
RESEARCH CONTRIBUTIONS

Programming
Techniques and
Data Structures

Ellis Horowitz
Editor

Efficient Algorithms to
Globally Balance a Binary
Search Tree

HSl CHANG and S. SlTHARAMA IYENGAR

ABSTRACT: A binary search tree can be globally balanced
by readjustment of pointers or with a sorting process in O(n)
time, n being the total number of nodes. This paper presents
three global balancing algorithms, one of which uses folding
with the other two adopting parallel procedures. These
algorithms show improvement in time efficiency over some
sequential algorithms [1, 2, 7] when applied to large binary
search trees. A comparison of various algorithms is
presented.

1. INTRODUCTION
A binary search tree is organized such that for any
node, all keys in the left subtree are smaller and those
in the right subtree are greater than the key value of
that node. It provides a method of data organization
which is both flexible and efficient.

The formation of binary trees grown in a random
manner may have some branches longer than others.
We know a binary tree search will, on the average,
require (2(n + 1)/n)H, - 3 (~1.386 log2n) comparisons
for a tree with n nodes if the keys are inserted into the
tree in random order. Thus, by making extra efforts to
maintain a perfectly balanced tree instead of a random
tree, we could--provided all keys are looked up with
equal probability--expect an average improvement of
approximately 27.85 percent in the search path length
[3, 7].

The task of balancing a binary search tree is then to
adjust the left and right pointers of all the nodes in the
tree so that the search path is optimized; we can attain

© 1984 ACM 0001-0782/84/0700-0895 75¢

the same effect as a binary search without requiring a
sorted list. Algorithms that dynamically restore tree
structure to balance during insertion or deletion of
nodes have been described by Adelson-Velskii, Landis,
and Knuth [3, 6]. However, in this paper, we deal with
global algorithms that balance the entire tree at one
time. A global tree balancing algorithm generally runs
in linear time and consists of two parts: first, a traversal
to determine the order of all nodes, then restructuring
pointers based on that order.

Martin and Ness [7] developed an algorithm that re-
organizes a tree with n nodes by repetitively subdivid-
ing n by 2 and uses the results as guidance to step
through the framework of a perfectly balanced tree, i.e.,
for each node, the number of nodes in its left subtree
and right subtree differ by I at most. An in-order trav-
ersal is carried out concurrently to provide relative
node positions for the pointer-restructuring procedure
which fits them into proper places in the balanced tree
structure. In this algorithm, a stack is required to save
pointers during traversal.

Bentley [1] discusses an algorithm to produce per-
fectly balanced trees. In this algorithm, nodes are
passed as a set or a linked list to the balancing proce-
dure which finds the median element of the set of
nodes as root and splits the set into two subsets, each
forming a balanced subtree at the next level. This proc-
ess continues until there are no more elements to split.

Another algorithm that needs no extra storage was
given by Day [2]. The input tree is required to be right-
threaded with negative backtrack pointers to allow

July 1984 Volume 27 Number 7 Communications of the ACM 605

Research Contributions

Algorithm S:
{globally balance a binary search tree through folding l

procedure BALANCE(ROOT, LSON, RSON, n):

integer ROOT, n; integer array LSON, RSON;

begin
integer N, M, ANSL, ANSR; integer array LINK(I:n);

ltraverse the original tree and set up LINK}

procedure TRAVBIND(T):

integer T; {pointer to the next node to be visited}

begin

if T = null then return;

TRAVBIND(LSON(T));

N ~ N + 7; {count the sequence of visit}

LINK(N) ~ T; {store the pointer to the Nth node

in the Nth element of LINK 1

TRAVBIND(RSON(T));

end;
{reorganize a tree by partitioning and folding}

procedure GROW(LOW, HIGH):

integer LOW, HIGH;

begin
{MID is the median of a subset bound by LOW and HIGH,

TL is the subtree root in the balanced left half-tree,

TR is the counterpart of TL in the right half-tree.

