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ABSTRACT: A binary search tree can be globally balanced 
by readjustment of pointers or with a sorting process in O(n) 
time, n being the total number of nodes. This paper presents 
three global balancing algorithms, one of which uses folding 
with the other two adopting parallel procedures. These 
algorithms show improvement in time efficiency over some 
sequential algorithms [1, 2, 7] when applied to large binary 
search trees. A comparison of various algorithms is 
presented. 

1. INTRODUCTION 
A binary search tree is organized such that for any 
node, all keys in the left subtree are smaller and those 
in the right subtree are greater than the key value of 
that node. It provides a method of data organization 
which is both flexible and efficient. 

The formation of binary trees grown in a random 
manner may have some branches longer than others. 
We know a binary tree search will, on the average, 
require (2(n + 1)/n)H, - 3 (~1.386 log2n) comparisons 
for a tree with n nodes if the keys are inserted into the 
tree in random order. Thus, by making extra efforts to 
maintain a perfectly balanced tree instead of a random 
tree, we could--provided all keys are looked up with 
equal probability--expect an average improvement of 
approximately 27.85 percent in the search path length 
[3, 7]. 

The task of balancing a binary search tree is then to 
adjust the left and right pointers of all the nodes in the 
tree so that the search path is optimized; we can attain 
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the same effect as a binary search without requiring a 
sorted list. Algorithms that dynamically restore tree 
structure to balance during insertion or deletion of 
nodes have been described by Adelson-Velskii, Landis, 
and Knuth [3, 6]. However, in this paper, we deal with 
global algorithms that balance the entire tree at one 
time. A global tree balancing algorithm generally runs 
in linear time and consists of two parts: first, a traversal 
to determine the order of all nodes, then restructuring 
pointers based on that order. 

Martin and Ness [7] developed an algorithm that re- 
organizes a tree with n nodes by repetitively subdivid- 
ing n by 2 and uses the results as guidance to step 
through the framework of a perfectly balanced tree, i.e., 
for each node, the number of nodes in its left subtree 
and right subtree differ by I at most. An in-order trav- 
ersal is carried out concurrently to provide relative 
node positions for the pointer-restructuring procedure 
which fits them into proper places in the balanced tree 
structure. In this algorithm, a stack is required to save 
pointers during traversal. 

Bentley [1] discusses an algorithm to produce per- 
fectly balanced trees. In this algorithm, nodes are 
passed as a set or a linked list to the balancing proce- 
dure which finds the median element of the set of 
nodes as root and splits the set into two subsets, each 
forming a balanced subtree at the next level. This proc- 
ess continues until there are no more elements to split. 

Another algorithm that needs no extra storage was 
given by Day [2]. The input tree is required to be right- 
threaded with negative backtrack pointers to allow 
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Algorithm S: 
{globally balance a binary search tree through folding l 

procedure BALANCE(ROOT, LSON, RSON, n): 

integer ROOT, n; integer array LSON, RSON; 

begin 
integer N, M, ANSL, ANSR; integer array LINK(I:n); 

ltraverse the original tree and set up LINK} 

procedure TRAVBIND(T): 

integer T; {pointer to the next node to be visited} 

begin 

if T = null then return; 

TRAVBIND(LSON(T)); 

N ~ N + 7; {count the sequence of visit} 

LINK(N) ~ T; {store the pointer to the Nth node 

in the Nth element of LINK 1 

TRAVBIND(RSON(T)); 

end; 
{reorganize a tree by partitioning and folding} 

procedure GROW(LOW, HIGH): 

integer LOW, HIGH; 

begin 
{MID is the median of a subset bound by LOW and HIGH, 

TL is the subtree root in the balanced left half-tree, 

TR is the counterpart of TL in the right half-tree. 

