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Abstract—A new measure of software complexity is introduced, that of logical effort. This measure is an
attempt to quantify program complexity by an analysis of the control structure of the program, using the
concepts of language virtuality and segment independence. A program is decomposed by the use of these
concepts until measurements can be made at the statement level. These measurements, along with
measurements of I, the effort necessary to perform a loop, and Q, the effort necessary to determine which
branch to take in a decision, are then used to calculate recursively the effort in larger and larger structures,
until the program level is reached. An example of this process is given for a short program, along with
a brief comparison of the results obtained with a similar measure, that of cyclomatic complexity.

Algorithms for the computation of I and Q are also given, along with examples of their calculation.
This process is essentially a decomposition of a Boolean function into disjunctive normal form, followed
by a minimization of the form using a weighting measure involving weights on both the operators and
the variables in the function.

Software complexity Computation Logical effort Algorithms Disjunctive normal form
Minimization Language virtuality Segment independence

1. INTRODUCTION

The concept of program complexity has become an active concern of researchers in software
engineering, as practical methods of maximizing program understanding and testability become
more necessary[1,6]. Due to a better appreciation of the software life cycle, with its implicit
requirement that program maintenance be as effortless as possible, measures of software complexity
have become increasingly important in recent years, with measures such as those by Halstead et
al., becoming the subject of much research and experimentation[1-8]. A recent report seems to
indicate that an explanation of the data structures used in a program or algorithm may be more
important in the understanding and writing of a program than is an explanation of the flow of
control in the program[19]. Should this prove to be the case, a measure such as that given by
Parameswaran and Iyengar[14,15], which attempts to quantify the data structure complexity as a
portion of the overall complexity, will prove to be useful.

There remains, however, one aspect of software complexity that has not been discussed fully:
that aspect is a consideration of the difficulty in writing a program from a given algorithm, using
as an approach the twin concepts of language virtuality and segment independence, formal
definitions of which are given later in this report. The emphasis on virtuality and independence
is a result of two considerations: first, most recent general purpose programming languages use
the concepts in their basic structure, and, second, these twin concepts are beginning to be used in
other parts of computer science[20-22]. Thus, these ideas seem to have wide applicability. We
therefore introduce a new measure of program complexity, the logical effort in a program, a
measure which utilizes independence and virtuality.

Our discussion of logical effort will proceed as follows: we begin with the necessary definitions
for the various measures included in logical effort, and an explanation of the underlying concepts
inherent in a determination of the overall measure. We then preceed to define the logical effort in
a program in a top-down fashion. The next sections continue the definition by considering sequence
effort, decision effort, and loop effort. In order to finish the definition of decision effort, the quantity
I is quantified, through the use of a “minimal” disjunctive normal form. A similar result is given
for loop effort and the quantity Q. There follows a listing of the pseudo-code for calculation of
logical effort, and an example using a program written in structured FORTRAN, along with a brief
comparison of our results with McCabe’s cyclomatic complexity. Finally, we consider some
possible directions for future research.

CL. 934—A v 133



134 STEVEN C. CATER ef al.

2. DEFINITIONS

The two concepts central to the definition of logical effort are those of language virtuality and
segment independence. Language virtuality is reflected in the present tendency towards top-down
design of programs. At any moment in the design of a large program, one may assume that one
is working, not with FORTRAN, for example, but instead with a superset of FORTRAN which
includes the necessary features (as subroutines) to implement the desired program. A virtual
language is thus the language in which a programmer thinks he is working, and consists of the
actual language along with any subroutine libraries which may be present, the two together with
any not yet implemented subroutines which might prove useful. Segment independence is the
obverse of language virtuality: any segment of a program may be brought out from its program
and considered to be an example of a virtual language in its own right (perhaps with minor syntax
changes). Thus, segment independence is that property of a programming language that allows any
segment to be considered, essentially, as a program in its own right. A program is thus written
in its own virtual language, and consists of a collection of individual programs, each written in
its own virtual language. The combination of these two principles means that, at any moment, one
need only work with a level of detail appropriate to the problem at hand, whether that be the
overall flow of control or the details of the printed output. We therefore have a fundamental rule
for the computation of logical effort: a subroutine call will count the same as an intrinsic function
call. With this basic understanding of language virtuality and segment independence, we can now
proceed to define a program and the various measures of logical effort.

For our purposes, a program is a structured, finite collection of code, written in a non-virtual
language, designed to implement a given algorithm. By structured we mean that the program has
one entry, one exit, no dead code, and is composed only of the allowed structures. As our main
concern is complexity in a program, we will be primarily concerned with the subdivisions of a
program. Thus, a program is considered to be a collection of one or more program segments, one

Sequence

Loop

F*ﬁ)*‘

Decision

Fig. 1. Standard structures.
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called the main program, the others called subroutines or subprograms. A program segment,
generally referred to as simply a segment, is a logical collection of code designed to perform a single
task. This reflects the modularity and segment independence inherent in the top-down method of
program design. We equate a segment with a structure, which is either a sequence, a decision, or
a loop. Thus at the upper limit of analysis, a segment is simply an independent structure, which
may be part of a larger program.

