. So if we 
know K, we can decipher the ciphertext very easily. But, clearly this kind of 
scheme, which only depends on the plaintext, is very insecure, since K could 
easily be found by applying all the integers in the range 0-25, and one can 
easily decipher any message. We use this idea in the following way. 

3.6. A Hybrid Method 

In our method, we start out with the polynomial equation, and proceed 
as explained before, but instead of using K i = (n i XOR di) rood p, we modify 
it to be 

Ki = (ni + mi-1) XOR(di  + mi-1) mod p 

where hi, di, and p are as before and mi_ ~ is the ( i -  1)th character in the 
plaintext. Initially we can have m 0 be any constant. 

Thus, our scheme is secure, because the Ki's c a n n o t  be known until the 
n~'s and di's are known or until the polynomial itself is known. Also, the Ki's 
do not produce any cycle because the Mt's do not. (In a future work we hope 
to examine the problem of plaintext attack.) 

4. MATHEMATICAL STRUCTURE--BACKGROUND 

In this section we present in detail the various steps involved in our 
procedure. We start with presenting the main theorem used to isolate and 
approximate the real roots of a polynomial equation. The proof of this 
theorem is quite lengthy, and since it appears in the literature, it will be 
omitted. 

Theorem 4.1. (Vincent-Uspensky-Akritas): Let P(x) = 0 be a 
polynomial equation of degree n > 1, with rational coefficients and without 
multiple roots, and let A > 0 be the smallest distance between any two of its 
roots. Let m be the smallest index sueh that 

F m 1A/2 > 1 and F,~_IFmA > 1 + 1 /~  

where F k is the kth member of the Fibonacci sequence 

1, 1, 2, 3, 5, 8, 13, 21 .... 

and 

~n = (1 + 1/n) 1/~-1~ - 1 
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Then the transformation [Eq. (2)] 

x = a l  + 1 

a2+ 1 

a 3 +  1 

a4 + 

1 

a m + 1/y 

(which is equivalent to the series of successive transformations of the form 
x = a  i+  1/y, i =  1, 2 ..... m) with arbitrary, positive integral elements 
al, a2 ..... a m, transforms the equation P ( x ) =  0 into the equation P ( y ) =  O, 
which has not more than one sign variation in the sequence of its coef- 
ficients. 

The above theorem is applied as follows: 

The continued fraction transformation (2) can also be written as 

Pm Y + Pro- l X-- 

(i) 
[Eq. (3)] 

QmY + Qm-1 

where Pk/Qk is the kth convergent to the continued fraction 

a t +  1 
a 2 +  1 

a 3 + l  

and, as we recall [Eq. (4)] 

Pk+l =ak+IPk +Pk-1 

Qk+l=ak+lQk+Qk  1 

(ii) Provided there are positive roots, when the partial quotients ai's 
are properly chosen, P(x) leads to an equation P ( y ) =  0 with exactly one 
sign variation in the sequence of its coefficients. Then from the Cardano- 
Descartes rule of signs we know that P ( y ) =  0 has one root in the interval 
(0, oo). If y was this positive root, then the corresponding root x of P(x) 
could be easily obtained from Eq. (3)�9 We only know that y lies in the 
interval (0, oo); therefore, substituting y in Eq. (3) once by 0 and once by oe, 
we obtain for the positive root x an isolating interval whose unordered end 
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points are Pm-l/Qrn-I and Pm/Qm" Note that to each positive root there 
corresponds a different continued fraction. At most m partial quotients have 
to be computed for the isolation of any positive root. (Negative roots can be 
isolated if we replace x by - x  in the original equation.) 

The calculation of the quantities a t for the transformation of the form 
(2) that leads to an equation with exactly one sign variation constitutes the 
real root isolation procedure. Two methods actually result, Vincent's and one 
due to Akritas, corresponding to two different ways in which the 
computation of the ai's may be performed. 

Vincent's method basically consists in computing a particular a i by a 
series of unit incrementations; that is, a t ~ a t + 1, which corresponds to the 
substitution x ~ x + 1. This "brute force" approach results in a method with 
an exponential behavior. Therefore, Vincent's method is of little practical 
use. 

On the contrary, in the method developed by Akritas a partial quotient 
is immediately computed as the lower bound b of a positive root of a 
polynomialS3); that is, a t +- b, which corresponds to the substitution x ,-- x + b 
performed on the polynomial under consideration at that stage. It is obvious 
that this method is independent of the size of the a;'s and results in a method 
with polynomial computing time bound. Akritas used Cauchy's rule 
repeatedly to find the lower bound b on the value of positive root. (One can 
safely conclude that the filor function of a root is equal to its lower bound 
b). 

In approximating the root the efficiency of the computation of the lower 
bound can be improved if instead of Cauchy's rule we use the following 
theorem and its corollary. 

Theorem 4.2. If  each negative coefficient of a polynomial is taken 
positively and divided by the sum of all the positive coefficients that precede 
it, the greatest of all the fractions thus formed increased by unity is an uppe r 
bound of the positive roots. 

Corollary 4.1. If the polynomial equation has only one sign variation 
in the sequence of its (positive) coefficients and is represented by 

P(x)=a.x" + . ' .  §  X r + l  - - a r  X r  . . . .  a 0 

then an upper bound of the positive root is given by 

[ b =  _ max abs(aj) a i + 1 
[ 0 < j < r  i 1 
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The proof of this corollary is obvious from the above theorem because 
the denominator is constant. So, for our case, that is, where the polynomial 
has one sign variation, this is clearly an efficient way to compute the upper 
bound of the root. 

Ng (15) used the bisection method to find the floor function of the root. 
We chose to use the hybrid false position method, (~6) presented below, to do 
the same thing because the rate of convergence is much faster than that of 
the bisection method. 