TL, TR are returned via ANSL, ANSR, respectively} 

integer MID, TL, TR; 

case 
LOW > HIGH Inull branch I : 

begin 
ANSL, ANSR ~ null; 

end; 

LOW = HIGH Ileafl : 

begin 
ANSL ~ LINK(LOW); 

ANSR ~ LINK(LOW+M); 

LSON(ANSL), RSON(ANSL) -- null; 

LSON(ANSR), RSON(ANSR) ~ null; 

end; 
LOW < HIGH {divisible subset}: 

begin 
MID ~ L(LOW + HIGH)/ 2~; 

TL ~ LINK(MID); 

TR ~ LINK(MID+M); 

GROW(LOW, MID-I); Iform left subtree 1 

LSON(TL) -- ANSL; 

LSON(TR) -- ANSR; 

GROW(MID+7,HIGH); {form right subtree} 

RSON(TL) ~ ANSL; 

RSON(TR) ~ ANSR; 

ANSL ~ TL; 

ANSR ~ TR; 

end; 

end; 

end; 
if n s 2 then return; 

N ~ 0; {initialize counter} 

TRAVBIND(ROOT); 

M ~ L(N + I)/ 2~; {folding value} 

ROOT --LINK(M); {new root} 

if N = 2 * M 

then {N is even 1 

begin 
M -- M + I; {adjust folding value} 

GROW(I,M--2); 

{put the node associated with M as a terminal node 

left to its immediate successorl 

LSON(LINK(M)), RSON(LINK(M)) -- null; 

LSON( LINK( M+ 7) ) -- LINK(M) ; 

end; 
else IN is odd} GROW(7,M--7); 

LSON(ROOT) ~ ANSL; 

RSON(ROOT) ~ ANSR; 

end; 

FIGURE 1. Algorithm S. 
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stackless traversal. A right-skewed tree is formed after 
traversal and this list-like structure serves as a back- 
bone for the pointer-restructuring procedure which 
shifts nodes to the left side of the backbone until the 
subtree path lengths balance, i.e., no path (from root to 
leaf) differs in length from any other path by more than 
1. The produced tree, on the other hand, is not 
threaded although it can be made a threaded tree with 
some modification. Martin and Ness's algorithm and 
Day's algorithm are given as tutorial matter on pages 
700-701 for interested readers. For a broader treatment 
on balancing binary search trees, see [4-6, 8]. These 
include the present investigation of the authors. 

In the next section, we present a new sequential bal- 
ancing algorithm which also uses partitioning but re- 
duces the number of times of partitioning through fold- 
ing. Section 3 presents two parallel algorithms as varia- 
tions of the previous sequential algorithm; and in Sec- 
tion 4, we analyze and compare these algorithms. 

2. SEQUENTIAL BALANCING THROUGH FOLDING 
The node of a tree is assumed to contain the following 
fields: left subtree pointer LSON, right subtree pointer 
RSON, and KEY, while ROOT points to the root node of 
the tree. We first traverse the original tree to determine 
the order of all n nodes. Array LINK is used to store the 
ordering information so that the ith element of LINK 
contains a pointer to the ith node in ascending key 
order, i.e., KEY(LINK(i - 1)) < KEY(LINK(i)) < 
KEY(LINK(i + 1)). 

To reorganize a tree by partitioning the set, following 
Bentley, we first find the left median, 1 t.(n + 1)/2.3, 
of the whole set; the node corresponding to that ele- 
ment is to be the root of the new tree. The remaining 
L(n --  1 ) / /23  elements with values less than the left 
median in the left subset and the other r(n - 1)/2"3 
elements in the right subset form two partitions. At the 
next level, we find for each of these two subsets their 
medians and use the two associated nodes as roots of 
the two corresponding subtrees as well as LSON and 
RSON, respectively, of the previous root. This process 
continues to find the medians at each level, partitions 
around them, and restructures the tree from top to bot- 
tom and from left to right. 

Further considering the use of LINK, we observe that 
for trees containing an odd number of nodes, the me- 
dian of an ordered set also serves as a special value, 
denoted by M, to let us construct the right half-tree 
concurrently with the left half-tree because the coun- 
terpart elements in the balanced two halves differ by 
M. If we know the position of an element K in the left 
half-tree, we can also determine the position of its 
counterpart element K + M in the right half-tree. So, 
we only have to partition half of the entire set in order 
to reorganize the tree structure. 