The structures that we allow are the traditional ones, along with variants of these basic ones,
such as elseif, case, and until (Figs 1 and 2). Following the usual practice, structures are composed
of underlying structures, until the statement level is reached. We equate a statement with the lowest
possible sequence, so the nesting of structures is finite. A statement is the basic unit of code in a
programming language, and is defined for each language. Finally, statements are composed of
variables, constants, and the operators defined by the language, such as “+”, “SQRT”, and “=".
In view of our position on language virtuality, we shall be interested not only in these primitive
operators (those defined by the language), but also with virtual primitive operators (i.e. subroutine
calls of any type), and join both under the name of atomic operators. These definitions give rise
to the BNF grammar for PROGRAM found in Fig. 3. The INITIALIZATION in the expansion
of DECISION is the portion of the decision structure that determines which branch to take, or
whether to take a given branch. It is generally seen as the condition portion of an IF statement
or one of its variants. The CONDITION in the expansion of LOOP is generally found as the
condition portion of a WHILE or UNTIL statement, while the COUNT is usually found in the
form of a counting DO-loop. These definitions, along with the given grammar, comprise our
definition of program and its constituent parts.

The measurement of logical effort of a program consists of the decomposition of the program
into its parts, the measurement of these parts, and then a reconstruction of the effort based on the
measurement of the parts, in a top-down, bottom-up fashion. To aid this process, we define various
E-measures, which are named with either three or four letters, the first of which is E (Table 1).

Untit loop Elseif

] |
/
Case _4

Count loop %

Fig. 2. Some additional structures.
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(PROGRAM}>
(SEGMENT}
(STRUCTURE)
(SEQUENCE)
(DECISION)

{LOOP)

(STATEMENT)

{INITIALIZATION)

(CONDITION)
(COUNT)

There are two basic types of measures, total measures and maximal measures, which have T and
M as their last letter. There are six values that can occur in the middle, as shown in the second
grouping in Table 1. These values are simply the various parts of a program defined earlier. Thus,
some of the possible E-measures are EPT, the logical effort for the program as a whole, using the
total measure, EPM, the logical effort for the entire program, using the maximal measure, and
ESGT, the total logical effort for some segment in a program. These various types of measures
are a result of segment independence, and are all measured in essentially the same manner, with
the only difference being the level of the program under consideration. The last three groups in
the table are ones that are needed in order to define the various E-measures, and will be discussed
later. The domain of these measures is indicated by one of three means. First, the name of the
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{SEGMENT) | (PROGRAM)» (SEGMENT)
(STRUCTURE)

{SEQUENCE) | (DECISION) | <LOOP)
(STATEMENT} | (STRUCTURE) (STRUCTURE)
{INITTALIZATION) (STRUCTURE) {STRUCTURE) |
(INITIALIZATION) (STRUCTURE} (DECISION} |
({INITIALIZATION) (STRUCTURE)
(CONDITION»(STRUCTURE) |
{STRUCTURE)(CONDITION) |
{COUNT»{STRUCTURE)

language dependent

language dependent

language dependent

language dependent

3. BNF description of PROGRAM.

Table 1. Abbreviations used in the calculations of E-measures

Effort
Total
Maximal

Program
Segment
Sequence
Loop
Decision
Statement

Length

Operator count in a statement

Effort to decide which branch to take in a decision
Effort to decide whether to take a branch in a decision

Effort to decide how many times to execute a loop
Effort in a count type of loop

Effort to decide whether to start a loop

Effort to decide whether to end a loop

Table 2. Definitions of the E-measures

EPT = ZESGT
ESGT = ESQT
ESQT = LN + ZESTT

op if non-structure

ESTT = EDCT if decision

ELPT if loop

EDCT =1 +ZESQT
ELPT = Q + ESQT

LN = number of statement-structures

1=ZIB

IB = see procedure
Q=QS+QE+QC

QS = see procedure

QE = see procedure
QC = see procedure
OP = number of operator-calls

EPM = max (ESGT)
ESGM = ESQM
ESQM =max (LN, max (ESTT))
EDCM = max (I, max (ESQM))
ELPM =max (Q, ESQM)
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domain is enclosed in parentheses following the measure name, if the domain has a name. The
second and third ways of indicating the domain of a measure involve line numbers. We assume
that the program has been assigned line numbers, and refer to a single line by mention in
parentheses; for a non-statement segment, we use the form line 1:line 2, to refer to an inclusive
set of lines from line 1 to line 2.

The definitions of the measures that will be considered in this paper are given in Table 2. Note
that some of the possible measures are not listed (e.g. EDCM), as we consider them to be of
secondary importance. In each of these definitions it is understood that the domains are the
structure itself on the left side of the equation, and the underlying substructures on the right. In
particular, the LN measure is one per statement or substructure, and the value of OP is one per
atomic operator. This table is of course not complete in itself. In the next section we begin to justify
these definitions, beginning with EPT and EPM.

3. EPT, EPM, AND SEQUENCE EFFORT

There are at least two types of programs that may be said to be complex. The first type is a
program that is extremely long, even though no individual segment is difficult to understand. The
second type of complex program is one that is not necessarily lengthy, but instead is composed
of one or more segments that are particularly complex. In order to account for these different types
of complexity, we define both total and maximal measures. At any level, a total measure consists
of the sum of the efforts of the substructures. Thus, since a program is composed of segments, the
measurement of EPT is obtained by taking the sum of the segment efforts, in particular the ESGT
of each segment. Similarly, at any level, a maximal measure consists of the maximum of the efforts
of the substructures. EPM is thus the maximum of the total efforts of the program segments.

