
International Journal of Computer and Information Sciences, Vol. 12, No. 4, 1983

Computationally Efficient Algorithms

for a One-Time Pad Scheme

A. G. Akritas, 1 S. S. lyengar, 2 and A. A. Rampuria 3

Received November 1982; revised June 1983

The use of cryptography for data protection has received a great deal of
attention in recent years. This paper presents computationally efficient
algorithms for the implementation of a one-time pad scheme. The algorithms to
encipher and decipher text were implemented on a PDP-I 1 computer using the
programming language C. To study the behavior of the keys used to encipher
and decipher text, we used the chi-square method, and the test results of two
runs are presented with some statistical analysis.

KEY WORDS: Cryptography; ciphers; security; algorithms; data protection;
cryptology; one-time pads.

1. I N T R O D U C T I O N

The use of cryptography for data protection has received a great deal of

attention in recent years (see, e.g., Refs. 7 -10 and 17). In today's complex

society, as the need for fast electronic communicat ion has grown, so has the
need to secure the information being communicated. Furthermore, interest in

cryptography is expected to rise with increasing use of the electronic fund

transfer system and other applications needing data security and
protection. (9)

This paper presents efficient algorithms for the implementat ion of a one-
time pad scheme and is organized as follows. Section 2 describes definitions,

~ Department of Computer Science, University of Kansas, Lawrence, Kansas 66045. This
author was partially supported by the General Research Fund (No. 3230-20-0038) of the
University of Kansas.

2 Department of Computer Science, Louisiana State University, Baton Rouge, Louisiana
70803.

3 Department of Computer Science, University of Kansas, Lawrence, Kansas 66045.

285

0091-7036/83/0800-0285S03,00/0 �9 t983 Plenum Publishing Corporation

286 Akritas, lyengar, and Rampuria

notations, and preliminary results�9 Section 3 presents an overview of the
proposed scheme. Section 4 describes the mathematical formulation of the
scheme. Section 5 presents some empirical results obtained during the study.
Section 6 describes computational algorithms of the scheme and Section 7
presents the conclusion of the study and some open questions.

2. DEFINITIONS, NOTATIONS, AND PREVIOUS RESULTS

In this section we review some terminology and some fundamental
results concerning one-time pads. (1'2'4)

2.1. Cryptographic Functions

We define a cryptographic function to be one of the form E = g(k, m),
where for fixed k, the funct ionfk(x) = g(k, x) is one-to-one; m is a string of
bits (the message to be sent), k is the key, and E is the enciphered message.
The key structure determines a sequence (il,..., is) and has the following
transformation scheme:

E = g(k, m)
(1)

E = f~.l(fh (... f /s(m)) . . .)

Normally, onef~ is a mixing transformation. In order to decode the message,
the key and the enciphered message are used to undo the transformations f~j
one-by-one in reverse order. For more information on this refer to Refs. 16
and 18.

2.2. Polynomial Equation

In this paper, we define a real root x of a polynomial equation by a
continued fraction of the following form:

x = a ~ + 1

a 2 + 1

a 3 +
�9 ~ .

1 (2)
a m + 1/y

Algorithms for a One-Time Pad Scheme 287

Where a ~ , a 2 a m are integers (partial quotients). The continued
fraction can also be structured as follows:

X-- PraY+Pro-1 (3)
QmY+ Ore-,

where P k / Q k is the kth convergent to

and

alq- 1

a 2 + 1

a3-k

Pk+ I = a k + l P k + P k - ~
(4)

Ok+, = a k + l O k + O k - I

We refer to the right-hand side of Eq. (3) as the "expression for the root of
the polynomial."

2.3. Floor Functions

Let x be a positive real number. F is called the floor function of x if

F (x) =

where I is the greatest integer such that I ~ x; F (x) is represented by Ix I.

2.4. Key

The key is used to encipher-decipher text. Without the knowledge of the
key the ciphertext "cannot" be deciphered.

2.5. One-Time Pad

This is a cryptographic scheme according to which the ith ciphertext
character C i is obtained by the formula C i = M i + Ki(mod 26), where M i is
the ith plaintext character and K i is the ith key character. Since the key is
never repeated, one-time pads are unconditionally crypto secure; their main
drawback, however, is the key management (for obvious reasons).

2.6. Partial Quotients

The integers a l , a 2 , . . . , a m in Eq. (2) are called partial quotients.

288 Akritas, lyengar, and Rampuria

2.7, Unconditionally Crypto Secure

This is a method for cryptography whose security is totally dependent
on the knowledge of the keys used, and without the knowledge of which it is
impossible to decipher the intercepted message.

2.8. Previous Results--Akritas" Approach

Akritas (~) proposed a one-time pad scheme where the key management
does not present a problem. In this scheme, based on Vincent's
theorem, (1'6'2~ successive continued fraction transformations are used to
isolate and approximate the single, irrational, positive root of a polynomial
equation and the partial quotients themselves are used as the key. Thus the
key is "concealed" in a polynomial equation that can be easily exchanged
using the public key-distribution methods described in Ref. 14.

Before we get into any further discussion, we would like to present an
example using Akritas' scheme (4) in order to gain some insight into the
problem.

Let us consider "AIKBS" to be the text that party A wishes to
communicate to party B. We call this the plaintext. Let A be in Washington,
D.C., and B in Moscow. Party A does not want to send the plaintext as is,
because anybody who intercepts it will also share the same information. So,
he sends a different version of the text (ciphertext), from which B can easily
retrieve (decipher) the original text (plaintext) by applying some predefined
algorithm to obtain the key. Anybody else who intercepts the ciphertext
would not be able to retrieve the plaintext without the knowledge of the key.

In our case the key is contained in a polynomial equation with one
irrational root; this equation should be securely exchanged between A and B
before commencement of communications�9

Let the polynomial equation be

Pl(x)=x 3 - 2 = 0 (5)

which has one sign variation in the sequence of its coefficients 1 0 0 - 2 .
Party A does the following:

Step 1: He computes the floor function al of the root of this
polynomial; this turns out to be 1. This is the first partial quotient in the
continued fraction expansion of the root

x = l + 1

a 2 + 1

a 3 +

Algorithms for a One-Time Pad Scheme 289

Stop 2:
'A ' of the plaintext as follows:

This a 1 is used as the first key to encipher the first character

cipher symbol C 1 = (a I + 'A ') rood 26

= (1 + 'A ') mod 26

= 'B ' (6)

Stop 3: The polynomial P~(x) is transformed to P 2 (x) ~ P ~ (1 + 1/x),
where after computations we have

P2(x) = --x 3 + 3x 2 + 3x + 1 (7)

(The computations involved are explained in Section 4.)
Now, Steps 1-3 are repeated with polynomial P2(x) in place of Pl(x),

and the second character in the plaintext T, this gives us

a 2 = 3

C2 = 'L ' (8)

P3(x) = 10x 3 - 6x z - 6x - 1

By repeating Steps 1-3 for each character in the plaintext, we obtain the
following:

a 3 = 1, C 3 - - ' L ' ,

a4 = 5, C4 = ~

a 5 = 1, C 5 = 'T '

P4(x) = - 3 x 3 + 12x 2 + 24x + 10

Ps(x) = 55x 3 + 81x 2 + 3 3 x - 3 (9)

Hence, the ciphertext is ' B L L G T ' and this is sent to B over an insecure
channel.