4.1. The Hybrid False Position Method for Computing the Floor Function 

Let P(x)= 0 be the polynomial equation with one sign variation. We 
start with two values x + and x o, such that P(x +) > 0 and P(x~) < 0. At the 
(i + 1)th iteration the algorithm takes the interval endpoints x + and x{  and 
computes a new endpoint xi+ 1 as the zero of the line going through P(x +) 
and P(xT) as follows: 

x[P(x?)  -- x{P(x? ) 
xi+l = P(x?) --P(x +) 

If P(xi+ 1) > 0, then x++ 1 ~ xi+ 1 and xi+ 1 ~ X/-~ otherwise, xi+ ~ ~ xi+ i and 
x++~ ~ x  +. Thus, the interval [x+,xT] keeps reducing and the method 
converges. We keep computing the new iterate x i until abs([x +] - [ x T ]  ) 
becomes less than or equal to one. Also, at the end of each iterative step, 
replace the value of P(x 7) or P(x +), whichever is not changed, to K times its 
value, where K is some constant, 0 < K  < 1. By doing so, the speed of 
convergence is increased. We have chosen K to be 1/2. 

Let [xT, x +] be the interval at the end of this iterative process. In our 
case xi- and x + are both positive, since we start with the interval (0, o0). So 
if P([x + ]) > 0, [x•] is the lower bound; otherwise, [x + ] is the lower bound. 

As an example, let us consider the following polynomial P(x) with one 
sign variation(19): 

x 3 - 2 x -  5 = 0  

The upper bound of the root of P(x) is obtained using Corollary 4.1; it 
is 

U =  max(2, 5) + 1 = 6 
1 

To compute the floor function (or the lower bound) of the root of P(x) we 
start with the interval [0, 6] and denote x o- = 0 and x0 + = 6. 
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e ( o )  = - 5  

P(6) = 199 

6 , ( - 5 ) - 0 .  199 

xl = --5 -- 199 

--30 
-- - - - 0 . 1 4 7  

--204 

P(0.147) = --5.29 < 0 

Hence, now the interval is [0.147, 6]. Since the endpoint 6 is not changed, 
the value of P(6)  is taken to be K �9 P(6), where K is chosen to be 1/2. Hence 

199 
P(6) - T - 99.5 

6 �9 ( - 5 . 2 9 ) - 0 . 1 4 7  �9 99.5 

x2 = - 5 . 2 9  - 99.5 

= 3 . 1 3  

P(3.13) = 19.4 

Now, the interval becomes [0.147, 3.13]. Next we have 

3.13 �9 ( ' 5 . 2 9 )  - 0 . 1 4 7 ,  19.4 

x3 = - 5 . 2 9 -  19.4 

= 0 . 7 8 5 7  

P(0.7857) = - 1 . 7 2  

So the interval is [0.785, 3.13] and P(3.13) becomes 19.4/2 = 9.7. Next 

3.13 �9 ( - -1 .72) - -0 .785  , 9.7 
x4 = --1.72 -- 9.7 

= 1.13 

P(1.13) = --0.581 

So, the interval becomes [1.13, 3.13] and P(3.13) becomes 9.7/2 = 4.8. Next 

3.13 �9 ( - 5 . 8 1 ) -  1.13 �9 (4.8) 
x5 = -5 .81  -- 4.8 

= 2.22 

P(2.22) = 1.50 
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So, the interval becomes [1.13, 2.22]. Now, [2.22] - [1.13] = 2 - 1 = 1, and 
we are ready to decide whether 2 is the lower bound; otherwise, 1 will be 

chosen. We have 

P(2)  = - 1  and P(2.22) = 1.50 

This implies that the root is in the interval [2, 2.22]. Hence 2 is the floor 
function. 

4.2. A Method for the Translation of a Polynomial 

As we have seen, we need to perform the following transformation: 

P(x) ,-- P(b + 1/x) 

The above is equivalent to the following pair: 

P(x) +- P(b + x) and P(x) ~ P(1/x) 

The second transformation can be easily done by simply inverting the order 
of  the coefficients of  the polynomial,  and so we are mainly concerned about 
the first one. We have used the Ruff ini-Horner  method(5); a straight-line 
algorithm corresponding to it is the following: 

Assume that P(x) = Y~'~-~ aix i. Now, 

Cjo ~--- an_  l 

Co,s+l~Co,j*b+a~_l_(j+l ) ( j = 0 ,  1,.,., n - 2) 

C k , j ~ C k , j _ l * b §  j ( k = l , 2 , . . . , n - - 2 ; j = l ,  2 , . . . , n - - l - - k )  

s 1. Translation using the Ruff ini-Horner  method. Let us 
take the polynomial 

P(x) = 3x 3 - 12x z - 24x - 10 = 0 

and suppose that we want to compute 

P(5 + l/x) 

First we do the transformation P(x) ~ P(x + 5): 

3 - 1 2  - 2 4  --10 

5 3 3 - 9  
5 3 18 81 
5 3 33 
5 3 

- 5 5  
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and we obtain 
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P ( x ) , - - P ( x  + 5) = 3x 3 + 33x 2 + 81x - 55 

Now we do the second transformation 

P ( x )  ~ e ( 1 / x )  

which is achieved by inverting the order of  the coefficients of  the equation, 
i.e., 

P(x) ~-P(1/x)=-55x 3 + 81x 2 + 33x + 3 

5. EMPIRICAL RESULTS 

In this section, we present some of  the results obtained during the study. 
Since it is not possible to include in this report all of  the results obtained, we 
have decided to present a few selected cases. 