At the segment level, the situation changes slightly. Any segment is just a sequence of one block,
since it performs one task, has one entry and one exit with no dead code, and is composed of the
allowed structures. We therefore equate segment effort with sequence effort for both the total and
maximal measures. Hence, ESGT = ESQT and ESGM = ESQM. However, the definition of
sequence effort introduces a new attribute, that of length. This attribute is a reflection of the same
possibility mentioned above; it is possible for a sequence to be complex due solely to length. As
a result, ESQT is the sum of the underlying structures plus the length. The length, as mentioned
above, is simply one per statement if not a structure and one per underlying structure. The
definition of ESQM is similarly the maximum of the length with the maximum of the total efforts
of the substructures. (This introduction of a new attribute for the sequence structure is actually
a special instance of a more general case; each of the three basic structure types will have a new
attribute introduced.)

We are now able to calculate the logical effort in any program which contains no decisions or
loops. As mentioned earlier, the value of ESTT for a pure statement is OP of the statement, i.e.
a count of the atomic operators in the statement. Then, using the previously defined measures, it
is possible to calculate ESQT, ESGT, and finally EPT. Similarly, the corresponding maximal
measures may be determined for a program of this type. Unfortunately, most interesting programs
do contain both loops and decisions. As the calculation of the E-measures for decisions and loops
is more involved, we consider these types of calculations in the next sections.

4. DECISION EFFORT AND LOOP EFFORT

Decisions and loops may be considered to be compound structures as each is composed of one
or more sequences (which may contain substructures), along with additional code to determine
either which sequence to take or how many times to execute the sequence. These additional
attributes for decisions and loops are separated out in the same manner that length was for
sequence and provide the definitions of I and Q. I is defined to be the effort required to determine
which branch to take in a decision, while Q is the effort required to determine how many times
to execute a loop. Since decisions and loops are simply sequences with additional code, the
definitions of the E-measures for decisions and loops are exactly what would be expected, e.g.
EDCT is the sum of the ESQT for each subsequence of the decision, along with the value of I;
and ELPM is the maximum of Q and the value of ESQM of the underlying sequence. Since the
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calculations of sequence effort have already been defined, the only definitions that remain are those
for I and Q.

Unlike LN, I and Q are themselves compound measures. The value of I is given by the sum of
the efforts to decide whether to take each particular branch in a decision. This value is denoted
IB. This definition allows for the non-traditional types of decision structures like CASE and
ELSEIF to be used in a program, reflecting standard usage. Similarly, Q can be decomposed into
the effort to determine whether to start a loop again, the effort to determine whether to end a loop,
and the effort to determine how mary times to execute a loop. These values are denoted QS, QE,
and QC, and reflect the WHILE, UNTIL, and DO-count structures available in most languages.
The method used to calculate values of IB is a generalization of a technique used in logic and
switching theory, and will be considered in the next section. Determination of the Q values is similar
to determination of 1B in two of the three cases and will be considered after the calculation of IB
has been discussed.

5. CALCULATION OF IB
The procedure we use for the determination of IB is as follows:

(1) The condition used to determine whether to take a given branch is decomposed into a string
of atoms and operators, the atoms being the substrings maximal with respect to non-
containment of unary and binary Boolean operators.

(2) This decomposition is expressed in disjunctive normal form, and is then minimized with
respect to a weighting based on weights of atoms and Boolean operators.

(3) The number of operators, both Boolean and non-Boolean, is then counted; the resulting
number is IB. :

Distinctive normal form is a standard form for the expression of Boolean formulas in the
propositional calculus(23]. There are three advantages of using DNF. First, DNF exists for any
proposition which is not a contradiction (of course, a contradiction represents dead code, which
is not allowed in structured programming). Second, an expression in DNF requires only the use
of NOT, AND, and OR operators in its representation, so, by conversion to this standard form,
we obtain an equivalent expression which is simpler with respect to the number of different Boolean
operators required. An argument may be made here that one may as well use a minimal set of
operators, such as NOR, in the conversion to a standard form. We feel that such a reduction, while
certainly advantageous in the reduction of the number of distinct Boolean operators, has as a
disadvantage the removal of a certain naturalness. The conversion to DNF retains this naturalness.
The final advantage of DNF is that there exist simple algorithms for its computation.

The standard algorithm for conversion to DNF does suffer from a disadvantage: the form that
is obtained may sometimes seem much more complicated than the original formulation of the
proposition. As an example, consider the proposition ~(p&(q|r)). Using the truth-table
algorithm for conversion to DNF, one obtains:

P& ~q& ~1)|
(~p&q&r)|

(~p&q& ~1)|
(~p& ~q&r)]
(~p& ~q& ~1).

Our solution to this problem is a modification of the standard solution used in switching theory:
we modify the standard DNF obtained by this algorithm, using a weighting system for the parts
of the proposition[24]. Our conversion to a “minimal DNF” (MDNF) is different from most used
in switching theory in that we consider the weights on the Boolean operators to be one, and use
non-unit weights on the individual propositional variables. After conversion to our MDNF (using
a weight of one for the variables), the above expression becomes simply

~pl(p&g& ~r).