TL, TR are returned via ANSL, ANSR, respectively}

integer MID, TL, TR;

case
LOW > HIGH Inull branch I :

begin
ANSL, ANSR ~ null;

end;

LOW = HIGH Ileafl :

begin
ANSL ~ LINK(LOW);

ANSR ~ LINK(LOW+M);

LSON(ANSL), RSON(ANSL) -- null;

LSON(ANSR), RSON(ANSR) ~ null;

end;
LOW < HIGH {divisible subset}:

begin
MID ~ L(LOW + HIGH)/ 2~;

TL ~ LINK(MID);

TR ~ LINK(MID+M);

GROW(LOW, MID-I); Iform left subtree 1

LSON(TL) -- ANSL;

LSON(TR) -- ANSR;

GROW(MID+7,HIGH); {form right subtree}

RSON(TL) ~ ANSL;

RSON(TR) ~ ANSR;

ANSL ~ TL;

ANSR ~ TR;

end;

end;

end;
if n s 2 then return;

N ~ 0; {initialize counter}

TRAVBIND(ROOT);

M ~ L(N + I)/ 2~; {folding value}

ROOT --LINK(M); {new root}

if N = 2 * M

then {N is even 1

begin
M -- M + I; {adjust folding value}

GROW(I,M--2);

{put the node associated with M as a terminal node

left to its immediate successorl

LSON(LINK(M)), RSON(LINK(M)) -- null;

LSON(LINK(M+ 7)) -- LINK(M) ;

end;
else IN is odd} GROW(7,M--7);

LSON(ROOT) ~ ANSL;

RSON(ROOT) ~ ANSR;

end;

FIGURE 1. Algorithm S.

696 Communications of the ACM June 1984 Volume 27 Number 6

Research Contributions

stackless traversal. A right-skewed tree is formed after
traversal and this list-like structure serves as a back-
bone for the pointer-restructuring procedure which
shifts nodes to the left side of the backbone until the
subtree path lengths balance, i.e., no path (from root to
leaf) differs in length from any other path by more than
1. The produced tree, on the other hand, is not
threaded although it can be made a threaded tree with
some modification. Martin and Ness's algorithm and
Day's algorithm are given as tutorial matter on pages
700-701 for interested readers. For a broader treatment
on balancing binary search trees, see [4-6, 8]. These
include the present investigation of the authors.

In the next section, we present a new sequential bal-
ancing algorithm which also uses partitioning but re-
duces the number of times of partitioning through fold-
ing. Section 3 presents two parallel algorithms as varia-
tions of the previous sequential algorithm; and in Sec-
tion 4, we analyze and compare these algorithms.

2. SEQUENTIAL BALANCING THROUGH FOLDING
The node of a tree is assumed to contain the following
fields: left subtree pointer LSON, right subtree pointer
RSON, and KEY, while ROOT points to the root node of
the tree. We first traverse the original tree to determine
the order of all n nodes. Array LINK is used to store the
ordering information so that the ith element of LINK
contains a pointer to the ith node in ascending key
order, i.e., KEY(LINK(i - 1)) < KEY(LINK(i)) <
KEY(LINK(i + 1)).

To reorganize a tree by partitioning the set, following
Bentley, we first find the left median, 1 t.(n + 1)/2.3,
of the whole set; the node corresponding to that ele-
ment is to be the root of the new tree. The remaining
L(n -- 1) / /23 elements with values less than the left
median in the left subset and the other r(n - 1)/2"3
elements in the right subset form two partitions. At the
next level, we find for each of these two subsets their
medians and use the two associated nodes as roots of
the two corresponding subtrees as well as LSON and
RSON, respectively, of the previous root. This process
continues to find the medians at each level, partitions
around them, and restructures the tree from top to bot-
tom and from left to right.

Further considering the use of LINK, we observe that
for trees containing an odd number of nodes, the me-
dian of an ordered set also serves as a special value,
denoted by M, to let us construct the right half-tree
concurrently with the left half-tree because the coun-
terpart elements in the balanced two halves differ by
M. If we know the position of an element K in the left
half-tree, we can also determine the position of its
counterpart element K + M in the right half-tree. So,
we only have to partition half of the entire set in order
to reorganize the tree structure.

We call this procedure folding because it is like some-
thing bending over upon itself to form a symmetrical

1 If we have n sorted elements X1 X., the median is (X,~.+1)/2., +
X,.~/2.~-1)/2, the left median is X,~n+ll/2.,. and the right median is X~/z.,+~.

structure. The value M used in folding is called the
folding value. When the total number of nodes is even,
we let the right median, n / 2 + 1, be the folding value
M. The node associated with the left median remains as
the root of the tree and the node corresponding to M is
placed as the leftmost node in the right half-tree.