In Section 2 we mentioned that 41% of the time the partial quotient 
a n = 1; for example, consider the polynomial equation 

x 4 - 8x 3 - 3x 2 - 32x - 8 = 0 

The partial quotients are 

(11, 7, 3, 2, 1, 1, 1, 1, 20, 5, 11, 1, 7) 

and the approximating interval of  the root is 

[0.92387953251128634045, 0.92387953251128676332] 

So, out of  13 partial quotients five are ones, which is 35.71% of the time. 
As we mention before, to better conceal the messages, we decided not to 

use the ai's as our key, but instead to use the numerator and denominator of  
the expression [Eq. (10)] for the real root of  a polynomial along with the 
message itself to generate our key. 

From here on, we will refer to the above-mentioned numerator as N and 
the denominator as D. The root  is denoted as x, and by p we denote the 
integer modulo with which we reduce the coefficients of  the polynomial,  the 
partial quotients, and N and D. 

We used bitwise inclusive-OR, exclusive-OR, and A N D  of N and D and 
tried the resulting numbers as our key. We found that bitwise exclusive-OR 
gives us the best results; the keys obtained were quite random. Some results 
are given in Table I. ~18) 
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F o r  case  1 in Tab l e  I we find that  6 . 8 %  is the m a x i m u m  and 1 .2% the 

m i n i m u m  n u m b e r  o f  t imes  any  va lue  occurs .  Ce r t a in ly  6 . 8 %  is m u c h  bet ter  

when  c o m p a r e d  to 4 1 % .  F o r  c a s e 2 ,  6 . 6 %  is the m a x i m u m  and 1 .2% the 

m i n i m u m  n u m b e r  o f  occur rences ,  which  is again  ve ry  good.  In case  3 we 

find tha t  the m a x i m u m  n u m b e r  o f  occur rences  o f  the va lue  1 is 2 1 . 2 % ,  m u c h  

higher  than  in cases  1 and 2, but  still bet ter  than  4 1 % .  Also ,  in prac t ice ,  we 

will  be using a larger  va lue  o f  p.  

W e  have  m e n t i o n e d  that  the p o l y n o m i a l s  and our  key  repea t  after a 

cer ta in  n u m b e r  o f  success ive  t rans la t ions .  Tab le  II gives results  wi th  different  

va lues  o f  p and different  po lynomia l s .  

Table  I. Va lues  of Exclusive-OR o f / V  and D a 

Value ofN XOR D No. of occurrences Percent of times 

Case 1. Polynomial equation: x 2 - 7 x -  12 = 0; modulo p = 29 

0 27 5.4 
1 34 6.8 
2 22 4.4 
3 28 5.6 
4 20 4.0 
5 12 2.4 
6 12 2.4 
7 24 4.8 
8 6 1.2 
9 21 4.2 

10 16 3.2 
11 7 1.4 
12 25 5.0 
13 15 3.0 
14 15 3.0 
15 11 2.2 
16 17 3.4 
17 19 3.8 
18 16 3.2 
19 I1 2.2 
20 17 3.2 
21 25 5.0 
22 18 3.6 
23 9 3.8 
24 10 2.0 
25 14 3.6 
26 17 3.4 
27 7 1.4 
28 26 5.2 
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T a b l e  I. (continued) 

Value of N XOR D No. of occurrences Percent of times 

Case 2. Polynomial equation: x 4 + 23x ~ - 5x 2 - 14x - 4 = 0; modulo p = 29 

0 33 6.6 
1 30 6.0 
2 22 4.4 
3 6 6.0 
4 22 4.4 
5 24 4.8 
6 12 2.4 
7 16 3.2 
8 8 1.6 
9 6 1.2 

10 17 3.4 
11 8 1.6 
12 19 3.8 
13 7 1.4 
14 15 3.0 
15 8 1.6 
16 21 4.2 
17 25 5.0 
18 14 2.8 
19 16 3.2 
20 19 3.8 
21 14 3.8 
22 11 2.2 
23 17 2.4 
24 26 5.2 
25 31 6.2 
26 14 2.8 
27 20 4.0 
28 20 4.O 

Case 3. Polynomial equation: x 3 2 = 0 ;  m o d u l o p =  10 

0 49 9.8 
1 106 21.2 
2 36 7.2 
3 36 7.2 
4 70 14.0 
5 94 18.8 
6 12 2.4 
7 62 12.4 
8 12 2.4 
9 24 4.8 

a Without taking the message into consideration. For each of cases 1-3 the number of 
polynomial updates is 500. 
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Table II ~. Study of Cycle Lengths 
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Polynomial Key cycle 
Value of p cycle length K length 

Polynomial at which 
repetition starts 

Case 1. Polynomial equation: x 4 + 23x 3 5x 2 - 14x - 4 = 0 

29 152 2 304 37th 
26 2 1 2 89th 
19 59 8 472 10th 
14 12 1 12 170th 
11 50 2 100 100th 
5 10 4 40 2nd 

Case 2. Polynomial equation: x 3 + 8x 2 - 16x - 24 = 0 

29 74 1 74 
26 2 1 2 

19 78 3 234 
14 2 3 6 

I1 6 3 18 
5 2 3 6 

Case 3. Polynomial equation: x 3 - 2 = 0 

29 74 I 74 
26 54 3 162 
i9 102 1 102 
14 52 3 156 
l l  2 1 2 
5 8 3 24 

Case 4. Polynomial equation: x 2 + 8x - 12 = 0 

4 14 4 56 
4 7 4 28 
4 9 4 36 
4 7 4 28 
1 8 1 8 
3 12 3 36 

Case 5. Polynomial equation: 16x 4 + 8x 3 -- 1 4 x  z - 24x 4 = 

29 196 Large, >500 Large, >500 
26 36 4 144 
19 2 1 2 
14 40 2 80 
11 24 4 96 
5 36 2 72 

124th 
15th 

98th 
5th 

25th 
3rd 

144th 
74th 

1st 
6th 

38th 
3rd 

2nd 
2nd 
2nd 
2nd 
2nd 
2nd 

0 

49th 
15th 
58th 
24th 
65th 

22nd 

K is the integer obtained by dividing the key cycle length by the polynomial cycle length. 
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6. PROPOSED SCHEME TO ENCIPHER AND DECIPHER, 
ALGORITHMS AND IMPLEMENTATION 

In this section, we present our complete method to encipher and 
decipher text together with implementation details. Algorithms for the 
implementation of our method are presented in the Appendix. 