Logical effort in high level languages 139

Thus, MDNF retains the advantages of DNF while reducing the problem inherent in the standard
form.

The algorithm we use for conversion to DNF is the truth-table technique[23]. Our version of
the algorithm follows:

(1) Call a portion of the condition an atom if it is maximal with respect to non-containment of
Boolean unary and binary operators.

(2) Replace each distinct atom by a unique letter.

(3) Construct the truth table of the expression obtained in (2). If the truth table has only values
of false, then stop, since the expression is a contradiction.

(4) 1In each line of the table which has a value of true, construct an expression composed of the
conjunction of the atomic variables, each variable prefixed by NOT if and only if the variable
has the value false in that line.

(5) Form the disjunction of the expression in (4). This is the atomic DNF of the formula. To
obtain the DNF of the formula, replace the atomic variables with their values. This is the
equivalent DNF of the original proposition.

As an example of the above procedure, consider the following FORTRAN statement:
IF(A.LT.B—17.AND..NOT.(C—17.EQ.0.OR.D .GE.4)A=B-C.

The atoms are “A .LT.B— 177, “C— 17 .EQ. 0, and “D .GE. 4”. Replace these by p, q, and ,
respectively, to obtain the proposition p & ~(q | ). The truth table is:

p&~ (| 1)
TFFTTT
TFFTTF
TFFFTT
TTTFFF
FFFTTT
FFFTTF
FFFFTT
FFTFFF
The only true result appears in line four of the table where p has value true and q and r have value
false. Hence, the atomic DNF is p& ~q&|r, while expansion of the atoms gives
A .LT.B—17.AND. .NOT.C - 17 .EQ. 0 .AND. .NOT. D .GT. 4.
A slightly more complicated example can be given from PL/I with the statements:
IF(A&B ~ = 17| BOOL (A, C, "1001'B))
THEN B = ABS (B);
ELSE B =0;
There are two values of IB that must be calculated here: the value in the first line, and the value
in the third line. The third line contains a null conditional, so that its value is zero. In the first

statement, the atoms are “A”, “C”, and “B ~ = 17”. Replacement by atomic variables a, ¢, and
b, gives (a & b) | (a < = > ¢) which has the following truth table:

(a&b) | (a<=>¢
TTTTT T
TTTTT
TFFTT
TFFFT
FFTFF
FFTTF
FFFFF
FFFTF

e B s B s Hile v Bl s B M 3|
Mm-S T
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All lines except four, five, and seven have value true, so the atomic DNF is:
(a&b&c)l@&b& ~0)|
(@& ~b&c)|(~a&b& ~c)]
(~a& ~b& ~c¢).

As before, one replaces a, b, and ¢ by their values to obtain the DNF of the expression.

The problem with conversion to DNF in this second case is that the resulting expression is much
more complicated than the original, and the expansion seems somehow artificial. We overcome this
problem by conversion to MDNEF, as follows. We define the weight of the variables and operators
in an expression in DNF by assigning a weight of one to each of the Boolean operators, and a
weight of OP(atom) to each of the variables. Thus in the PL/I example the weights are
w(a) = w(c) =0, and w(b) = 1, for the operator ‘““~ =”. After the weights are assigned, find an
equivalent DNF of minimal total weight, by eliminating redundancies in the original DNF.
Continue the process until all redundancies have been eliminated. Therefore, the conclusion of our
algorithm for conversion to MDNF and the calculation of IB becomes:

(6) Using the atomic DNF from step (5), assign a weight of one to each Boolean operator, and
a weight of OP(atom) to each of the variables in the DNF.

(7)  Convert from DNF to MDNF by eliminating the redundant variables, until an equivalent
DNF of minimal total weight is obtained, i.e. find all places where two disjuncts are exactly
the same except for one atom, which will appear in both negated and non-negated forms.
Replace these two disjuncts with a single disjunct which eliminates reference to the redundant
atom. Continue until there are no more redundancies to eliminate.

(8)  Once the atomic MDNF is obtained, convert to MDNF by replacing the variables with their
values. The value of IB is then OP(MDNF), the operator count of the resulting MDNF.

Step seven is actually more complicated than it perhaps could be. The choice of redundancies to
eliminate must be ones that will result in a minimal total weight over all possibilities of elimination,
i.e. the choice must guarantee that the resulting weight is the least that could be obtained and still
leave the expression in DNF. One way to do this is by considering all possibilities of elimination;
this makes the algorithm at best exponential in the number of variables. In practice this will not
be much of a problem, since there will be few times that the number of atoms will be over three
or four.

Continuing the above examples, it is clear that in the FORTRAN example, the MDNF is just
the DNF, since there is only one disjunct. The PL/I example is not minimal, e.g. the first two
disjuncts are redundant. Applying step seven to this example gives

(@&c)|(~a& ~c)|(a&b& ~c).

As a result, the value of IB for the FORTRAN example is nine, while the values of IB in the PL/I
case are ten for the IF conditional and zero for the (null) ELSE conditional.