Now B, who receives this ciphertext, can easily decipher it, starting with
the polynomial Pl(x). He performs Steps 1 and 3 exactly as mentioned
above. However, Step 2 is modified so that

plaintext symbol Pi = (Ci - ai) mod 26

Thus, the original plaintext 'A IKBS ' will be recoved.
In the above example, we can see that, after each execution of Step 3,

the coefficients of the polynomial are becoming large (in absolute value) and
also that out of the five partial quotients, ai's, three were one. So most of the
time the key used to encipher or decipher was one. (13) Hence, to better
conceal our message, these keys sould be made more random.

290 Akritas, lyengar, and Rampuria

In the present study, we propose some modifications to the above
scheme to keep the coefficients within one word of memory and to make the
keys as random as possible. Several possibilities are considered and
analyzed. Finally, an algorithm is presented that does accomplish our
requirements. To do so, we have used the plaintext itself as part of our
coding scheme. However, this does not make the system less secure.

3. AN OVERVIEW OF THE PROPOSED SCHEME

In this section we present an overview of our scheme and the
mathematics involved. The ideas are further explained and analyzed in full
detail with empirical results in subsequent sections.

3.1. One-time Pads in Cryptography

As we saw above, one-time pads are unconditionally crypto secure, i.e.,
since we use a different key to encipher each character in the plaintext, it is
impossible to recover the plaintext without the knowledge of the whole key.
For example, consider the scheme C i = (Mi + K t) rood 26, where the ith
ciphertext symbol C i is obtained by adding rood 26 the ith message symbol
M~ and the ith key symbol K i. Clearly, without knowledge of the Ki's it is
impossible to recover the Mt's. However, one is faced with the difficult task
of generating and distributing enormous amounts of key, an operation that
renders the scheme very expensive to use.

3.2. Use of a Polynomial Equation to Generate the Key

A polynomial equation with one sign variation in the sequence of its
rational coefficients has exactly one positive root; choose the equation so
that the root is a nonquadratic irrational number (this will guarantee that the
sequence of partial quotients is never repeated). Akritas, based on Vincent's
theorem, ~1) uses continued fractions and the idea that each partial quotient is
the floot function of the positive root of a polynomial to approximate the
real root. As this root can be approximated to any degree of tolerance, and
the partial quotients do not repeat, theoretically, we can get an infinite
number of them, which can be used as the key. However, we have the
following interesting fact.

Algorithms for a One-Time Pad Scheme 291

3.3. Behavior of the Partial Quotients

For almost all real numbers, the probability that the nth partial quotient
a~ in the continued fraction expansion of a real number is equal to a positive
integer j is given by

log 2 (J + 1) 2
j (j + 2)

F o r j = 1 and almost all numbers, this means that the probability that a , = 1
is approximately 0.41J TM Therefore, in order to better conceal message, our
scheme has to be modified. Instead of using the partial quotients themselves
as the key, we now use the number obtained from exclusive-ORing rood p
the denominator and numberator of the updated expression for the root of
the equation. That is, after the ith transformation of the polynomial equation
has been performed, the root is represented by

x = n i / d t, where n i = P m Y + P m _ 1 and d i = Q m Y + Q m _ l (10)

we then choose K i= (n i X O R dr) rood p to be our key. This scheme is
explained in detail below (see Section 3.6).

3.4. Coefficients of the Transformed Polynomial Equation

In the above-mentioned scheme, to approximate the real root, the
polynomial equation P(x) --- 0 goes through successive transformations of the
form P(x) ~ P(b + 1/x), which is equivalent to the pair of transformations
P(x) ~ (b + x) and P(x) ~P(1 /x) , where b is some partial quotient a , . In
this process, the coefficients of the polynomial start to get large, and even-
tually it becomes impossible to store them in one computer word of memory.
As we intend to implement our method on a reasonably small system, we
decided to use modular arithmetic, thus guaranteeing that the coefficients can
always be stored in one word of memory (i.e., after each transformation we
make sure that the coefficients stay within a given range). By modifying the
polynomial in the above manner after each transformation, we found that the
polynomial repeats itself after a certain number of transformations and so
does our key. The cycle length of the partial quotients was found to be an
integer multiple of the cycle length of the polynomial. So, we need some
further modifications.

3.5. Use of the Plaintext Itself as Key

The plaintext itself can be (and has been) used to generate the key. For
example, consider the scheme C i = (M i I + M i) rood 26, where the M i lth

828/12/4-6

292 Akritas, lyengar, and Rampuria

character is used as the key to encipher the M~th character in the plaintext.
Initially we have C O = (M 0 + K) rood 26, where K is some constant. So if we
know K, we can decipher the ciphertext very easily. But, clearly this kind of
scheme, which only depends on the plaintext, is very insecure, since K could
easily be found by applying all the integers in the range 0-25, and one can
easily decipher any message. We use this idea in the following way.

3.6. A Hybrid Method

In our method, we start out with the polynomial equation, and proceed
as explained before, but instead of using K i = (n i XOR di) rood p, we modify
it to be

Ki = (ni + mi-1) XOR(di + mi-1) mod p

where hi, di, and p are as before and mi_ ~ is the (i - 1)th character in the
plaintext. Initially we can have m 0 be any constant.

Thus, our scheme is secure, because the Ki's c a n n o t be known until the
n~'s and di's are known or until the polynomial itself is known. Also, the Ki's
do not produce any cycle because the Mt's do not. (In a future work we hope
to examine the problem of plaintext attack.)

4. MATHEMATICAL STRUCTURE--BACKGROUND

In this section we present in detail the various steps involved in our
procedure. We start with presenting the main theorem used to isolate and
approximate the real roots of a polynomial equation. The proof of this
theorem is quite lengthy, and since it appears in the literature, it will be
omitted.

Theorem 4.1. (Vincent-Uspensky-Akritas): Let P(x) = 0 be a
polynomial equation of degree n > 1, with rational coefficients and without
multiple roots, and let A > 0 be the smallest distance between any two of its
roots. Let m be the smallest index sueh that

F m 1A/2 > 1 and F,~_IFmA > 1 + 1 /~

where F k is the kth member of the Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21

and

~n = (1 + 1/n) 1/~-1~ - 1

Algorithms for a One-Time Pad Scheme 293

Then the transformation [Eq. (2)]

x = a l + 1

a2+ 1

a 3 + 1

a4 +

1

a m + 1/y

(which is equivalent to the series of successive transformations of the form
x = a i+ 1/y, i = 1, 2 m) with arbitrary, positive integral elements
al, a2 a m, transforms the equation P (x) = 0 into the equation P (y) = O,
which has not more than one sign variation in the sequence of its coef-
ficients.