6.1. Selection of the Modulus p 

We choose an integer p such that, for any integer x, the following 
conditions are satisfied: 

x<~2 p, x * x + x < ~ 2  N -  1 

where N is the number of bits in a computer word. We do so to ensure that 
no overflow occurs during our computation. This is necessary in order to 
produce the same results more than once, so that the ciphertext could 
correctly be deciphered. 

For our computer, PDP-I1,  N =  16. Hence, 

x * x + x ~ 2 1 5 -  1 

o r  

2 p * 2 p + 2 p ~ 215 - 1 

o r  

p ~ 7  

o r  

x ~< 27 = 128 

6.2. Selection of the Character Set 

Obviously, the character set should consist of all the characters that 
could be used in the plaintext. 

In our implementation, we chose two sets: one with 29 characters and 
another, the ASCII character set, with 128 characters; 128 happens to be the 
same number as the maximum value of x. We cannot choose a character set 
consisting of more than 2 7 = 128 characters because then we will run out of 
distinct integers to represent them (for our specific computer). 

The integer value we use to represent any character is the decimal value 
of the binary representation of that character according to ASCII standards. 
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6.3. Description of Our Method 

Now, we present our scheme, which is divided into two sections, dealing 
with the method to encipher and the method to decipher. A polynomial 
equation with one sign variation (and hence one positive root) and a 
constant M 0 is exchanged between the communicating parties. If the root of 
the polynomial is not a nonquadratic irrational number, during the course of 
the transformations of the polynomial, some coefficients become 0 (first or 
last). To eliminate this difficulty and to always keep one sign variation in the 
sequence of the coefficients, we replace this 0 by 1 or - 1 ,  as the case may 
be. (The reader should notice that we have parted from our original 
assumption of using only nonquadratic irrational numbers as the roots of our 
polynomials.) 

6.3.1. To Encipher 

To encipher a plaintext the following steps are involved: 

Step 1: The polynomial equation (coefficients only) is read so that it 
can be used for the generation of the key; also, the expression (N/D) for the 
root of the polynomial is initialized. 

Step 2: Each coefficient C z of the polynomial is reduced rood p, C i 
rood p. If the leading coefficient is negative, all the coefficients are multiplied 
t i m e s -  1. 

Step 3: The upper bound of the root of the polynomial is computed 
using Corollary 4.1. 

Step 4: The floor function of the root is computed using the hybrid 
false position method. 

Step 5." The expression for the root of the polynomial (N/D) is 
updated. 

Step 6: The next plaintext character M i is read. 

Step 7: The value Ki-~ [(N+Mi_1)XOR(D + M i _ l )  ] m o d p  is 
computed, where N and D are obtained from Step 5. 

Step 8: The ith ciphertext character is computed, C~ = 
(K i + Mi) rood p. 

Step 9: i*-i + 1. 

Step 10: Steps 2-9 are repeated until no more characters are left in 
the plaintext. 

828/12/4-7 
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6.3.2. To Decipher 

To decipher a ciphertext, we basically follow the same steps as above, 
except for Steps 6-8 and 10, which need to be modified as follows: 

Step 6': The next ciphertext character C t is read. 

Step 7': From Mi_l, the ( i -  1)th plaintext character, computed in 
the previous cycle, the value of K i = [(N + Mi_l)  XOR(D + Mi_I) ] is com- 
puted. 

Step 8': The ith plaintext character M i =  ( C i - K ~ ) m o d p  is 
obtained. 

Step 10': Steps 2-9 are repeated until no more characters are left in 
the ciphertext. 

6.4. Implementation of the Algorithm 

The algorithms presented in the previous section were implemented on a 
PDP-I 1 computer using the programming language C (see Ref. 11). A listing 
of programs appears in the Appendix. 

In this section, results of two test runs are presented with analysis. (is) 
To study the behavior of the key obtained, we use the chi-square method, (12) 
which is briefly summarized below: 

The chi-square statistic V of observed quantities is given by 

1 (Y:)  
g = - -  Z --rt 

n l<s<k \ P s  ] 

where n is the number of independent observations, Ps is the probability that 
an observation falls into category s, Ys is the number of observations 
actually falling into category s, k is the number of different categories, and 
V, the randomness of the observations (of the keys in our case), can be 
obtained from the chi-square distribution Table.(12) 

Test 1 

Plaintext Used to Encipher 

this is a sample text written with a character set of twenty-nine 
characters, all lower case alphabet and. and new line character, this is 
stored in fil ptext.c and ciphertext will be stored in ctext.c lets include 
some characters abcdefghijklmnopqrstuvwxyz. 
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Po/ynomai/ Used for the Key 

P ( x )  = x 3 - 2 = 0 

A Constant Cons Used as the Initia/ Character of Plaintext 
Encipher-decipher 

C o n s  = 0 

305 

to  

C h a r a c t e r  S e t  U s e d  

W e  used  a c h a r a c t e r  set o f  29 c h a r a c t e r s  for this  test. The c h a r a c t e r  set 

was  [a -z ,  dot ,  b lank ,  new line cha rac t e r ] .  The  key gene ra t ed  by  the  

p o l y n o m i a l  (with  the  help,  o f  course ,  o f  the  p la in tex t  to be e n c i p h e r e d )  was  

as fo l lows  (in g roups  o f  five):  