Algorithm S (Figure 1) is a global balancing algorithm
based on this idea. Procedure TRAVBIND traverse the
original tree and sets up the auxiliary array LINK. After
traversal, procedure GROW recursively partitions and
forms the balanced left half-tree with its right-half
counterpart built in the same step through folding. Two
parameters are used in GROW: LOW, the lower bound,
and HIGH, the upper bound for an ordered subset to be
relinked in balanced form. The root of a balanced sub-
tree is the left median MID of the subset. Three condi-
tions direct the course of GROW:

1. If LOW > HIGH, we have a null subtree;
return a null pointer.

2. If LOW = HIGH, we have a leaf;
set up a terminal node and return the node
pointer.

3. If LOW < HIGH, we have a divisible subset;
do the following:

a) find the root T through MID.
b) GROW left subtree and return root as LSON

of T.
c} GROW right subtree and return root as

RSON of T.

A tree is balanced when the ROOT of the tree, and the
LSON and RSON of each node are readjusted.

3. PARALLEL BALANCING
Balancing a tree through folding reveals parallelism in
the pointer-restructuring procedure. It is possible to di-
vide the set of nodes into subsets and perform reorga-
nizing operations on these parts simultaneously. One
way to balance the left half- and right half-tree at the
same time is given in Algorithm P1 (Figure 2). In this
algorithm, folding is not used and the pointer-restruc-
turing procedure GROW directly resembles Bentley's
scheme [1].

Another degree of parallelism exists between traver-
sol and pointer restructuring. If we physically rearrange
all nodes in sorted order during traversal, the pointer-
restructuring procedure becomes a pointer generator
which needs only to know the size of the tree to com-
pute all the LSONs and RSONs for corresponding nodes
in the balanced tree structure. A copy of the original
tree has to be made for traversal and sorting so that
nodes could be regenerated without destroying useful
information. Algorithm P2 (Figure 3) describes the way
to exploit this parallelism.

4. A COMPARISON OF PERFORMANCE MEASURES
Three conditions, when there are 0, 1, or more than 1
element in a subset, dictate the course of the pointer-
restructuring procedure in our algorithms. Take Algo-

July 1984 Volume 27 Number 7 Communications of the ACM 60?

Research Contributions

Algorithm P I :

}build balanced left half-tree and right half-tree in parallel}

procedure BALANCE(ROOT, LSON, RSON, n):

integer ROOT, n; integer array LSON, RSON;

begin
integer N; integer array LINK(I:n);

{traverse the original tree and set up LINK}

procedure TRAVBIND(T):

integer T; }pointer to the next node to be visited}

begin

if T = null then return;

TRAVBIND(LSON(T));

N ~ N +I; }count the sequence of visit}

LINK(N) ~ T; }store the pointer to the Nth node

in the Nth element of LINK}

TRAVBIND(RSON(T));

end;

}reorganize a tree by partitioning}

procedure GROW(LOW, HIGH):

integer LOW, HIGH;

begin

}MID is the median of a subset bound by LOW and HIGH,

T is the root of the balanced subtree reflected by

the subset}

integer MID, T;

case

LOW > HIGH }null branchl:return(null);

LOW = HIGH }leaf} :

begin

T ~ LINK(LOW);

LSON(T), RSON(T) -- null;

return(T);

end;
LOW < HIGH }divisible subset} :

b e g i n
M I D -- L (L O W + H I G H) ~ 2 J ;
T ~ LINK(MID);

cobegin }form left and right subtrees in parallel}

LSON(T) ~ GROW(LOW, MID--l);

RSON(T) -- GROW(MID+I,HIGH);

coend;

return(T);

end;

end;

e n d ;
if n ~ 2 then return;

N ~ 0; }initialize counter 1

TRAVBIND(ROOT);

M ~ ~(N + I)/ 2J;

ROOT -- LINK(M); {new root}

Ibalance the left and right half-trees in parallel}

cobegin

LSON(ROOT) ~ GROW(I,M-I);

RSON(ROOT) ~ GROW(M+I,N);

coend;

end;

FIGURE 2. Algorithm Pl.

r i thm P1 for e x a m p l e ; the n u m b e r of t imes e a c h case is
e x e c u t e d can be c a l c u l a t e d as fo l lows:

Let n be the total n u m b e r of nodes in a set (n _> 3),
and let

a = ulog2n3, and

b = L(2 ° + 2 ~-1 - 1)/n.3

Let Ki be the n u m b e r of t imes case i is e x e c u t e d in
A l g o r i t h m P1, i ~ 1, 2, 3.