The above theorem is applied as follows:

The continued fraction transformation (2) can also be written as

Pm Y + Pro- l X--

(i)
[Eq. (3)]

QmY + Qm-1

where Pk/Qk is the kth convergent to the continued fraction

a t + 1
a 2 + 1

a 3 + l

and, as we recall [Eq. (4)]

Pk+l =ak+IPk +Pk-1

Qk+l=ak+lQk+Qk 1

(ii) Provided there are positive roots, when the partial quotients ai's
are properly chosen, P(x) leads to an equation P (y) = 0 with exactly one
sign variation in the sequence of its coefficients. Then from the Cardano-
Descartes rule of signs we know that P (y) = 0 has one root in the interval
(0, oo). If y was this positive root, then the corresponding root x of P(x)
could be easily obtained from Eq. (3)�9 We only know that y lies in the
interval (0, oo); therefore, substituting y in Eq. (3) once by 0 and once by oe,
we obtain for the positive root x an isolating interval whose unordered end

294 Akritas, lyengar, and Rampuria

points are Pm-l/Qrn-I and Pm/Qm" Note that to each positive root there
corresponds a different continued fraction. At most m partial quotients have
to be computed for the isolation of any positive root. (Negative roots can be
isolated if we replace x by - x in the original equation.)

The calculation of the quantities a t for the transformation of the form
(2) that leads to an equation with exactly one sign variation constitutes the
real root isolation procedure. Two methods actually result, Vincent's and one
due to Akritas, corresponding to two different ways in which the
computation of the ai's may be performed.

Vincent's method basically consists in computing a particular a i by a
series of unit incrementations; that is, a t ~ a t + 1, which corresponds to the
substitution x ~ x + 1. This "brute force" approach results in a method with
an exponential behavior. Therefore, Vincent's method is of little practical
use.

On the contrary, in the method developed by Akritas a partial quotient
is immediately computed as the lower bound b of a positive root of a
polynomialS3); that is, a t +- b, which corresponds to the substitution x ,-- x + b
performed on the polynomial under consideration at that stage. It is obvious
that this method is independent of the size of the a;'s and results in a method
with polynomial computing time bound. Akritas used Cauchy's rule
repeatedly to find the lower bound b on the value of positive root. (One can
safely conclude that the filor function of a root is equal to its lower bound
b).

In approximating the root the efficiency of the computation of the lower
bound can be improved if instead of Cauchy's rule we use the following
theorem and its corollary.

Theorem 4.2. If each negative coefficient of a polynomial is taken
positively and divided by the sum of all the positive coefficients that precede
it, the greatest of all the fractions thus formed increased by unity is an uppe r
bound of the positive roots.

Corollary 4.1. If the polynomial equation has only one sign variation
in the sequence of its (positive) coefficients and is represented by

P(x)=a.x" + . ' . § X r + l - - a r X r a 0

then an upper bound of the positive root is given by

[b = _ max abs(aj) a i + 1
[0 < j < r i 1

Algorithms for a One-Time Pad Scheme 295

The proof of this corollary is obvious from the above theorem because
the denominator is constant. So, for our case, that is, where the polynomial
has one sign variation, this is clearly an efficient way to compute the upper
bound of the root.

Ng (15) used the bisection method to find the floor function of the root.
We chose to use the hybrid false position method, (~6) presented below, to do
the same thing because the rate of convergence is much faster than that of
the bisection method.

4.1. The Hybrid False Position Method for Computing the Floor Function

Let P(x)= 0 be the polynomial equation with one sign variation. We
start with two values x + and x o, such that P(x +) > 0 and P(x~) < 0. At the
(i + 1)th iteration the algorithm takes the interval endpoints x + and x{ and
computes a new endpoint xi+ 1 as the zero of the line going through P(x +)
and P(xT) as follows:

x[P(x?) -- x{P(x?)
xi+l = P(x?) --P(x +)

If P(xi+ 1) > 0, then x++ 1 ~ xi+ 1 and xi+ 1 ~ X/-~ otherwise, xi+ ~ ~ xi+ i and
x++~ ~ x +. Thus, the interval [x+,xT] keeps reducing and the method
converges. We keep computing the new iterate x i until abs([x +] - [x T])
becomes less than or equal to one. Also, at the end of each iterative step,
replace the value of P(x 7) or P(x +), whichever is not changed, to K times its
value, where K is some constant, 0 < K < 1. By doing so, the speed of
convergence is increased. We have chosen K to be 1/2.

Let [xT, x +] be the interval at the end of this iterative process. In our
case xi- and x + are both positive, since we start with the interval (0, o0). So
if P([x +]) > 0, [x•] is the lower bound; otherwise, [x +] is the lower bound.

As an example, let us consider the following polynomial P(x) with one
sign variation(19):

x 3 - 2 x - 5 = 0

The upper bound of the root of P(x) is obtained using Corollary 4.1; it
is

U = max(2, 5) + 1 = 6
1

To compute the floor function (or the lower bound) of the root of P(x) we
start with the interval [0, 6] and denote x o- = 0 and x0 + = 6.

296

We have

Akritas, lyengar, and Rampuria

e (o) = - 5

P(6) = 199

6 , (- 5) - 0 . 199

xl = --5 -- 199

--30
-- - - - 0 . 1 4 7

--204

P(0.147) = --5.29 < 0

Hence, now the interval is [0.147, 6]. Since the endpoint 6 is not changed,
the value of P(6) is taken to be K �9 P(6), where K is chosen to be 1/2. Hence

199
P(6) - T - 99.5

6 �9 (- 5 . 2 9) - 0 . 1 4 7 �9 99.5

x2 = - 5 . 2 9 - 99.5

= 3 . 1 3

P(3.13) = 19.4

Now, the interval becomes [0.147, 3.13]. Next we have

3.13 �9 (' 5 . 2 9) - 0 . 1 4 7 , 19.4

x3 = - 5 . 2 9 - 19.4

= 0 . 7 8 5 7

P(0.7857) = - 1 . 7 2

So the interval is [0.785, 3.13] and P(3.13) becomes 19.4/2 = 9.7. Next

3.13 �9 (- -1 .72) - -0 .785 , 9.7
x4 = --1.72 -- 9.7

= 1.13

P(1.13) = --0.581

So, the interval becomes [1.13, 3.13] and P(3.13) becomes 9.7/2 = 4.8. Next

3.13 �9 (- 5 . 8 1) - 1.13 �9 (4.8)
x5 = -5 .81 -- 4.8

= 2.22

P(2.22) = 1.50

Algorithms for a One-Time Pad Scheme 297

So, the interval becomes [1.13, 2.22]. Now, [2.22] - [1.13] = 2 - 1 = 1, and
we are ready to decide whether 2 is the lower bound; otherwise, 1 will be

chosen. We have

P(2) = - 1 and P(2.22) = 1.50

This implies that the root is in the interval [2, 2.22]. Hence 2 is the floor
function.

4.2. A Method for the Translation of a Polynomial

As we have seen, we need to perform the following transformation:

P(x) ,-- P(b + 1/x)

The above is equivalent to the following pair:

P(x) +- P(b + x) and P(x) ~ P(1/x)

The second transformation can be easily done by simply inverting the order
of the coefficients of the polynomial, and so we are mainly concerned about
the first one. We have used the Ruff ini-Horner method(5); a straight-line
algorithm corresponding to it is the following:

Assume that P(x) = Y~'~-~ aix i. Now,

Cjo ~--- an_ l

Co,s+l~Co,j*b+a~_l_(j+l) (j = 0 , 1,.,., n - 2)

C k , j ~ C k , j _ l * b § j (k = l , 2 , . . . , n - - 2 ; j = l , 2 , . . . , n - - l - - k)

s 1. Translation using the Ruff ini-Horner method. Let us
take the polynomial

P(x) = 3x 3 - 12x z - 24x - 10 = 0

and suppose that we want to compute

P(5 + l/x)

First we do the transformation P(x) ~ P(x + 5):

3 - 1 2 - 2 4 --10

5 3 3 - 9
5 3 18 81
5 3 33
5 3

- 5 5

298

and we obtain

Akritas, lyengar, and Rampuria

P (x) , - - P (x + 5) = 3x 3 + 33x 2 + 81x - 55

Now we do the second transformation

P (x) ~ e (1 / x)

which is achieved by inverting the order of the coefficients of the equation,
i.e.,

P(x) ~-P(1/x)=-55x 3 + 81x 2 + 33x + 3

5. EMPIRICAL RESULTS

In this section, we present some of the results obtained during the study.
Since it is not possible to include in this report all of the results obtained, we
have decided to present a few selected cases.