Using this eight step procedure, the value of IB can always be determined, and in most practical
cases, the amount of time spent in determining this value will not be too large. The advantages
of using this MDNF form include obtaining a standard form for conversion which is both natural
(using only NOT, AND, and OR) and minimal with respect our measure. Since equivalent atomic
propositions will result in the same truth table, and therefore in the same DNF according to our
algorithm for conversion to DNF, equivalent non-atomic propositions with the same weights on
the atoms will result in the same values for IB. Thus we have a standard, uniquely determined,
natural measure for IB. This algorithm for conversion to MDNF will therefore be used in the
calculations of QS and QE, whose measures we now consider.

6. CALCULATION OF Q

As mentioned in Section 2, the computation of Q can be decomposed into three parts. Of these
three parts, the calculation of QS and QE are similar to the calculation of IB. In the case of a
WHILE type statement, a check is made before the execution of the body of the loop; in the case
of an UNTIL type, the check is made at the end of the loop. These checks are expressed in the
form of Boolean functions and thus may be converted into MDNF. A count of OP(MDNF) of

Pemiminiticnt n e s
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the resulting form is made, and the resulting value is the value of QS or QE. The calculation of
QC is problematic in that there is no explicit condition that can be converted to MDNF.

There are two basic approaches to a definition of QC. The first is to create a Boolean function
that will execute in the same manner as the counting loop. An example of this type of conversion
would be the change of the FORTRAN statement DO 101=1, 10 to a structure of the form
LOOP...UNTIL (I.LT.1.0OR.I.GT. 10). There are two problems with this approach. The first
is that this change is somewhat artificial in the creation of a new conditional where none was before.
Secondly, we must know the exact manner of execution of the counting loop; in PL/I, the equivalent
structure would be DO WHILE (I> = 1& 1< = 10);. If this knowledge is not available, this
method breaks down. This third, and most problematic, is that in the conversion to a conditional
we have changed an extremely simple DO statement into a less simple conditional. Conversion to
MDNF would aid in reducing the complexity of the resulting conditional, but the combination of
the other problems with this one would seem to indicate that there should be a better way to handle
counting loops. The second approach is to accept the count loop as a separate paradigm, and to
construct a distinct way of measuring QC. This approach will overcome the problems inherent in
the first approach, and has as an additional advantage in that it will allow with minor modifications
most of the other count type loops, such as REPEAT in PL/I and the various types of enumerative
counts that appear in most modern languages. This is the approach that we use.

To construct this measure of QC, we begin by considering the standard type of count, which
has three parameters: starting value, ending value, and increment. We define the simplest case of
the standard count to be a count of positive integers, beginning with one, and with an increment
of one. To this simplest case, we assign a QC value of one. A similar case is that of the appearance
of simple variables for the three components, e.g. DO 101=1J, K, L. A value of one is assigned
to this case, and to the case of a simple enumeration such as “DO 1=1, 3, 5, 6;”". The remaining
cases are considered to be modifications of these two cases, and additional values are added for
the modifications. For constants, the possible modifications are: starting value not equal to one,
ending value not equal to k (increment) + start for some value of k, negative increments, and
non-integer increments. Each of these modifications adds one to the value of QC. Thus a statement
like “DOI=10TO 3.27 BY — 0.5;” would have a value of five, and would represent the worst case
of a count loop that involved only constants.

The other possibility is the appearance of expressions in the three parameters. This possiblilty
is handled by evaluating OP (expression) and adding that value to the resulting count, e.g.
“DOI=1TOK + L — 3;” would have a value of three, one for the basic count loop and two for
the operator count of the expression. This would include the REPEAT option in PL/I, as an
expression like “DO 1 =1, 3, REPEAT I % % 2;”” would have a value of one for the enumeration plus

one for the operator count in the expression.
One final possibility that should be considered is that of the endless loop with inside escape, such

as the LEAVE statement in PL/I. Although not a count type of loop but a separate paradigm,
the procedure of assigning a base value with additions will work here also. Accordingly, we assign
the standard base value of one to an endless loop. The LEAVE option is assigned a value of the
number of structures left, so that an endless loop which exits only from itself (and not from any
other encompassing procedure) would have a value of two. Since the LEAVE option is generally
encountered along with an IF statement, we include the value of IB to be a part of the loop, but
still name it as IB. (This is due primarily to the inherent vagueness of present languages with regard
to this structure. If ever a language is written that has a structure such as LOOP... LEAVE name
WHEN (condition)...END LOOP, this artificiality will no longer be necessary.)

Now that it is possible to measure QS, QE, and QC, the possibility of combinations of these
measures occurs. The solution to this problem is simply to remember that the value of Q is the
sum of the three loop types, and thus to consider and calculate each separately, then sum to get
the value of Q for the loop. With this discussion of the Q measure finished, the measure of logical
effort is complete. We thus turn to an example to illustrate the total algorithm.

7. AN ALGORITHM

In order to demonstrate the general algorithm for calculation of EPT, we consider the program
NEWRAP, written in FORTRAN WATFIV-S (Listing 1). As the name NEWRAP suggests, the
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Listing 1. Program NEWRAP

00010 S JOB NOEXT )
00920C

00030C ’
00040C

00050C THIS PROGRAM WILL FIND ROOTS OF FUNCTIONS USING METHODS OF

00060C BISECTION AND NEWTON’S METHOD. TWO ASSUMPTIONS ARE MADE:

00070C FIRST, THAT THE ROOTS ARE ALL WITHIN THE INPUT INTERVAL,

00080C AND SECOND, THAT ALL ROOTS ARE AT LEAST A UNIT APART.