5 1 28 17 2 27 27 3 23 4 24 12 9 20 8 28 24 7 0 9 
1 1 10 13 19 22 6 12 2 14 2 28 0 17 27 11 13 6 16 0 
13 10 10 24 2 25 14 25 19 5 5 6 8 25 5 2 15 1 1 4 
7 20 22 8 2 3 23 9 2 10 21 13 23 5 23 2 8 26 25 4 
0 21 19 5 23 14 2 13 27 1 14 19 28 27 24 6 21 2 13 4 
5 19 19 11 16 12 12 9 0 27 11 11 2 23 21 1 18 1 23 0 
l 13 20 8 14 24 3 18 18 1 12 12 20 24 15 1 14 5 16 19 
5 4 3 1 2 1 7 12 26 2 14 17 11 19 0 28 23 27 13 11 
4 15 15 15 i 8 1 17 0 5 8 26 15 14 26 7 19 22 1 20 
10 28 3 2 9 23 19 13 24 1 4 0 3 24 9 2 2 15 19 13 13 
28 24 20 3 4 17 17 18 12 25 5 16 16 3 4 5 1 4 3 13 
4 26 2 14 0 27 22 0 23 20 0 26 15 4 11 7 9 3 8 1 
17 5 2 24 6 20 26 26 15 16 21 14 23 25 1 0 6 1 23 19 
3 27 0 12 6 16 0 

C o u n t  o f  O c c u r r e n c e  o f  E a c h  K e y  

N o t e  tha t  coun t  j m e a n s  n u m b e r  o f  o c c u r r e n c e  o f  key j :  

countO = 16 count15 = 9 
count1 = 21 count16 = 7 
count2 -- 18 . count17 = 8 
count3 = 11 count18 = 4 
count4 = 12 coun t l9  = 13 
count5 = 14 count20 = 9 
count6 = 7 count21 = 5 
count7 = 5 count22 = 3 
count8 = 8 count23 = 13 
count9 = 6 count24 = 10 
countlO = 5 count25 = 6 
c o u n t l l  = 7 count26 = 8 
count12 = 9 count27 = 9 
count13 = 12 count28 = 7 
count14 = 10 
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The ciphertext obtained is displayed below (in groups of five; note that an 
asterisk represents new line character): 

eugzu . gvwe xbjdx k gtn yujgh bzcg* bvihf qlmix 
abkmo gnnox yeuny yytou ge v gcvsb m nlf zvmob 
vbqw qihgb . doid . yrhj nfJjs larlg* yobhz xrmcn 

fmwpo rnduif ajsxo uvnfs nwetv pyqab wbkyi k*. b 
ijfmd hbbse kfbvb ysmfo a*zku fso a wtrmn fgxdm 
ps ow btqpk yqug-v dnogo ehbbd ok. z *aopg bl. vh 
bshf i. efy . d. hk qqxtn kyuxh cn 

Plaintext Obtained Back from the Ciphertext 

this is a sample text written with a character set of  twenty-nine 
characters, all lower case alphabet a n d .  and new line character, this is 
stored in file ptext.c and cipher text will be stored in ctext.c lets 
include some characters abcdefghijklmnopqrstuvwxyz. 

Analysis 

Number of  characters in plaintext, 273; cardinality of  character set, 29; 
value of  chi-square statistic V =  50. From the chi-square distribution table 
we found that this value of V was satisfactory. 

Test 2 

Plaintext Used to Cipher 

This is sample text to test our program "CRYPT" .  This text is stored in 
file 'ptext.c'. The coded message is stored in file 'ctext.c'. The program will 
ask the user if he wants to code or decode and take appropriate action. It 
will also ask the user to type in a polynomial to be used as key. It can code 
all ASCII  characters (128). 

Chi-square test is done on the keys generated to encipher or decipher 
this message. All the keys, number of  times they occur and chi-square results 
are then printed. Total number of characters are also printed. For, chi-square 
test number of  characters should be at least five times cardinality of  our 
character set (128). 

In file etext.c, new lines, even new page start at unpredictable places 
because we don' t  know which character could be enciphered to new line or 
new page control character. So, if we try to print ctext.c, we get some 
garbage. But, if that file is deciphered, we get our plaintext i.e. this file 
without any problem. 
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Polynomial Equation Used for the Key 

P ( x )  = x 3 - -  5 = 0 

A Constant Cons Used as Initial P/a/ntext Symbol to Cipher-Decipher 

C o n s  = 0 

Character Se t  Used 

ASCII character set; 128 characters. 

Key Obtained to Cipher-Decipher Text Symbol 

Do you want to code?(y or n ) - y  
Type in key polynomial coefficients 

1 0 0 - 5  

0 3 6 11 106 39 83 76 15 

69 78 81 53 36 63 109 122 87 17 

0 19 49 119 11 61 46 61 59 70 

21 28 65 99 95 100 43 62 41 89 

11 34 109 26 89 88 17 107 71 54 

91 96 119 117 58 65 29 41 13 116 

33 118 107 9 26 83 71 52 79 127 

15 79 117 116 47 63 6 101 15 44 

83 66 85 27 95 30 123 84 115 7 

115 70 31 70 57 63 104 105 14 111 

104 95 32 57 57 27 112 117 31 24 

47 125 66 113 115 91 122 37 31 63 

17 61 7 17 44 63 73 112 23 124 

21 114 109 79 36 127 114 55 127 79 

8 51 94 101 116 13 111 73 112 89 

107 63 44 61 120 69 29 28 107 74 

97 117 52 107 47 109 0 37 101 119 

60 31 1 102 43 112 117 71 106 121 

83 35 18 17 13 116 119 45 78 21 

57 19 34 43 61 49 9 10 61 0 

13 9 52 123 33 76 55 76 25 66 

123 27 44 l i  98 25 84 123 109 111 

30 9 123 84 51 63 118 127 100 87 

19 89 90 35 7 100 51 113 83 66 
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57 105 87 110 55 16 3 51 74 29 