In Section 2 we mentioned that 41% of the time the partial quotient
a n = 1; for example, consider the polynomial equation

x 4 - 8x 3 - 3x 2 - 32x - 8 = 0

The partial quotients are

(11, 7, 3, 2, 1, 1, 1, 1, 20, 5, 11, 1, 7)

and the approximating interval of the root is

[0.92387953251128634045, 0.92387953251128676332]

So, out of 13 partial quotients five are ones, which is 35.71% of the time.
As we mention before, to better conceal the messages, we decided not to

use the ai's as our key, but instead to use the numerator and denominator of
the expression [Eq. (10)] for the real root of a polynomial along with the
message itself to generate our key.

From here on, we will refer to the above-mentioned numerator as N and
the denominator as D. The root is denoted as x, and by p we denote the
integer modulo with which we reduce the coefficients of the polynomial, the
partial quotients, and N and D.

We used bitwise inclusive-OR, exclusive-OR, and A N D of N and D and
tried the resulting numbers as our key. We found that bitwise exclusive-OR
gives us the best results; the keys obtained were quite random. Some results
are given in Table I. ~18)

Algorithms for a One-Time Pad Scheme 299

F o r case 1 in Tab l e I we find that 6 . 8 % is the m a x i m u m and 1 .2% the

m i n i m u m n u m b e r o f t imes any va lue occurs . Ce r t a in ly 6 . 8 % is m u c h bet ter

when c o m p a r e d to 4 1 % . F o r c a s e 2 , 6 . 6 % is the m a x i m u m and 1 .2% the

m i n i m u m n u m b e r o f occur rences , which is again ve ry good. In case 3 we

find tha t the m a x i m u m n u m b e r o f occur rences o f the va lue 1 is 2 1 . 2 % , m u c h

higher than in cases 1 and 2, but still bet ter than 4 1 % . Also , in prac t ice , we

will be using a larger va lue o f p.

W e have m e n t i o n e d that the p o l y n o m i a l s and our key repea t after a

cer ta in n u m b e r o f success ive t rans la t ions . Tab le II gives results wi th different

va lues o f p and different po lynomia l s .

Table I. Va lues of Exclusive-OR o f / V and D a

Value ofN XOR D No. of occurrences Percent of times

Case 1. Polynomial equation: x 2 - 7 x - 12 = 0; modulo p = 29

0 27 5.4
1 34 6.8
2 22 4.4
3 28 5.6
4 20 4.0
5 12 2.4
6 12 2.4
7 24 4.8
8 6 1.2
9 21 4.2

10 16 3.2
11 7 1.4
12 25 5.0
13 15 3.0
14 15 3.0
15 11 2.2
16 17 3.4
17 19 3.8
18 16 3.2
19 I1 2.2
20 17 3.2
21 25 5.0
22 18 3.6
23 9 3.8
24 10 2.0
25 14 3.6
26 17 3.4
27 7 1.4
28 26 5.2

300 Akritas, lyengar, and Rampuria

T a b l e I. (continued)

Value of N XOR D No. of occurrences Percent of times

Case 2. Polynomial equation: x 4 + 23x ~ - 5x 2 - 14x - 4 = 0; modulo p = 29

0 33 6.6
1 30 6.0
2 22 4.4
3 6 6.0
4 22 4.4
5 24 4.8
6 12 2.4
7 16 3.2
8 8 1.6
9 6 1.2

10 17 3.4
11 8 1.6
12 19 3.8
13 7 1.4
14 15 3.0
15 8 1.6
16 21 4.2
17 25 5.0
18 14 2.8
19 16 3.2
20 19 3.8
21 14 3.8
22 11 2.2
23 17 2.4
24 26 5.2
25 31 6.2
26 14 2.8
27 20 4.0
28 20 4.O

Case 3. Polynomial equation: x 3 2 = 0 ; m o d u l o p = 10

0 49 9.8
1 106 21.2
2 36 7.2
3 36 7.2
4 70 14.0
5 94 18.8
6 12 2.4
7 62 12.4
8 12 2.4
9 24 4.8

a Without taking the message into consideration. For each of cases 1-3 the number of
polynomial updates is 500.

Algorithms for a One-Time Pad Scheme

Table II ~. Study of Cycle Lengths

301

Polynomial Key cycle
Value of p cycle length K length

Polynomial at which
repetition starts

Case 1. Polynomial equation: x 4 + 23x 3 5x 2 - 14x - 4 = 0

29 152 2 304 37th
26 2 1 2 89th
19 59 8 472 10th
14 12 1 12 170th
11 50 2 100 100th
5 10 4 40 2nd

Case 2. Polynomial equation: x 3 + 8x 2 - 16x - 24 = 0

29 74 1 74
26 2 1 2

19 78 3 234
14 2 3 6

I1 6 3 18
5 2 3 6

Case 3. Polynomial equation: x 3 - 2 = 0

29 74 I 74
26 54 3 162
i9 102 1 102
14 52 3 156
l l 2 1 2
5 8 3 24

Case 4. Polynomial equation: x 2 + 8x - 12 = 0

4 14 4 56
4 7 4 28
4 9 4 36
4 7 4 28
1 8 1 8
3 12 3 36

Case 5. Polynomial equation: 16x 4 + 8x 3 -- 1 4 x z - 24x 4 =

29 196 Large, >500 Large, >500
26 36 4 144
19 2 1 2
14 40 2 80
11 24 4 96
5 36 2 72

124th
15th

98th
5th

25th
3rd

144th
74th

1st
6th

38th
3rd

2nd
2nd
2nd
2nd
2nd
2nd

0

49th
15th
58th
24th
65th

22nd

K is the integer obtained by dividing the key cycle length by the polynomial cycle length.

302 Akritas, lyengar, and Rampuria

6. PROPOSED SCHEME TO ENCIPHER AND DECIPHER,
ALGORITHMS AND IMPLEMENTATION

In this section, we present our complete method to encipher and
decipher text together with implementation details. Algorithms for the
implementation of our method are presented in the Appendix.

6.1. Selection of the Modulus p

We choose an integer p such that, for any integer x, the following
conditions are satisfied:

x<~2 p, x * x + x < ~ 2 N - 1

where N is the number of bits in a computer word. We do so to ensure that
no overflow occurs during our computation. This is necessary in order to
produce the same results more than once, so that the ciphertext could
correctly be deciphered.

For our computer, PDP-I1, N = 16. Hence,

x * x + x ~ 2 1 5 - 1

o r

2 p * 2 p + 2 p ~ 215 - 1

o r

p ~ 7

o r

x ~< 27 = 128

6.2. Selection of the Character Set

Obviously, the character set should consist of all the characters that
could be used in the plaintext.