Then ,

K1 = 12a(t-(n - 2a-*} /2~- lJ} - n - I I -< 2 ~-1

K2 = n - K3

Ka = 2 a-b - 1 + Klb

Let us suppose that Co is the average t ime to vis i t a
node dur ing traversal and Ci is the un i t t ime taken to
e x e c u t e case i once . Th e total b a l a n c i n g t ime T(n) can

6 ~ Communications of the ACM July 1984 Volume 27 Number 7

Research Contributions

be expressed as

T(n} = Con + C1K1 + C2K2 + C3K3 = O(n).

This expression also applies to Algorithms S and P2.
Based upon the above expression, we will do the

analyses of Algorithms S, P1, and P2. When balanced
through folding as described in Algorithm S, only ,n/2J
elements have to be partitioned. This tends to decrease
Ki's by half and slightly increases C/s. If parallel execu-
tion is implemented efficiently, Algorith m P1 should
have similar effects as decreasing K/s, in terms of turn-
around time, yet without increasing Ci's.

The savings in time becomes obvious when n is large.
Algorithm' P2 overlaps tra~,ersal and pointer-restructur-
ing, so that the turnaround time should be the greater

of the two. Also, C/s tend to be smaller, but more space
is required and physical record movement tends to in-
crease Co.

The sequential Martin-Ness and Bentley algorithms
that recursively partition the set of nodes to fo~m a
balanced, binary search tree follow the same partition-
ing scheme as that in Algorithm S.

A higher degree of parallelism and time efficiency is
~ichieved in our algorithms at the expense of increased
working space size. By using an array instead of a stack
to store the ordering information of the set of nodes, we
are able to build halves of the balanced tree simultane-
ously as in Algorithm S, or construct left subtrees and
right subtrees in parallel as in Algorithm P1. By making
a copy of the original tree, asdone in Algorithm P2, we

Algorithm P2:
{build a balanced tree with a parallel sorting process}

procedure BALANCE(ROOT, KEY, LSON, RSON, n) :

integer ROOT, n; array KEY; integer array LSON, RSON;

begin
integer N;
integer array KEYCOPY(I:n), LSONCOPY(I:n), RSONCOPY(7:n);

{traverse the copy of the original tree and soft keys 1

procedure TRAVSORT(T) :

integer T; [pointer to the next node to be visited I

begin
if T = null then return;
TRAVSORT(LSONCOPY(T));

N ~ N + I; {count the sequence of visit 1

KEY(N) ~ KEYCOPY(T); {put Nth key in Nth position}

TRAVSORT(RSONCOPY(T));

end;
{generate pointers for a balanced tree structure}

procedure GROW(LOW, HIGH):
integer LOW, HIGH;

begin
integer MID; {median of a subset bound by LOW and HIGH}

C a S e

LOW > HIGH {null branch}:return (null);

LOW = HIGH {leaf}:
begin

LSON(LOW), RSON(LOW) ~ null;

return(LOW);

end;
LOW < HIGH {divisible subset}:

begin
MID ~ u(LOW + HIGH)/ 2~;

cobegin {form left and right subtrees in parallel}

LSON(MID) ~ GROW(LOW, MID-7);

RSON(MID) ~ GROW(MID+I,HIGH);

coend;
return(MID);

end;
end;

end;
if n s 2 then return;
{make a copy of the original tree}

KEYCOPY -- KEY; LSONCOPY ~ LSON; RSONCOPY ~ RSON;

N -- 0; Iinitialize counter}

{sort keys and regenerate pointers in parallel}
cobegin

TRAVSORT(ROOT);

ROOT -- GROW(7,n); [new root}

coend;
end;

FIGURE 3. Algorithm P2.

[uly 1984 Volume 27 Number 7 Communications of the ACM 699

Research Contributions

Martin and Ness's Algorithm:

procedure BALANCE(ROOT, LSON, RSON, n):

integer ROOT, n; integer array LSON, RSON;

begin
IT holds polnter to node to be visited during traversal,

STACK is used to store T,

TOP points to the top element of STACK 1

integer T, TOP, ANS; integer array STACK(I:n);

{traverse the input tree and return a node pointer

in ascending key order via ANSI

procedure TRAVNEXT:

began

if T ~ null

then begin
TOP -- TOP + I;

STACK(TOP) ~ T;

T ~ LSON(T);

TRAVNEXT;

end;
else began

ANS ~ STACK(TOP);

TOP -- TOP - - 7 ;

T ~ RSON(ANS);

end;

end;
{restructure pointers by partitioningl

procedure GROW(N):

integer N; ~number of elements in a subset 1

b e g i n
IT is root of a balanced subtree reflected by a subset,

LPTR is used to temporarily store the LSON of T 1

integer T, LPTR;

case
N = 0 {null branchl:

b e g i n
ANS ~ null;

end;