89 45 50 89 125 118 5 17 43 86 

105 42 79 21 48 83 7 74 79 59 

2 77 67 75 122 117 83 32 81 17 

66 21 105 125 42 9 17 94 127 101 

32 29 109 106 11 30 125 37 120 19 

123 102 9 120 127 27 67 116 17 31 

64 59 81 71 18 109 103 99 43 51 

107 10 103 61 68 27 115 13 6 29 

115 70 75 43 102 29 41 67 111 54 

115 125 51 62 55 61 18 49 93 49 

92 45 24 5 87 55 44 5 127 73 

40 111 49 70 51 77 77 16 21 5 

121 50 121 76 99 39 97 123 54 123 

49 24 1 39 38 119 87 102 61 115 

12 15 11 18 23 97 84 55 125 101 

98 73 66 59 69 123 105 28 69 33 

98 7 47 80 29 67 66 i 67 11 

46 63 124 15 108 63 75 86 9 109 

67 103 113 62 79 7 64 11 77 52 

127 24 105 92 89 1 0 3  18 115 101 92 

107 87 123 100 63 127 4 6  21 87 64 

53 122 123 19 76 29 114 33 124 69 

34 9 89 112 57 121 85 42 125 60 

15 73 70 85 4 .11 63 48 75 45 

46 1 39 81 122 71 103 21 125 78 

7 65 72 119 119 110 85 80 27 71 

74 59 3 33 96 65 34 13 105 44 

55 15 81 92 11 92 49 34 51 113 

59 81 8 57 65 69 49 24 33 57 

90 19 76 97 109 14 25 110 33 77 

110 101 127 20 99 19 86 31 64 7 

57 76 127 120 77 18 89 68 33 63 

111 80 75 113 7 125 102 9 89 80 

55 34 13 120 45 72 53 15 91 86 

109 34 97 1 96 65 98 75 98 107 

125 107 8 39 4 119 102 91 97 36 

75 113 58 35 109 82 15 71 78 39 

53 49 68 125 13 53 26 29 127 71 
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13 98 99 92 121 51 14 65 54 87 

83 66 107 25 71 63 78 39 115 81 

119 12 109 28 99 54 85 40 85 5 

87 60 51 21 56 35 109 66 11t 53 

53 64 119 110 5 27 69 94 77 21 

80 127 26 51 88 25 59 63 56 53 

69 78 49 103 87 52 105 82 55 29 

57 101 124 49 111 115 10 55 10 25 

12 63 77 121 107 113 72 23 67 49 

82 103 61 104 101 64 37 61 25 30 

115 55 8 125 75 14 83 32 17 77 

108 99 18 9 59 4 55 111 72 125 

23 44 13 95 122 57 60 73 11 36 

5 99 58 63 45 122 9 56 33 71 

28 49 37 83 11 45 84 5 91 94 

51 117 73 50 119 14 121 30 105 7 

105 120 7 13 15 8 19 34 19 21 

26 45 109 112 95 31 78 23 70 37 

97 4 35 47 49 40 81 57 6 59 

69 83 80 3 83 64 47 98 79 61 

88 35 37 62 107 38 13 17 11 28 

71 35 95 99 28 27 29 120 13 70 

35 37 24 51 8 127 44 49 30 23 

122 29 64 35 37 119 61 84 115 97 

18 119 71 8 69 79 84 1 5 111 

8 43 102 111 5 41 81 120 121 21 

124 77 30 59 

112 33 51 60 

49 119 96 49 

63 127 61 l l l  126 113 

103 31 77 56 95 14 

113 2 21 27 86 77 

113 118 9 61 38 13 123 116 1 109 

101 68 119 38 79 35 123 83 24 71 

51 52 109 57 16 59 115 106 51 35 

18 9 69 21 112 109 103 68 119 49 

25 24 17 55 61 23 48 87 54 39 

85 113 38 101 69 39 38 113 109 4 

99 66 123 85 108 15 65 19 80 99 

81 88 31 100 121 101 45 99 103 6 

83 104 121 75 20 67 85 



310 Akritas, lyengar, and Rampuria 

Count of Occurrence of Each Different Key 

N o t e  t h a t  c o u n t j  m e a n s  n u m b e r  o f  o c c u r r e n c e s  o f  k e y  j :  