In our implementation, we chose two sets: one with 29 characters and
another, the ASCII character set, with 128 characters; 128 happens to be the
same number as the maximum value of x. We cannot choose a character set
consisting of more than 2 7 = 128 characters because then we will run out of
distinct integers to represent them (for our specific computer).

The integer value we use to represent any character is the decimal value
of the binary representation of that character according to ASCII standards.

Algorithms for a One-Time Pad Scheme 303

6.3. Description of Our Method

Now, we present our scheme, which is divided into two sections, dealing
with the method to encipher and the method to decipher. A polynomial
equation with one sign variation (and hence one positive root) and a
constant M 0 is exchanged between the communicating parties. If the root of
the polynomial is not a nonquadratic irrational number, during the course of
the transformations of the polynomial, some coefficients become 0 (first or
last). To eliminate this difficulty and to always keep one sign variation in the
sequence of the coefficients, we replace this 0 by 1 or - 1 , as the case may
be. (The reader should notice that we have parted from our original
assumption of using only nonquadratic irrational numbers as the roots of our
polynomials.)

6.3.1. To Encipher

To encipher a plaintext the following steps are involved:

Step 1: The polynomial equation (coefficients only) is read so that it
can be used for the generation of the key; also, the expression (N/D) for the
root of the polynomial is initialized.

Step 2: Each coefficient C z of the polynomial is reduced rood p, C i
rood p. If the leading coefficient is negative, all the coefficients are multiplied
t i m e s - 1.

Step 3: The upper bound of the root of the polynomial is computed
using Corollary 4.1.

Step 4: The floor function of the root is computed using the hybrid
false position method.

Step 5." The expression for the root of the polynomial (N/D) is
updated.

Step 6: The next plaintext character M i is read.

Step 7: The value Ki-~ [(N+Mi_1)XOR(D + M i _ l)] m o d p is
computed, where N and D are obtained from Step 5.

Step 8: The ith ciphertext character is computed, C~ =
(K i + Mi) rood p.

Step 9: i*-i + 1.

Step 10: Steps 2-9 are repeated until no more characters are left in
the plaintext.

828/12/4-7

304 Akritas, lyengar, and Rampuria

6.3.2. To Decipher

To decipher a ciphertext, we basically follow the same steps as above,
except for Steps 6-8 and 10, which need to be modified as follows:

Step 6': The next ciphertext character C t is read.

Step 7': From Mi_l, the (i - 1)th plaintext character, computed in
the previous cycle, the value of K i = [(N + Mi_l) XOR(D + Mi_I)] is com-
puted.

Step 8': The ith plaintext character M i = (C i - K ~) m o d p is
obtained.

Step 10': Steps 2-9 are repeated until no more characters are left in
the ciphertext.

6.4. Implementation of the Algorithm

The algorithms presented in the previous section were implemented on a
PDP-I 1 computer using the programming language C (see Ref. 11). A listing
of programs appears in the Appendix.

In this section, results of two test runs are presented with analysis. (is)
To study the behavior of the key obtained, we use the chi-square method, (12)
which is briefly summarized below:

The chi-square statistic V of observed quantities is given by

1 (Y:)
g = - - Z --rt

n l<s<k \ P s]

where n is the number of independent observations, Ps is the probability that
an observation falls into category s, Ys is the number of observations
actually falling into category s, k is the number of different categories, and
V, the randomness of the observations (of the keys in our case), can be
obtained from the chi-square distribution Table.(12)

Test 1

Plaintext Used to Encipher

this is a sample text written with a character set of twenty-nine
characters, all lower case alphabet and. and new line character, this is
stored in fil ptext.c and ciphertext will be stored in ctext.c lets include
some characters abcdefghijklmnopqrstuvwxyz.

Algorithms for a One-Time Pad Scheme

Po/ynomai/ Used for the Key

P (x) = x 3 - 2 = 0

A Constant Cons Used as the Initia/ Character of Plaintext
Encipher-decipher

C o n s = 0

305

to

C h a r a c t e r S e t U s e d

W e used a c h a r a c t e r set o f 29 c h a r a c t e r s for this test. The c h a r a c t e r set

was [a -z , dot , b lank , new line cha rac t e r] . The key gene ra t ed by the

p o l y n o m i a l (with the help, o f course , o f the p la in tex t to be e n c i p h e r e d) was

as fo l lows (in g roups o f five):

5 1 28 17 2 27 27 3 23 4 24 12 9 20 8 28 24 7 0 9
1 1 10 13 19 22 6 12 2 14 2 28 0 17 27 11 13 6 16 0
13 10 10 24 2 25 14 25 19 5 5 6 8 25 5 2 15 1 1 4
7 20 22 8 2 3 23 9 2 10 21 13 23 5 23 2 8 26 25 4
0 21 19 5 23 14 2 13 27 1 14 19 28 27 24 6 21 2 13 4
5 19 19 11 16 12 12 9 0 27 11 11 2 23 21 1 18 1 23 0
l 13 20 8 14 24 3 18 18 1 12 12 20 24 15 1 14 5 16 19
5 4 3 1 2 1 7 12 26 2 14 17 11 19 0 28 23 27 13 11
4 15 15 15 i 8 1 17 0 5 8 26 15 14 26 7 19 22 1 20
10 28 3 2 9 23 19 13 24 1 4 0 3 24 9 2 2 15 19 13 13
28 24 20 3 4 17 17 18 12 25 5 16 16 3 4 5 1 4 3 13
4 26 2 14 0 27 22 0 23 20 0 26 15 4 11 7 9 3 8 1
17 5 2 24 6 20 26 26 15 16 21 14 23 25 1 0 6 1 23 19
3 27 0 12 6 16 0

C o u n t o f O c c u r r e n c e o f E a c h K e y

N o t e tha t coun t j m e a n s n u m b e r o f o c c u r r e n c e o f key j :

countO = 16 count15 = 9
count1 = 21 count16 = 7
count2 -- 18 . count17 = 8
count3 = 11 count18 = 4
count4 = 12 coun t l9 = 13
count5 = 14 count20 = 9
count6 = 7 count21 = 5
count7 = 5 count22 = 3
count8 = 8 count23 = 13
count9 = 6 count24 = 10
countlO = 5 count25 = 6
c o u n t l l = 7 count26 = 8
count12 = 9 count27 = 9
count13 = 12 count28 = 7
count14 = 10

306 Akritas, lyengar, and Rampuria

The ciphertext obtained is displayed below (in groups of five; note that an
asterisk represents new line character):

eugzu . gvwe xbjdx k gtn yujgh bzcg* bvihf qlmix
abkmo gnnox yeuny yytou ge v gcvsb m nlf zvmob
vbqw qihgb . doid . yrhj nfJjs larlg* yobhz xrmcn

fmwpo rnduif ajsxo uvnfs nwetv pyqab wbkyi k*. b
ijfmd hbbse kfbvb ysmfo a*zku fso a wtrmn fgxdm
ps ow btqpk yqug-v dnogo ehbbd ok. z *aopg bl. vh
bshf i. efy . d. hk qqxtn kyuxh cn

Plaintext Obtained Back from the Ciphertext

this is a sample text written with a character set of twenty-nine
characters, all lower case alphabet a n d . and new line character, this is
stored in file ptext.c and cipher text will be stored in ctext.c lets
include some characters abcdefghijklmnopqrstuvwxyz.