N = I {leaf}:

b e g i n
TRAVNEXT;

LSON(ANS), RSON(ANS) ~ null;

end;
N > I Idivisible subsetl:

begin
GROW(L(N--7)/2~); {form left subtree}

LPTR -- ANS;

TRAVNEXT;

T -- ANS;

GROW(F(N-7)/2n);

RSON(T) -- ANS;

LSON(T) -- LPTR;

ANS -- T;

e n d ;

e n d ;

e n d ;

i f n s 2 t h e n r e t u r n ;

T ~ ROOT; TOP -- 0; {initialization}

GROW(n);

ROOT -- ANS; {new root}

end;

~form right subtree}

Martin and Ness's Algorithm

?00 Communications of the ACM July 1984 Volume 27 Number 7

Research Contributions

Day's Algorithm:

procedure BALANCE(ROOT LSON, RSON,n):

integer ROOT, n; integer array LSON, RSON;

begin

integer T, LAST_VISITED, L, R, M, BACKBONE_LENGTH;

~strlpe nodes off right-threaded tree to form backbone.

T pcints to the node to be visited,

LAST_VISITED holds pointer to the last visited nodel

if n ~ 2 then return;

T ~ ROOT;

while LSON(T) ~ null do {find the first node 1

begin; T ~ LSON(T); end;

ROOT ~ T; {root of backbone}

LSON(ROOT) ~ null;

LAS~VISITED -- T;

T -- RSON(T);

while T ~ null do Itraversel

begin

if T > 0

then begin

while LSON(T) ~ null do

begin; T -- LSON(T); end;

end;

else T ~ -(T); {backtrack}

RSON(LAST_VISITED) -- T; Ichain together}

LASTVISITED -- T;

LSON~T) ~ null;

T -- RSON(T);

end;

Irestructure backbone to a balanced tree.

M is the number of transformations needed in a pass,

T now polnts Eo node to be shifted out of the backbone,

L is the left ancestor of T,

R is the right son of T,

BACKBONE_LENGTH is the number of nodes in the backbone}

BACKBONE_LENGTH -- n - I;

M -- LBACKBONE_LENGTH/2m;

while M > 0 do {transform}

begin

T -- ROOT; ~move on ROOT in anticipation 1

ROOT -- RSON(ROOT);

RSON(T) ~ LSON(ROOT);

LSON(ROOT) -- T;

T ~ RSON(ROOT);

L ~ ROOT;

for I ~ 2 to M by 1 do Ishift}

begin

R -- RSON(T);

RSON(L) -- R;

RSON~T) ~ LSON(R);

LSON(R) ~ T;

T -- RSON(R);

L -- R;

end;

BACKBONE_LENGTH ~ BACKBONE_LENGTH - M - I;

M -- LBACKBONE_LENGTH/2J;

end;

end;

Day's Algorithm

]uly 1984 Volume 27 Number 7 Communications of the ACM "/01

Research Contributions

TABLE I. Performance of the Algorithms

Algorithm
Martin/Ness Bentley Day

[1] [2] [3]

Chang/lyengar

S P1 P2

Right-Threaded No No Yes No No No
Input Tree

Additional Work Space Yes Yes No Yes Yes Yes

Run Time* O(n) O(n log2 n)** O(n) O(n) O(n) O(n)
Parallel Execution No No No No Yes Yes

Sorting No No No No No Yes

(P)-Perfect or P P R P P P
(R)-Route Balanced

* n is the total number of nodes.
** Build and balance a tree instead of reorganizing an existing one.

are able to sor t t he nodes a n d r e g e n e r a t e s u b t r e e
po in t e r s in the s a m e t ime.

Day 's a l g o r i t h m uses a s tackless t r ave r sa l to b u i l d a
l i n k e d list a n d a loop to r eo rgan ize t he l i n k e d list to a
r o u t e - b a l a n c e d t ree s t r u c t u r e w i t h o u t a u x i l i a r y s torage
a n d recurs ion . T h e ave rage t i m e r e q u i r e d c a n be fig-
u r e d as s h o w n be low:

T(n) ~ Con + C1 ~ (t_(n - i)/2i_j)
i=1

<- Con + Cl(n - 1)(1 - 2-") = O(n)

w h e r e Co is the ave rage t ime to vis i t a node d u r i n g
t raversa l ; C1 is t he t i m e to go t h r o u g h t he r e s t r u c t u r i n g
loop once; n is the to ta l n u m b e r of nodes in a t ree
(n >__ 3); a n d a = L1og2n.3.