We call this procedure folding because it is like some- 
thing bending over upon itself to form a symmetrical 

1 If we have n sorted elements X1 . . . . .  X., the median is (X,~.+1)/2., + 
X,.~/2.~-1)/2, the left median is X,~n+ll/2.,. and the right median is X~/z.,+~. 

structure. The value M used in folding is called the 
folding value. When the total number of nodes is even, 
we let the right median, n / 2  + 1, be the folding value 
M. The node associated with the left median remains as 
the root of the tree and the node corresponding to M is 
placed as the leftmost node in the right half-tree. 

Algorithm S (Figure 1) is a global balancing algorithm 
based on this idea. Procedure TRAVBIND traverse the 
original tree and sets up the auxiliary array LINK. After 
traversal, procedure GROW recursively partitions and 
forms the balanced left half-tree with its right-half 
counterpart built in the same step through folding. Two 
parameters are used in GROW: LOW, the lower bound, 
and HIGH, the upper bound for an ordered subset to be 
relinked in balanced form. The root of a balanced sub- 
tree is the left median MID of the subset. Three condi- 
tions direct the course of GROW: 

1. If LOW > HIGH, we have a null subtree; 
return a null pointer. 

2. If LOW = HIGH, we have a leaf; 
set up a terminal node and return the node 
pointer. 

3. If LOW < HIGH, we have a divisible subset; 
do the following: 

a) find the root T through MID. 
b) GROW left subtree and return root as LSON 

of T. 
c} GROW right subtree and return root as 

RSON of T. 

A tree is balanced when the ROOT of the tree, and the 
LSON and RSON of each node are readjusted. 

3. PARALLEL BALANCING 
Balancing a tree through folding reveals parallelism in 
the pointer-restructuring procedure. It is possible to di- 
vide the set of nodes into subsets and perform reorga- 
nizing operations on these parts simultaneously. One 
way to balance the left half- and right half-tree at the 
same time is given in Algorithm P1 (Figure 2). In this 
algorithm, folding is not used and the pointer-restruc- 
turing procedure GROW directly resembles Bentley's 
scheme [1]. 

Another degree of parallelism exists between traver- 
sol and pointer restructuring. If we physically rearrange 
all nodes in sorted order during traversal, the pointer- 
restructuring procedure becomes a pointer generator 
which needs only to know the size of the tree to com- 
pute all the LSONs and RSONs for corresponding nodes 
in the balanced tree structure. A copy of the original 
tree has to be made for traversal and sorting so that 
nodes could be regenerated without destroying useful 
information. Algorithm P2 (Figure 3) describes the way 
to exploit this parallelism. 

4. A COMPARISON OF PERFORMANCE MEASURES 
Three conditions, when there are 0, 1, or more than 1 
element in a subset, dictate the course of the pointer- 
restructuring procedure in our algorithms. Take Algo- 
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Algorithm P I :  

}build balanced left half-tree and right half-tree in parallel} 

procedure BALANCE(ROOT, LSON, RSON, n): 

integer ROOT, n; integer array LSON, RSON; 

begin 
integer N; integer array LINK(I:n); 

{traverse the original tree and set up LINK} 

procedure TRAVBIND(T): 

integer T; }pointer to the next node to be visited} 

begin 

if T = null then return; 

TRAVBIND(LSON(T)); 

N ~ N +I; }count the sequence of visit} 

LINK(N) ~ T; }store the pointer to the Nth node 

in the Nth element of LINK} 

TRAVBIND(RSON(T)); 

end; 

}reorganize a tree by partitioning} 

procedure GROW(LOW, HIGH): 

integer LOW, HIGH; 

begin 

}MID is the median of a subset bound by LOW and HIGH, 

T is the root of the balanced subtree reflected by 

the subset} 

integer MID, T; 

case 

LOW > HIGH }null branchl:return(null); 

LOW = HIGH }leaf} : 

begin 

T ~ LINK(LOW); 

LSON(T), RSON(T) -- null; 

return(T); 

end; 
LOW < HIGH }divisible subset} : 

b e g i n  
M I D  -- L ( L O W  + H I G H ) ~  2 J ;  
T ~ LINK(MID); 

cobegin }form left and right subtrees in parallel} 

LSON(T) ~ GROW(LOW, MID--l); 