Analysis

Number of characters in plaintext, 273; cardinality of character set, 29;
value of chi-square statistic V = 50. From the chi-square distribution table
we found that this value of V was satisfactory.

Test 2

Plaintext Used to Cipher

This is sample text to test our program "CRYPT" . This text is stored in
file 'ptext.c'. The coded message is stored in file 'ctext.c'. The program will
ask the user if he wants to code or decode and take appropriate action. It
will also ask the user to type in a polynomial to be used as key. It can code
all ASCII characters (128).

Chi-square test is done on the keys generated to encipher or decipher
this message. All the keys, number of times they occur and chi-square results
are then printed. Total number of characters are also printed. For, chi-square
test number of characters should be at least five times cardinality of our
character set (128).

In file etext.c, new lines, even new page start at unpredictable places
because we don' t know which character could be enciphered to new line or
new page control character. So, if we try to print ctext.c, we get some
garbage. But, if that file is deciphered, we get our plaintext i.e. this file
without any problem.

Algorithms for a One-Time Pad Scheme 307

Polynomial Equation Used for the Key

P (x) = x 3 - - 5 = 0

A Constant Cons Used as Initial P/a/ntext Symbol to Cipher-Decipher

C o n s = 0

Character Se t Used

ASCII character set; 128 characters.

Key Obtained to Cipher-Decipher Text Symbol

Do you want to code?(y or n) - y
Type in key polynomial coefficients

1 0 0 - 5

0 3 6 11 106 39 83 76 15

69 78 81 53 36 63 109 122 87 17

0 19 49 119 11 61 46 61 59 70

21 28 65 99 95 100 43 62 41 89

11 34 109 26 89 88 17 107 71 54

91 96 119 117 58 65 29 41 13 116

33 118 107 9 26 83 71 52 79 127

15 79 117 116 47 63 6 101 15 44

83 66 85 27 95 30 123 84 115 7

115 70 31 70 57 63 104 105 14 111

104 95 32 57 57 27 112 117 31 24

47 125 66 113 115 91 122 37 31 63

17 61 7 17 44 63 73 112 23 124

21 114 109 79 36 127 114 55 127 79

8 51 94 101 116 13 111 73 112 89

107 63 44 61 120 69 29 28 107 74

97 117 52 107 47 109 0 37 101 119

60 31 1 102 43 112 117 71 106 121

83 35 18 17 13 116 119 45 78 21

57 19 34 43 61 49 9 10 61 0

13 9 52 123 33 76 55 76 25 66

123 27 44 l i 98 25 84 123 109 111

30 9 123 84 51 63 118 127 100 87

19 89 90 35 7 100 51 113 83 66

308 Akritas, lyengar, and Rampuria

57 105 87 110 55 16 3 51 74 29

89 45 50 89 125 118 5 17 43 86

105 42 79 21 48 83 7 74 79 59

2 77 67 75 122 117 83 32 81 17

66 21 105 125 42 9 17 94 127 101

32 29 109 106 11 30 125 37 120 19

123 102 9 120 127 27 67 116 17 31

64 59 81 71 18 109 103 99 43 51

107 10 103 61 68 27 115 13 6 29

115 70 75 43 102 29 41 67 111 54

115 125 51 62 55 61 18 49 93 49

92 45 24 5 87 55 44 5 127 73

40 111 49 70 51 77 77 16 21 5

121 50 121 76 99 39 97 123 54 123

49 24 1 39 38 119 87 102 61 115

12 15 11 18 23 97 84 55 125 101

98 73 66 59 69 123 105 28 69 33

98 7 47 80 29 67 66 i 67 11

46 63 124 15 108 63 75 86 9 109

67 103 113 62 79 7 64 11 77 52

127 24 105 92 89 1 0 3 18 115 101 92

107 87 123 100 63 127 4 6 21 87 64

53 122 123 19 76 29 114 33 124 69

34 9 89 112 57 121 85 42 125 60

15 73 70 85 4 .11 63 48 75 45

46 1 39 81 122 71 103 21 125 78

7 65 72 119 119 110 85 80 27 71

74 59 3 33 96 65 34 13 105 44

55 15 81 92 11 92 49 34 51 113

59 81 8 57 65 69 49 24 33 57

90 19 76 97 109 14 25 110 33 77

110 101 127 20 99 19 86 31 64 7

57 76 127 120 77 18 89 68 33 63

111 80 75 113 7 125 102 9 89 80

55 34 13 120 45 72 53 15 91 86

109 34 97 1 96 65 98 75 98 107

125 107 8 39 4 119 102 91 97 36

75 113 58 35 109 82 15 71 78 39

53 49 68 125 13 53 26 29 127 71

Algorithms for a One-Time Pad Scheme 309

13 98 99 92 121 51 14 65 54 87

83 66 107 25 71 63 78 39 115 81

119 12 109 28 99 54 85 40 85 5

87 60 51 21 56 35 109 66 11t 53

53 64 119 110 5 27 69 94 77 21

80 127 26 51 88 25 59 63 56 53

69 78 49 103 87 52 105 82 55 29

57 101 124 49 111 115 10 55 10 25

12 63 77 121 107 113 72 23 67 49

82 103 61 104 101 64 37 61 25 30

115 55 8 125 75 14 83 32 17 77

108 99 18 9 59 4 55 111 72 125

23 44 13 95 122 57 60 73 11 36

5 99 58 63 45 122 9 56 33 71

28 49 37 83 11 45 84 5 91 94

51 117 73 50 119 14 121 30 105 7

105 120 7 13 15 8 19 34 19 21

26 45 109 112 95 31 78 23 70 37

97 4 35 47 49 40 81 57 6 59

69 83 80 3 83 64 47 98 79 61

88 35 37 62 107 38 13 17 11 28

71 35 95 99 28 27 29 120 13 70

35 37 24 51 8 127 44 49 30 23

122 29 64 35 37 119 61 84 115 97

18 119 71 8 69 79 84 1 5 111

8 43 102 111 5 41 81 120 121 21

124 77 30 59

112 33 51 60

49 119 96 49

63 127 61 l l l 126 113

103 31 77 56 95 14

113 2 21 27 86 77

113 118 9 61 38 13 123 116 1 109

101 68 119 38 79 35 123 83 24 71

51 52 109 57 16 59 115 106 51 35

18 9 69 21 112 109 103 68 119 49

25 24 17 55 61 23 48 87 54 39

85 113 38 101 69 39 38 113 109 4

99 66 123 85 108 15 65 19 80 99

81 88 31 100 121 101 45 99 103 6

83 104 121 75 20 67 85

310 Akritas, lyengar, and Rampuria

Count of Occurrence of Each Different Key

N o t e t h a t c o u n t j m e a n s n u m b e r o f o c c u r r e n c e s o f k e y j :