00099C A UNIT, BEGINNING FROM THE LEFT TO THE INTERVAL, IS FOUND )
00100C WHICH CONTAINS A ROOT, THEN BISECTION IS USED UNTIL AN ’
P0110C APPROXIMATE ROOT WITHIN .¢45 IS FOUND. USING THE MIDPOINT .
06126C OF THE BISECTION INTERVAL RESULT, NEWTON'S METHOD IS ’
00130C THEN RUN UNTIL GUESSES ARE NO MORE THAN 1.E-6 APART.

00140C APPROPRIATE TESTS ARE MADE TO DISTINGUISH BETWEEN EASILY

00150C FOUND ROOTS AND OTHER ROOTS.

H0160C

0017¢C

00180C

00199 REAL HBOUND, TESTL, TESTH, PANS, ANS

00200 READ(5, *) TESTL, HBOUND

00210C

00220C CHECK FOR ROOTS ON LEFT BOUNDARY

00230 WHILE(F(TESTL) .EQ. ¢. .AND. TESTL .LE. HBOUND)

00240 WRITE(6, *) 'EXACT ANSWER =", TESTL

00250 TESTL = TESTL + 1.

00260 ENDWHILE

00270C

00280C BEGIN SEARCHING UNITS. IF EXACT ROOT, IT MUST BE RIGHT SIDE.

00299 WHILE(TESTL .LT. HBOUND)

06300 TESTH = TESTL + 1.

003190 IF(F(TESTL) « F(TESTH) .LT. ¢.) THEN

00329 CALL BISECT(TESTL, TESTH, PANS)

00330 CALL NEWTON(PANS,ANS)

00340 WRITE(6, *) "APPROXIMATE ROOT =", ANS

00350 TESTL = TESTH

00360 ELSEIF(F(TESTL) « F(TESTH) .EQ. §.) THEN

00379 WRITE(6, *) "EXACT ROOT =", TESTH

00380 TESTL = TESTH + 1.

00399 ELSE

00400 TESTL = TESTH

00410 ENDIF

00420 ENDWHILE

00430 STOP

00440 END

00450 SUBROUTINE BISECT (LOW,HIGH,ANS)

00460C THIS IS A STANDARD BISECTION ROUTINE.

00470C LOW AND HIGH ARE THE INPUT LEFT AND RIGHT HAND END POINTS

00480C OF THE INTERVAL, ANS IS THE RETURN VARIABLE, AND MIDPT IS ;
00490 C THE MIDPOINT OF THE SEARCH INTERVAL.

00500 REAL LOW, HIGH, ANS, MIDPT )
00519 WHILE(ABS(LOW-HIGH) .GE. .005)

00520 MIDPT = (LOW + HIGH)/2.

00530 IF(F(LOW)* FMIDPT) .LT. ¢.) THEN

00549 HIGH = MIDPT

00550 ELSIF(F(HIGH) * F(MIDPT) .LT. ¢.) THEN

003560 LOW = MIDPT

09579 ELSE b
00580 WRITE(6, *) "TEXACT ANSWER =", MIDPT

00599 LOW = MIDPT

00600 HIGH = MIDPT

P61 ENDIF

00620 ENDWHILE

00639 ANS = (LOW + HIGH)/2.

00649 RETURN

00650 END

00660 SUBROUTINE NEWTON(INPUT,OUTPUT)

00670C STANDARD NEWTON-RAPHSON METHOD.

00680 REAL INPUT, OUTPUT

00699 INTEGER 1, FLAG

00700 =9

00719 FLAG =9

00720 WHILE(I .LE. 15 AND. FLAG .EQ. §)

00730 OUTPUT = INPUT — F(INPUT)/FPRIME(INPUT)

00740 IF(ABS(INPUT — OUTPUT) .LT. 1.E-6) FLAG = 1

20759 INPUT = OUTPUT

00760 I=1+1

%0779 ENDWHILE

00780 IF(1.GT. 15) THEN

00790 WRITE(S, ) "TOO MANY ITERATIONS’

00800 ENDIF
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RETURN
END
FUNCTION F(VALUE)
THE FUNCTION FOR WHICH THE ROOTS ARE FOUND
REAL VALUE
F=(((VALUE —9.)« VALUE — 2.)» VALUE + 120.)
* « VALUE -130
RETURN
END
FUNCTION FPRIME(VALUE)
DERIVATIVE OF SAID FUNCTION
REAL VALUE
FPRIME = ((4. * VALUE — 27.)» VALUE — 4.)» VALUE + 120.
RETURN
END
SENTRY
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Listing 2. Pseudo-code for calculation of EPT and EPM

begin calc_EPT
EPT: =0
EPM: =0
repeat until (end.of_program)
call calc_ESGT (segment, ESGT)
EPM: = max (EPM, ESGT)
EPT: = EPT + ESGT
end repeat
end calc_ EPT

begin calc_ESGT (segment, ESGT)
LN:=0
ESGT: =0
repeat until (end_of_segment)
get statement
LN:=LN+1

if (statement .NE. decision .AND. statement .NE. loop) then

call count OP (statement, OP)
ESGT: = ESGT + OP
elseif (statement = decision) then
I.=0
EDCT: =0
repeat until (end_of_decision)
call calc_IB (statement, IB)

call calc_ESDT (decision_subsegment, ESQTD)