c o u n t O  = 4 c o u n t 4 2  = 3 c o u n t 8 4  = 7 
c o u n t l  = 7 c o u n t 4 3  = 7 c o u n t 8 5  = 9 
c o u n t 2  = 2 c o u n t 4 4  = 8 c o u n t 8 6  = 5 
c o u n t 3  = 4 c o u n t 4 5  = 9 c o u n t 8 7  = 11 
c o u n t 4  = 5 c o u n t 4 6  = 4 c o u n t 8 8  = 4 
c o u n t 5  = 9 c o u n t 4 7  = 6 c o u n t 8 9  = 10  
c o u n t 6  = 5 c o u n t 4 8  = 3 c o u n t 9 0  = 2 
c o u n t 7  = 11 c o u n t 4 9  = 18  c o u n t 9 1  = 5 
c o u n t 8  = 6 c o u n t 5 0  = 3 c o u n t 9 2  = 6 
c o u n t 9  = 1 3  c o u n t 5 1  = 1 6  c o u n t 9 3  = ] 
c o u n t l O  = 4 c o u n t 5 2  = 6 c o u n t 9 4  = 4 
c o u n t 1 1  = 13  c o u n t 5 3  = 8 c o u n t 9 5  = 7 
c o u n t 1 2  = 3 c o u n t 5 4  = 6 c o u n t 9 6  = 4 
c o u n t 1 3  = 1 4  c o u n t 5 5  = 1 4  c o u n t 9 7  = 8 
c o u n t 1 4  = 6 c o u n t 5 6  = 4 c o u n t 9 8  = 7 
c o u n t 1 5  --- 11  c o u n t 5 7  = 13  c o u n t 9 9  = 12  
c o u n t 1 6  = 3 c o u n t 5 8  = 3 c o u n t l O 0  = 5 
c o u n t 1 7  = 12  c o u n t 5 9  = 11 c o u n t 1 0 1  = 1 2  
c o u n t 1 8  = 9 c o u n t 6 0  = 5 c o u n t 1 0 2  = 7 
c o u n t 1 9  = 10  c o u n t 6 1  = 1 6  c o u n t 1 0 3  = 1 0  
c o u n t 2 0  = 2 c o u n t 6 2  = 4 c o u n t 1 0 4  = 4 
c o u n t 2 1  = 1 4  c o u n t 6 3  = 1 7  c o u n t 1 0 5  = 1 0  
c o u n t 2 2  = 0 c o u n t 6 4  = 8 c o u n t 1 0 6  = 4 
c o u n t 2 3  = 7 c o u n t 6 5  = 8 c o u n t 1 0 7 - - 1 2  
c o u n t 2 4  = 8 c o u n t 6 6  = 1 0  c o u n t 1 0 8  = 3 
c o u n t 2 5  = 8 c o u n t 6 7  = 8 c o u n t 1 0 9  = 1 8  
c o u n t 2 6  = 5 c o u n t 6 8  = 5 c o u n t 1 1 0  = 5 
c o u n t 2 7  = 9 c o u n t 6 9  = 12  c o u n t 1 1 1  = 1 2  
c o u n t 2 8  = 7 c o u n t 7 0  = 8 c o u n t 1 1 2  = 8 
c o u n t 2 9 o  = 1 2  c o u n t 7 1  = 13  c o u n t 1 1 3  = 12  
c o u n t 3 0  = 7 c o u n t 7 2  = 4 c o u n t 1 1 4  = 3 
c o u n t 3 1  = 9 c o u n t 7 3  = 7 c o u n t 1 1 5  = 13  
c o u n t 3 2  = 4 c o u n t 7 4  = 4 c o u n t 1 1 6  = 6 
c o u n t 3 3  = 10  c o u n t 7 5  = 9 c o u n t 1 1 7  = 7 
c o u n t 3 4  = 8 c o u n t 7 6  = 7 c o u n t l l 8  = 4 
c o u n t 3 5  = 11 c o u n t 7 7  = 1 2  c o u n t 1 1 9  = 1 6  
c o u n t 3 6  = 4 c o u n t 7 8  = 7 c o u n t 1 2 0  = 8 
c o u n t 3 7  = 9 c o u n t 7 9  = 1 0  c o u n t 1 2 1  = 1 0  
c o u n t 3 8  = 6 c o u n t 8 0  = 7 c o u n t 1 2 2  = 6 
c o u n t 3 9  = 9 c o u n t 8 1  = 10  c o u n t 1 2 3  = 1 4  
c o u n t 4 0  = 3 c o u n t 8 2  = 3 c o u n t 1 2 4  = 5 
c o u n t 4 1  = 4 c o u n t 8 3  = 1 4  c o u n t 1 2 5  = 13  

c o u n t 1 2 6  = 1 
c o u n t 1 2 7  = 1 5  

Ciphertext Obtained 

I t  w a s  n o t  p o s s i b l e  t o  p r i n t  t h e  c i p h e r t e x t  f i le ,  i n  a m a n n e r  s o  t h a t  i s  

c o u l d  b e  i n c l u d e d  h e r e ,  b e c a u s e  i t  h a d  u n p r e d i c t a b l e  n e w  l i n e  a n d  n e w  p a g e  

c h a r a c t e r s ,  w h i c h  c a u s e d  t h e  p r i n t e r  t o  a c t  s t r a n g e .  B u t  w e  d i d  g e t  t h e  

p l a i n t e x t  b a c k .  
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Plaintext Obtained Back from Ciphertext 

This is sample text to test our program "CRYPT."  This text is stored in 
file ptext.c. The coded message is stored in file ctext.c. The program will ask 
the user if he wants to code or decode and take appropriate action. It will 
also ask the user to type in a polynomial to be used as key. It can code all 
ASCII  characters(128). 

Chi-square test is done on the keys generated to encipher or decipher 
this message. All the keys, number of times they occur and chi-square results 
are then printed. Total number of characters are also printed. For, chi-square 
test number Of characters should be at least five times cardinality of our 
character set(128). 

In file ctext.c, new lines, even new page start at unpredictable places 
because we don't know which character could be enciphered to new line or 
new page control character. So, if we try to print ctext.c, we get some 
garbage. But, if that file is deciphered, we get our plaintext i.e. this file 
without any problem. 

Analysis 

Total number of characters in plaintext, 1007; cardinality of character 
set used (ASCII), 128; value of chi-square statistic V =  253. The value of V 
in this case shows that our keys were not very random. Part of the reason for 
this was that only few characters were used in the plaintext out of the 
character set. We should try to choose a character set such that most of the 
characters would be used all the time. 

7. CONCLUSIONS 

The proposed scheme is an efficient and crypto secure method for crup- 
tography. The chi-square test was used to study the behavior of the keys 
used to cipher-decipher each character of the text. The language used to 
implement the transformation algorithm was the C programming language. 
The scheme proposed in this paper provides a sufficient amount of keys from 
one polynomial and a constant that need to be exchanged only once between 
the communicating parties. 