Day 's a l g o r i t h m is a more ef f ic ient s e q u e n t i a l ba l anc -
ing a lgor i thm, if pe r fec t b a l a n c e is no t r equ i red . How-
ever , in o rde r to use th i s a lgor i thm, a t h r e a d e d t ree has
to be m a i n t a i n e d . P rope r t i e s of p r ev ious ly d i scussed al-
go r i t hms are s u m m a r i z e d in Tab le I for compar i son .

5. S U M M A R Y
We h a v e p r e s e n t e d a n ef f ic ient A l g o r i t h m S to global ly
b a l a n c e b i n a r y s e a r c h t rees t h r o u g h fo ld ing p r o v i d e d
t ha t t he o rde r of all nodes is p r e d e t e r m i n e d a n d t he i t h
i t e m can be f o u n d g iven i. B a l a n c i n g a t ree t h r o u g h
folding revea l s pa r a l l e l i s m in t he p o i n t e r - r e s t r u c t u r i n g
p rocedure . Th i s is a use fu l a d v a n t a g e in a pa ra l l e l proc-
ess ing e n v i r o n m e n t .

Two para l le l a l g o r i t h m s to b a l a n c e b i n a r y s e a r c h
t rees are proposed. A l g o r i t h m P1 pa r t i t i ons a set a n d
b a l a n c e s left s u b t r e e s a n d r igh t s u b t r e e s s i m u l t a n e -
ously. A n o t h e r para l l e l a lgor i thm, P2, ac tua l ly sorts t he
records a n d m a k e s p o i n t e r r e g e n e r a t i o n a n i n d e p e n d -
en t act ivi ty . A c o m p a r i s o n of ou r a lgo r i t hms w i t h o t h e r
ex i s t ing a lgo r i t hms is g iven in Tab le I.

A c k n o w l e d g m e n t s T h e a u t h o r s w i s h to t h a n k a n
a n o n y m o u s re fe ree for a n u m b e r of v a l u a b l e sugges-
t ions a n d cr i t ic isms. T h a n k s are due to Professor Hor-
owi tz for h is c o m m e n t s on ou r paper . We w o u l d also
l ike to t h a n k Professor Moi t r a for h e r c o m m e n t s on th i s
paper .

REFERENCES
1. Bentley, J.L. Multidimensional binary search trees used for associa-

tive searching. Commun. ACM 18, 9 (Sept. 1975), 509-517.
2. Day, A.C. Balancing a binary tree. Comput. J. 19, 4 (Nov. 1978), 360-

361.
3. Horowitz, E., and Sahni, S. Fundamentals of Data Structures. Com-

puter Science Press, Inc., Potomac, MD, 1976, pp. 442-456.
4. Iyengar, S.S., and Chang, H. Algorithms to create and maintain bal-

anced and threaded binary search trees. Submitted for publication
Software and Practice Journal November 1982.

5. Iyengar, S.S., and Chang, H. A fast global algorithm to balance bi-
nary search trees. Submitted for publication, 1984.

6. Knuth, D.E. The Art of Computer Programming, VoL 3: Sorting and
Searching. Addison-Wesley Publ. Co., Inc., Reading, MA, 1973, p.
722.

7. Martin, W.A., and Ness, D.N. Optimal binary trees grown with a
sorting algorithm. Commun. ACM 15, 2 {Feb. 1972), 88-93.

8. Moitra, A., and Iyengar, S.S. Maximally parallel algorithms to bal-
ancing binary search trees. Submitted to IEEE Trans. Comput. for
publication.

CR Categories and Subject Descriptors: E.1 [Data]: Data Structures--
trees; F.1.2 [Computation by Abstract Devices]: Modes of Computation;
F.1.3 [Computation by Abstract Devices]: Complexity Classes; F.2 [The-
ory of Computation]: Analysis of Algorithms and Problem Complexity

General Terms: Algorithms, Theory
Additional Key Words and Phrases: binary search tree, computa-

tional complexity, parallel algorithms' folding method

Received 4/82; revised 3/83; accepted 11/83

Author's Present Address: Hsi Chang and S. Sitharama lyengar, Depart-
ment of Computer Science, Louisiana State University, Baton Rouge,
LA 70803.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

?02 Communications of the ACM July 1984 Volume 27 Number 7