c o u n t O = 4 c o u n t 4 2 = 3 c o u n t 8 4 = 7
c o u n t l = 7 c o u n t 4 3 = 7 c o u n t 8 5 = 9
c o u n t 2 = 2 c o u n t 4 4 = 8 c o u n t 8 6 = 5
c o u n t 3 = 4 c o u n t 4 5 = 9 c o u n t 8 7 = 11
c o u n t 4 = 5 c o u n t 4 6 = 4 c o u n t 8 8 = 4
c o u n t 5 = 9 c o u n t 4 7 = 6 c o u n t 8 9 = 10
c o u n t 6 = 5 c o u n t 4 8 = 3 c o u n t 9 0 = 2
c o u n t 7 = 11 c o u n t 4 9 = 18 c o u n t 9 1 = 5
c o u n t 8 = 6 c o u n t 5 0 = 3 c o u n t 9 2 = 6
c o u n t 9 = 1 3 c o u n t 5 1 = 1 6 c o u n t 9 3 =]
c o u n t l O = 4 c o u n t 5 2 = 6 c o u n t 9 4 = 4
c o u n t 1 1 = 13 c o u n t 5 3 = 8 c o u n t 9 5 = 7
c o u n t 1 2 = 3 c o u n t 5 4 = 6 c o u n t 9 6 = 4
c o u n t 1 3 = 1 4 c o u n t 5 5 = 1 4 c o u n t 9 7 = 8
c o u n t 1 4 = 6 c o u n t 5 6 = 4 c o u n t 9 8 = 7
c o u n t 1 5 --- 11 c o u n t 5 7 = 13 c o u n t 9 9 = 12
c o u n t 1 6 = 3 c o u n t 5 8 = 3 c o u n t l O 0 = 5
c o u n t 1 7 = 12 c o u n t 5 9 = 11 c o u n t 1 0 1 = 1 2
c o u n t 1 8 = 9 c o u n t 6 0 = 5 c o u n t 1 0 2 = 7
c o u n t 1 9 = 10 c o u n t 6 1 = 1 6 c o u n t 1 0 3 = 1 0
c o u n t 2 0 = 2 c o u n t 6 2 = 4 c o u n t 1 0 4 = 4
c o u n t 2 1 = 1 4 c o u n t 6 3 = 1 7 c o u n t 1 0 5 = 1 0
c o u n t 2 2 = 0 c o u n t 6 4 = 8 c o u n t 1 0 6 = 4
c o u n t 2 3 = 7 c o u n t 6 5 = 8 c o u n t 1 0 7 - - 1 2
c o u n t 2 4 = 8 c o u n t 6 6 = 1 0 c o u n t 1 0 8 = 3
c o u n t 2 5 = 8 c o u n t 6 7 = 8 c o u n t 1 0 9 = 1 8
c o u n t 2 6 = 5 c o u n t 6 8 = 5 c o u n t 1 1 0 = 5
c o u n t 2 7 = 9 c o u n t 6 9 = 12 c o u n t 1 1 1 = 1 2
c o u n t 2 8 = 7 c o u n t 7 0 = 8 c o u n t 1 1 2 = 8
c o u n t 2 9 o = 1 2 c o u n t 7 1 = 13 c o u n t 1 1 3 = 12
c o u n t 3 0 = 7 c o u n t 7 2 = 4 c o u n t 1 1 4 = 3
c o u n t 3 1 = 9 c o u n t 7 3 = 7 c o u n t 1 1 5 = 13
c o u n t 3 2 = 4 c o u n t 7 4 = 4 c o u n t 1 1 6 = 6
c o u n t 3 3 = 10 c o u n t 7 5 = 9 c o u n t 1 1 7 = 7
c o u n t 3 4 = 8 c o u n t 7 6 = 7 c o u n t l l 8 = 4
c o u n t 3 5 = 11 c o u n t 7 7 = 1 2 c o u n t 1 1 9 = 1 6
c o u n t 3 6 = 4 c o u n t 7 8 = 7 c o u n t 1 2 0 = 8
c o u n t 3 7 = 9 c o u n t 7 9 = 1 0 c o u n t 1 2 1 = 1 0
c o u n t 3 8 = 6 c o u n t 8 0 = 7 c o u n t 1 2 2 = 6
c o u n t 3 9 = 9 c o u n t 8 1 = 10 c o u n t 1 2 3 = 1 4
c o u n t 4 0 = 3 c o u n t 8 2 = 3 c o u n t 1 2 4 = 5
c o u n t 4 1 = 4 c o u n t 8 3 = 1 4 c o u n t 1 2 5 = 13

c o u n t 1 2 6 = 1
c o u n t 1 2 7 = 1 5

Ciphertext Obtained

I t w a s n o t p o s s i b l e t o p r i n t t h e c i p h e r t e x t f i le , i n a m a n n e r s o t h a t i s

c o u l d b e i n c l u d e d h e r e , b e c a u s e i t h a d u n p r e d i c t a b l e n e w l i n e a n d n e w p a g e

c h a r a c t e r s , w h i c h c a u s e d t h e p r i n t e r t o a c t s t r a n g e . B u t w e d i d g e t t h e

p l a i n t e x t b a c k .

Algorithms for a One-Time Pad Scheme 311

Plaintext Obtained Back from Ciphertext

This is sample text to test our program "CRYPT." This text is stored in
file ptext.c. The coded message is stored in file ctext.c. The program will ask
the user if he wants to code or decode and take appropriate action. It will
also ask the user to type in a polynomial to be used as key. It can code all
ASCII characters(128).

Chi-square test is done on the keys generated to encipher or decipher
this message. All the keys, number of times they occur and chi-square results
are then printed. Total number of characters are also printed. For, chi-square
test number Of characters should be at least five times cardinality of our
character set(128).

In file ctext.c, new lines, even new page start at unpredictable places
because we don't know which character could be enciphered to new line or
new page control character. So, if we try to print ctext.c, we get some
garbage. But, if that file is deciphered, we get our plaintext i.e. this file
without any problem.

Analysis

Total number of characters in plaintext, 1007; cardinality of character
set used (ASCII), 128; value of chi-square statistic V = 253. The value of V
in this case shows that our keys were not very random. Part of the reason for
this was that only few characters were used in the plaintext out of the
character set. We should try to choose a character set such that most of the
characters would be used all the time.

7. CONCLUSIONS

The proposed scheme is an efficient and crypto secure method for crup-
tography. The chi-square test was used to study the behavior of the keys
used to cipher-decipher each character of the text. The language used to
implement the transformation algorithm was the C programming language.
The scheme proposed in this paper provides a sufficient amount of keys from
one polynomial and a constant that need to be exchanged only once between
the communicating parties.

Open Questions for Further Study

The repetition cycle for certain polynomials is very small, which makes
our keys less random. So, to better conceal our message, such polynomials
should be modified. Also, if the text has some repeating pattern, it could

312 Akritas, lyengar, and Rampuria

induce some pattern in our keys, and we should modify our algorithm for
this kind of text.

APPENDIX. ALGORITHMS

Algorithm Upper Bound (P, n)

To compute the exact upper bound of the root of the polynomial using
Corollary 4.1. Let P be the array of coefficients of the polynomial and n be
the degree of the polynomial. (In these algorithms the polynomial has one
sign variation in the sequence of its coefficients.)

Set max to 0
Set i to n

While (P; < = 0)
if (Abs(P;) > max)

max ~ Abs(Pi)
i ~ i - - 1

End-if
End-while

Set v to i
for i = 0 to i < = v by increment of 1 do
Sum ~ Sum + Pi
End-for
upbound ~- (max/Sum + 1)
End Algorithm.