RSON(T) -- GROW(MID+I,HIGH); 

coend; 

return(T); 

end; 

end; 

e n d ;  
if n ~ 2 then return; 

N ~ 0; }initialize counter 1 

TRAVBIND(ROOT); 

M ~ ~(N + I)/ 2J; 

ROOT -- LINK(M); {new root} 

Ibalance the left and right half-trees in parallel} 

cobegin 

LSON(ROOT) ~ GROW(I,M-I); 

RSON(ROOT) ~ GROW(M+I,N); 

coend; 

end; 

FIGURE 2. Algorithm Pl. 

r i thm P1 for e x a m p l e ;  the  n u m b e r  of  t imes  e a c h  case  is 
e x e c u t e d  can be  c a l c u l a t e d  as fo l lows:  

Let n be  the total  n u m b e r  of  nodes  in a set  (n _> 3), 
and let  

a = ulog2n3, and 

b = L(2 ° + 2 ~-1 - 1)/n.3 

Let Ki be  the  n u m b e r  of  t imes  case  i is e x e c u t e d  in 
A l g o r i t h m  P1, i ~ 1, 2, 3. 

Then ,  

K1 = 12a(t-(n - 2a-*} /2~- lJ}  - n - I I -< 2 ~-1 

K2 = n - K3 

Ka = 2 a-b - 1 + Klb 

Let us suppose  that  Co is the  average  t ime  to vis i t  a 
node  dur ing  traversal  and Ci is the  un i t  t ime  taken  to 
e x e c u t e  case  i once .  Th e  total  b a l a n c i n g  t ime  T(n) can 
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be expressed as 

T(n} = Con + C1K1 + C2K2 + C3K3 = O(n). 

This expression also applies to Algorithms S and P2. 
Based upon the above expression, we will do the 

analyses of Algorithms S, P1, and P2. When balanced 
through folding as described in Algorithm S, only ,n/2J 
elements have to be partitioned. This tends to decrease 
Ki's by half and slightly increases C/s. If parallel execu- 
tion is implemented efficiently, Algorith m P1 should 
have similar effects as decreasing K/s, in terms of turn- 
around time, yet without increasing Ci's. 

The savings in time becomes obvious when n is large. 
Algorithm' P2 overlaps tra~,ersal and pointer-restructur- 
ing, so that the turnaround time should be the greater 

of the two. Also, C/s tend to be smaller, but more space 
is required and physical record movement tends to in- 
crease Co. 

The sequential Martin-Ness and Bentley algorithms 
that recursively partition the set of nodes to fo~m a 
balanced, binary search tree follow the same partition- 
ing scheme as that in Algorithm S. 

A higher degree of parallelism and time efficiency is 
~ichieved in our algorithms at the expense of increased 
working space size. By using an array instead of a stack 
to store the ordering information of the set of nodes, we 
are able to build halves of the balanced tree simultane- 
ously as in Algorithm S, or construct left subtrees and 
right subtrees in parallel as in Algorithm P1. By making 
a copy of the original tree, asdone in Algorithm P2, we 

Algorithm P2: 
{build a balanced tree with a parallel sorting process} 

procedure BALANCE(ROOT, KEY, LSON, RSON, n) : 

integer ROOT, n; array KEY; integer array LSON, RSON; 

begin 
integer N; 
integer array KEYCOPY(I:n), LSONCOPY(I:n), RSONCOPY(7:n); 

{traverse the copy of the original tree and soft keys 1 

procedure TRAVSORT(T) : 

integer T; [pointer to the next node to be visited I 

begin 
if T = null then return; 
TRAVSORT(LSONCOPY(T)); 

N ~ N + I; {count the sequence of visit 1 

KEY(N) ~ KEYCOPY(T); {put Nth key in Nth position} 

TRAVSORT(RSONCOPY(T)); 

end; 
{generate pointers for a balanced tree structure} 

procedure GROW(LOW, HIGH): 
integer LOW, HIGH; 

begin 
integer MID; {median of a subset bound by LOW and HIGH} 

C a S e  

LOW > HIGH {null branch}:return (null); 