EDCT: = ESGTD + EDCT
end repeat
EDCT:=EDCT +1
ESGT: = ESGT + EDCT
elseif (statement = decision) then
call calc_QS (statement, QS)
call calc_QE (statement, QE)
call calc.QC (statement, QC)
Q:=QS+QE+QC
call calc_ESGT (loop_segment, ELPT)
ELPT: =ELPT+Q
ESGT: = ESGT + ELPT
endif
end repeat
ESGT: = ESGT + LN
end calc ESGT

begin count_OP (statement, OP)
/+this is language dependent s/
end count_OP

begin calc_IB (statement, IB)
/*see paper /
end calc_IB

begin calc QS (statement, QS)
/xsee paperx/
end calc_QS

begin calc_QE (statement, QE)
/*see papers/
end calc_QE

begin calc_QC (statement, QC)
/»see paper/
end calc_QC
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program is designed to calculate the roots of the polynomial in function F, using the method of
bisection to find initial approximations to the roots, then using the Newton-Raphson method to
obtain good approximations. NEWRAP consists of five segments: MAIN, the driver and initial
root isolator (unnamed in this version of FORTRAN), BISECT, the bisection routine, NEWTON,
the Newton-Raphson routine, and F and FPRIME, routine to calculate the needed functional
values.

The pseudo-code for our algorithm is given in Listing 2. It consists of seven routines, the last
five of which are not given in full. Of these last five, four are discussed in the preceding sections
and involve calculation of MDNF; the other procedure, count OP, is straightforward, being
essentially a table of the various operators in the language, along with a recognizer to determine
when a subprocedure is called. The main portion of the algorithm is the listing of the evaluation
procedure for EPT and EPM; it is this portion that will be used in the calculation of logical effort
for NEWRAP.

To begin our calculation, we note that the occurrence of procedure count OP in procedure
calc_ESGT occurs unmodified, so that we can count the operators in each line which is not used
in the calculation of either I or G. Also, the procedures given earlier for calculation of I and Q
allow us to count the values of IB, QS, QE, and QC in each line. The result of these counts occur
in Table 3. Note that declaration statements have a count of zero, while input—output statements

Table 3. Statement efforts for NEWRAP
Line Value Type Line Value Type

10 0 JCL 499 $ COM
20 $ COM 5¢9 0} ST
39 ¢ COM 3519 3 Qs
49 ¢ COM 520 3 ST
59 ¢ COM 53¢ 4 IB
60 9 COM 3549 1 ST
7¢ ¢ COM 55 4 1B
80 9 COM 560 1 ST
99 § COM 579 0 1B
100 9 COM. 580 1 ST
119 ¢ COM 59 1 ST
129 9 COM 600 1 ST
13¢ ¢ COM 619 9 CMmP
149 9 COM 629 9 CMmP
150 9 COM 630 3 ST
169 ¢ COM 640 1 ST
179 ¢ COM 650 ® CMP
189 9 COM 660 ® CMP
199 0 ST 670 9 COM
208 1 ST 680 0 ST
21¢ ¢ COM 690 L} ST
229 ¢ COM 700 1 ST
23¢ 4 Qs 7o 1 ST
249 1 ST 720 3 Qs
250 2 ST 739 5 ST
260 ¢ CMP 749 3+1 IST
279 ¢ COM 750 1 ST
289 ¢ COM 760 2 ST
299 1 Qs 70 ¢ CMP
300 2 ST 780 1 1B
319 4 1B 790 1 ST
329 1 ST 809 ¢ CMP
339 1 ST 810 1 ST
349 1 ST 820 ® CMP
359 1 ST 839 ¢ CMP
360 4 IB 849 ¢ COM
37¢ 1 ST 85 1} ST
380 2 ST 86 8 ST
399 0 1B 8% — CNTN
400 1 ST 880 1 ST
419 ¢ CMP 89 ¢ CMP
420 ¢ CMP 900 9 CMP
439 1 ST 919 ¢ COM
49 ® CMP 92 ] ST
450 9 CMP 93 7 ST
469 0 COM 940 1 ST
470 ® COM 950 ¢ CMP
480 0 COM 96p ] ICL
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have a count of one. In general, any compiler directive such as END or FORMAT will have a
count of zero, as they have no effect on the structural complexity of the program.

Of the values for Q and IB in the tables, the calculations for most are trivial. The exceptions
are lines 230, 310, 510, and 720; we examine these calculations more closely.

Line 230: The Boolean operator is “F(TESTL) .EQ. 0 . AND. TESTL .LE.
HBOUND”. Let a = “F(TESTL) .EQ.0” and b =“TESTL .LE. HBOUND".

The general form is thus a & b, which has truth table

a&b
TTT
TFF
FFT
F F F.

The MDNF is just the proposition itself. Proposition a has an operator
count of two, one for the function F and one for the operator .EQ..
Proposition b has a count of one, for the operator .LE.. Hence QS(230) =4.

Line 310: The count here is four, one for each occurrence of function F,
one for the operator “+”, and one for the operator .LT..

"

Line 510: The count here is three, one for each of the operators ABS, “—7,
and .GE..

Line 720: This is similar to line 230, with a count of 3.