Algorithm Lower Bound (P, n, upbound)

To compute the exact lower bound of the root of the polynomial using
the hybrid false position method. Let P be the array of coefficients of the
polynomial, n the degree of the polynomial, and upbound the upper bound of
the root of the polynomial.

Set Xold ~ 0
Set Lx ~ 0
Set Rx ~ upbound
Set done ~ no

LVAL ~ Po(LX)" + PI (LX) n 1 + . . . + P .
RVAL ~ Po(RX)" + P l (RX) n-1 + . . . + Pn

While (done equals no) do the following:
ILX ~ [LX] (floor function)
ILX ~ [RXI

Algorithms for a One-Time Pad Scheme 313

If (A b s (I L X - I R X) < = 1) then

if (L V A L and R V A L are both + ve or both - ve)
X N E W = L X

Else N X E W = R X
Set done ~- Yes

Else slope ~- (L V A L - R V A L) / (L X - RX)
N X E W ~- (LX -- LVAL) /S lope ;
N E W V A L = P 0 (X N E W) " + P I (X N E W) n - I + . . . + Pn
If (N E W V A L and L V A L are both + ve or both - ve)

LX ~- X N E W
L V A L ~ N E W V A L
R V A L ~ R V A L / 2 . 0

Else
R X ~ X N E W
L X ~ L V A L / 2 . 0

End-if
X O L D *- X N E W
End-if

End-while
I X N E W ~ X N E W
Lower bound ~- I X N E W
End of Algor i thm.

Algorithm Translate (P, n, A)

To translate a po lynomia l P(x) to P(A + 1/x). Let P be the ar ray of the
coefficients of the po lynomia l and n be the degree of polynomial .

For i~- 0 to i < = n by increment of 1 do
Fo r j ~ 0 to j < = n by increment of 1 do

M i , j ~ 0
End-for

End-for

Fo r i ~ 1 to i < = n by increment of 1 do

Mo,i+--Mo,i_ 1 *A +Pt
End-for

For i ~ 1 to i < = n - 1 by increment of 1 do

Mi,0 +- P0
k ~ n - 1
For j +- 1 to j < = k by increment of 1 do

Mi,j,.-A �9 Mi,y_ 1 + Mi- l , j
End-for

314 Akritas, lyengar, and Rampuria

End-for

Mn,0 ~ P0

For i ~ 0 to i <= n by increment of 1 do
k ~ n - - 1

If M0, . < 0
Pi : --Mi,k

Else
Pi = Mi,k

End-for
End of Algorithm.

Algorithm Update (P, Q, A)

To update the expression of the root x of the polynomial P by the
partial quotient A.

Set N,:-- Po * A + Pi
Set D,:--Qo * A + Qi
Set X ~ N/D

Set P0 ~ P1
Set Q0 ~ Q1
Set Pi ~ N
Set Qi ~ D

End of Algorithm.

Algorithm Encipher (M, C)

M represents the plaintext and C the ciphertext. Let Cons be the
constant for the encipherment of the initial character of the plaintext, and let
size be the integer modulo which all arithmetic is performed.

Initialize:
Po~-O
Q0'-- 1
P l ~ 1
Q1,-- o

i ~ I, Mo +- 0

Key ~ Cons
Num ,- 0
Den ~ 0

Read the polynomial k and degree of polynomial n

Algorithms for a One-Time Pad Scheme 315

While there are characters to encipher do
Max ~ upbound (k, n)
Min ~ lowbound (k, n, max)
Update (P, Q, min)
Translate (k, n, min)
Num2 ~ Num + Keyl
Den2 ~- Den + Key 1
Key2 ~ (Num2 XOR Den2) mod size
get a character M i to encipher
C i ~ (M i + Key2) mod size
Key 1 = M,.
i ~ i + 1

End-while
End of Algorithm.

Algorithm Decipher (C,M)

Variable names are the same as in the previous algorithm.

Initialize:
P 0 ~ 0
Q0 ~ 1
P 1 ~ 1
Q I ~ 0

Keyl ~ Cons
Num ~ 0
Den ~ 0

Read the polynomial k and the degree of polynomial n

While there are characters to decipher do
Max ~ upbound (k, n)
Min ~- lowbound (k, n, max)
Update (P, Q, rain)
Translate (k, n, rain)
Num2 ~- Num + Key I
Den2 ~ Den + Key 1
Key2 ~ (Num2 XOR Den2) rood size
get a character C i to decipher

M i ~ (C i - Key2 + size) rood size
Keyl ~- K i

i*-- 1 + 1
End-while
End of Algorithm.

316 Akritas, lyengar, and Rampuria

REFERENCES

1. A. G. Akritas, An implementation of Vincent's theorem, Numerishche Mathematik
36:53-62 (1980).

2. A. G. Akritas, The fastest exact algorithms for the isolation of the real roots of a
polynomial equation, Computing 24:299-313 (1980).

3. A. G. Akritas, Exact algorithm for the implementation of Cauchy's rule, lnt. J. Comp.
Math. 9:323-333 (1981).

4. A. G. Akritas, Applica6on of Vincent's theorem in cryptography or one-time pads made
practical, Cryptologia 6(4):312-318 (1982).

5. A. G. Akritas and S. D. Danielopoulos, On the complexity of algorithms for the tran-
slation of polynomials, Computing 24:51-60 (1980).

6. A. G. Akritas and S. D. Danielopoulos, An unknown theorem for the isolation of the
roots of polynomials, Ganita Bharati 2(3/4):41-49 (1980).

7. W. F. Ehrsam, S. M. Matyas, C. H. Meyer, and W. L. Tuchman, A cryptographic key
management scheme for implementing the data encryption standard, IBM Syst. J.
17(2):106-125 (1978).

8. W. Diffie and M. E. Hellman, A critique of the proposed date encryption standard,
Comm. ACM (March 1976), pp. 164-165.

9. E. Gudes, The design of a cryptography based secure file system, IEEE Trans. Software
Eng. SE-6(5): 411--420 (September 1980).

10. E. Gudes, F. A. Stahl, and H. E. Koth, Applications of cryptographic transformations to
data base security, in Proceedings of National Computer Conference (1976).

11. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey (1978).

12. D. E. Knuth, The Art of Computer Programming, Addison Wesley, Reading, Mass.,
Vol. 2, pp. 1-70 (1969).

13. S. Lang and H. Trotter, Continued franctions for some algebraic numbers, J. Reine
Angew. Math. 255:122-134 (1972).

14. R. C. Merkle, Secure communications over insecure channels, Comm. ACM
1978:194-299.

15. K. H. Ng, Polynomial real root approximation using continued fractions, M.S. Research
Report, Department of Computer Science, University of Kansas, Lawrence, Kansas
(1980).

16. S. M. Pizer, Numerical Computing and Mathematical Analysis, Science Research
Associates, Chicago, pp. 187-217 (1975).

17. G. B. Purdy, A high security log-in procedure, CACM 17 (August 1974).
18. A. Rampuria, A secure method for cryptography, M.S. Research Report, Department of

Computer Science, University of Kansas, Lawrence, Kansas (1982).
19. J. V. Uspensky, Theory of Equations, McGraw-Hill, New York (1948).
20. A. J. H. Vincent, Sur la r6sultion des 6quation numeriques, J. Math. Pures Appl.

1:341-372 (1836).

Printed in Belgium