Open Questions for Further Study 

The repetition cycle for certain polynomials is very small, which makes 
our keys less random. So, to better conceal our message, such polynomials 
should be modified. Also, if the text has some repeating pattern, it could 
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induce some pattern in our keys, and we should modify our algorithm for 
this kind of text. 

APPENDIX. ALGORITHMS 

Algorithm Upper Bound (P, n) 

To compute the exact upper bound of the root of the polynomial using 
Corollary 4.1. Let P be the array of coefficients of the polynomial and n be 
the degree of the polynomial. (In these algorithms the polynomial has one 
sign variation in the sequence of its coefficients.) 

Set max to 0 
Set i to n 

While (P; < =  0) 
if (Abs(P;) > max) 

max ~ Abs(Pi) 
i ~ i - - 1  

End-if 
End-while 

Set v to i 
for i = 0  to i < =  v by increment of 1 do 
Sum ~ Sum + Pi 
End-for 
upbound ~- (max/Sum + 1) 
End Algorithm. 

Algorithm Lower Bound (P, n, upbound) 

To compute the exact lower bound of the root of the polynomial using 
the hybrid false position method. Let P be the array of coefficients of the 
polynomial, n the degree of the polynomial, and upbound the upper bound of 
the root of the polynomial. 

Set Xold ~ 0 
Set Lx ~ 0 
Set Rx ~ upbound 
Set done ~ no 

LVAL ~ Po(LX)" + PI (LX)  n 1 + . . .  + P .  
RVAL ~ Po(RX)" + P l (RX)  n-1 + . . .  + Pn 

While (done equals no) do the following: 
ILX ~ [LX] (floor function) 
ILX ~ [RXI 
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If  ( A b s ( I L X  - I R X )  < =  1) then 

if ( L V A L  and R V A L  are both + ve or both - ve) 
X N E W  = L X  

Else N X E W  = R X  
Set done ~- Yes 

Else slope ~- ( L V A L  - R V A L ) / ( L X  - RX)  
N X E W  ~- (LX -- LVAL) /S lope ;  
N E W V A L  = P 0 ( X N E W ) "  + P I ( X N E W )  n - I  + . . .  + Pn 
If ( N E W V A L  and L V A L  are both + ve or both - ve) 

LX ~- X N E W  
L V A L  ~ N E W V A L  
R V A L  ~ R V A L / 2 . 0  

Else 
R X  ~ X N E W  
L X  ~ L V A L / 2 . 0  

End-if  
X O L D  *- X N E W  
End-if  

End-while 
I X N E W  ~ X N E W  
Lower bound ~- I X N E W  
End of  Algor i thm.  

Algorithm Translate (P, n, A)  

To translate  a po lynomia l  P(x) to P(A + 1/x). Let P be the ar ray  of  the 
coefficients of  the po lynomia l  and n be the degree of polynomial .  

For  i~-  0 to i < =  n by increment of  1 do 
Fo r  j ~ 0  to j < =  n by increment of  1 do 

M i , j ~  0 
End-for 

End-for 

Fo r  i ~  1 to i < =  n by increment of  1 do 

Mo,i+--Mo,i_ 1 *A +Pt 
End-for 

For  i ~  1 to i < =  n -  1 by increment of  1 do 

Mi,0 +- P0 
k ~ n - 1  
For  j +- 1 to j < =  k by increment  of  1 do 

Mi,j,.-A �9 Mi,y_ 1 + Mi- l , j  
End-for 
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End-for 

Mn,0 ~ P0 

For i ~ 0  to i <=  n by increment of 1 do 
k ~ n - - 1  

If M0, . < 0 
Pi : --Mi,k 

Else 
Pi = Mi,k 

End-for 
End of Algorithm. 

Algorithm Update (P, Q, A) 

To update the expression of the root x of the polynomial P by the 
partial quotient A. 

Set N,:-- Po * A + Pi 
Set D,:--Qo * A + Qi 
Set X ~ N/D 

Set P0 ~ P1 
Set Q0 ~ Q1 
Set Pi ~ N 
Set Qi ~ D 

End of Algorithm. 

Algorithm Encipher (M, C) 

M represents the plaintext and C the ciphertext. Let Cons be the 
constant for the encipherment of the initial character of the plaintext, and let 
size be the integer modulo which all arithmetic is performed. 

Initialize: 
Po~-O 
Q0'-- 1 
P l ~  1 
Q1,-- o 

i ~  I, Mo +- 0 

Key ~ Cons 
Num ,- 0 
Den ~ 0 

Read the polynomial k and degree of polynomial n 
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While there are characters to encipher do 
Max ~ upbound (k, n) 
Min ~ lowbound (k, n, max) 
Update (P, Q, min) 
Translate (k, n, min) 
Num2 ~ Num + Keyl  
Den2 ~- Den + Key 1 
Key2 ~ (Num2 XOR Den2) mod size 
get a character M i to encipher 
C i ~ ( M  i + Key2) mod size 
Key 1 = M,. 
i ~ i +  1 

End-while 
End of Algorithm. 

Algorithm Decipher (C,M) 

Variable names are the same as in the previous algorithm. 

Initialize: 
P 0 ~ 0  
Q0 ~ 1 
P 1 ~ 1  
Q I ~ 0  

Keyl ~ Cons 
Num ~ 0 
Den ~ 0 

Read the polynomial k and the degree of polynomial n 

While there are characters to decipher do 
Max ~ upbound (k, n) 
Min ~- lowbound (k, n, max) 
Update (P, Q, rain) 
Translate (k, n, rain) 
Num2 ~- Num + Key I 
Den2 ~ Den + Key 1 
Key2 ~ (Num2 XOR Den2) rood size 
get a character C i to decipher 

M i ~ ( C  i - Key2 + size) rood size 
Keyl  ~- K i 

i*-- 1 + 1 
End-while 
End of Algorithm. 
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