We now turn to a calculation of ESGT(MAIN). MAIN has the form of a sequence of five blocks:
line 190, line 200, lines 230-260, lines 290-420, and line 430. Thus LN(MAIN) = 5, as statement
440 is a compiler directive and has no length attribute. We have given the declaration statement
a length, as we feel that our measure should reflect programming difficulties, and it is certainly
possible to encounter problems with declarations, while an experienced programmer will generally
encounter no problems with the other compiler directives. Our calculation is thus

ESGT(MAIN) = LN(MAIN) + ESTT(190) + ESTT(200)
+ ELPT(230:260) + ELPT(290:420)
+ ESTT(430).
We have LN(MAIN) = 5, and the values for the three statement efforts are given in the statement

effort table. The only remaining values are those for the loops, which require more calculation.
For the first loop, we have

ELPT(230:260) = Q(230:260) + ESQT(240:250)
= QS(230) + (LN(240:250) + ESTT(240)
+ ESTT(250))
=44+Q2+1+2)
=9
where the values are taken from the table. The length is two, since both statements are executable.
For the second loop,

ELPT(290:420) = Q(290:420) -+ ESGT(300:410)
= Q(290) + (LN(300:410) + ESTT(300)
+ EDCT(310:410).

From the table, QS(290) = 1 and ESTT(300) = 2.We have LN(300:410), since the structure is a
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Table 4. Summary of values for EP-
T(NEWRAP)

ESGT(MAIN) = 44
LN(MAIN) =
ELPT(230:260) =9
ELPT(290:420) = 28

EDCT(310:410) = 23

ESGT(BISECT) = 34
LN(BISECT) =4
ELPT(510:620) = 26

EDCT(530:610) = 18

ESGT(NEWTON) = 33
LN(NEWTON) =7
ELPT(720:770) = 20

EDCT(740) = 5
EDCT(780:800) =3

ESGT(F) = 12
LN(F)=13

ESGT(FPRIME) = 11
LN(FPRIME) = 3

sequence of two blocks. For the calculation of EDCT(310:410), we obtain

EDCT(310:410) = I(310: 410) + ESGT(320:350)
+ ESGT(370:380) + ESTT(400)
= (IB(310) -+ IB(360) + IB(390))
+ (LN(320:350) + ESTT(320) + ESTT(330)
+ ESTT(340) + ESTT(350))
+ (LN(370:380) + ESTT(370) + ESTT(380))
+ (LN(400) + ESTT(400)).

Each of these values may be found in the table (all of the LN values are just the statement counts,
as each statement is executable), with the result that

EDCT(310:410)= (4 +4+0)+(4+1+1+1+1)
FR+1+D+(+1)
=23.

As a result, ELPT(290:420) = 1 + 2 + 2+ 23 =28, and the final tabulation for ESGT(MAIN) is
thus S+0+1+9+28+1=44.

The segment efforts for the other four segments are computed similarly, with a summary of
results given in Table 4. Hence EPT(NEWRAP)=444344+33 4+ 12+ 11 =134 and EP-
M(NEWRAP) = ESDT(MAIN) = 44.

As a comparison, we calculate McCabe’s cyclomatic complexity for the program NEWRAP. The
graph of the problem is given in Fig. 4, and a count gives the resulting complexity value of 17.
Logical effort and McCabe’s cyclomatic complexity[2] are at least partially independent. It is clear
by inspecting Fig. 4, the graph of the program, that statements in a sequence structure or
substructure could be added or deleted, which would leave the cyclomatic complexity fixed, but
could possibly change the logical effort of the structure. Thus a major difference between our
measure and cyclomatic complexity is the additional consideration of the sequence structure.

8. CONCLUDING REMARKS

Now that logical effort has been defined, the question of its usefulness arises. Given the other,
more established, measures of complexity, what is the purpose of a new measure? We feel that the
advantages of logical effort are three in number: First, logical effort refiects the current concerns
in programming languages, in the use of virtuality and segment independence. These concepts
appear to be unifying a study of programming languages, and a measure of complexity that reflects
these concepts should be a useful aid in the continuation of this study. Second, logical effort is a
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Fig. 4. Complexity graphs for NEWRAP.

quantification of the control structures in a program, and could be very easily modified to calculate
complexity from an algorithm instead of a program, if one had knowledge of the intended
implementation language. (Such knowledge is essential, since computation of logical effort depends
on a knowledge of the available primitive operators.) As a result, logical effort has the ability to
predict the complexity of a program before the program has been written. Predictive measures of
this type are important in the allocation of resources for program implementation, and it appears
that logical effort is able to aid in determinations of this type. Third, logical effort is a detailed
measure of the control structures in a program, and, when combined with an analysis of the data
structures used in either a program or algorithm, should allow an essentially complete quantitative
description of programs and algorithms.

The current research is therefore proceeding in two basic directions. The first is a conversion of
logical effort so that it will work for algorithms, in order to measure the predictive ability of such
a measure. The other, and perhaps more ambitious research effort, is to integrate a data structure
complexity measure with logical effort in order to give a more complete view of the general
complexity problem. The final result would then be an attempt to utilize this new measure to predict
programming effort, based on a given algorithm and a description of the data structures used in
the algorithm. Such a measure would be of great aid in the allocation of resources for software
production.
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