LOW = HIGH {leaf}: 
begin 

LSON(LOW), RSON(LOW) ~ null; 

return(LOW); 

end; 
LOW < HIGH {divisible subset}: 

begin 
MID ~ u(LOW + HIGH)/ 2~; 

cobegin {form left and right subtrees in parallel} 

LSON(MID) ~ GROW(LOW, MID-7); 

RSON(MID) ~ GROW(MID+I,HIGH); 

coend; 
return(MID); 

end; 
end; 

end; 
if n s 2 then return; 
{make a copy of the original tree} 

KEYCOPY -- KEY; LSONCOPY ~ LSON; RSONCOPY ~ RSON; 

N -- 0; Iinitialize counter} 

{sort keys and regenerate pointers in parallel} 
cobegin 

TRAVSORT(ROOT); 

ROOT -- GROW(7,n); [new root} 

coend; 
end; 

FIGURE 3. Algorithm P2. 
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Martin and Ness's Algorithm: 

procedure BALANCE(ROOT, LSON, RSON, n): 

integer ROOT, n; integer array LSON, RSON; 

begin 
IT holds polnter to node to be visited during traversal, 

STACK is used to store T, 

TOP points to the top element of STACK 1 

integer T, TOP, ANS; integer array STACK(I:n); 

{traverse the input tree and return a node pointer 

in ascending key order via ANSI 

procedure TRAVNEXT: 

began 

if T ~ null 

then begin 
TOP -- TOP + I; 

STACK(TOP) ~ T; 

T ~ LSON(T); 

TRAVNEXT; 

end; 
else began 

ANS ~ STACK(TOP); 

TOP -- TOP - -  7 ;  

T ~ RSON(ANS); 

end; 

end; 
{restructure pointers by partitioningl 

procedure GROW(N): 

integer N; ~number of elements in a subset 1 

b e g i n  
IT is root of a balanced subtree reflected by a subset, 

LPTR is used to temporarily store the LSON of T 1 

integer T, LPTR; 

case 
N = 0 {null branchl: 

b e g i n  
ANS ~ null; 

end; 

N = I {leaf}: 

b e g i n  
TRAVNEXT; 

LSON(ANS), RSON(ANS) ~ null; 

end; 
N > I Idivisible subsetl: 

begin 
GROW(L(N--7)/2~); {form left subtree} 

LPTR -- ANS; 

TRAVNEXT; 

T -- ANS; 

GROW(F(N-7)/2n); 

RSON(T) -- ANS; 

LSON(T) -- LPTR; 

ANS -- T; 

e n d ;  

e n d ;  

e n d ;  

i f  n s 2 t h e n  r e t u r n ;  

T ~ ROOT; TOP -- 0; {initialization} 

GROW(n); 

ROOT -- ANS; {new root} 

end; 

~form right subtree} 

Martin and Ness's Algorithm 
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Day's Algorithm: 

procedure BALANCE(ROOT LSON, RSON,n): 

integer ROOT, n; integer array LSON, RSON; 

begin 

integer T, LAST_VISITED, L, R, M, BACKBONE_LENGTH; 

~strlpe nodes off right-threaded tree to form backbone. 

T pcints to the node to be visited, 

LAST_VISITED holds pointer to the last visited nodel 

if n ~ 2 then return; 

T ~ ROOT; 

while LSON(T) ~ null do {find the first node 1 

begin; T ~ LSON(T); end; 

ROOT ~ T; {root of backbone} 

LSON(ROOT) ~ null; 

LAS~VISITED -- T; 

T -- RSON(T); 

while T ~ null do Itraversel 

begin 

if T > 0 

then begin 

while LSON(T) ~ null do 

begin; T -- LSON(T); end; 

end; 

else T ~ -(T); {backtrack} 

RSON(LAST_VISITED) -- T; Ichain together} 

LASTVISITED -- T; 

LSON~T) ~ null; 

T -- RSON(T); 

end; 

Irestructure backbone to a balanced tree. 

M is the number of transformations needed in a pass, 

T now polnts Eo node to be shifted out of the backbone, 

L is the left ancestor of T, 

R is the right son of T, 

BACKBONE_LENGTH is the number of nodes in the backbone} 

BACKBONE_LENGTH -- n - I; 

M -- LBACKBONE_LENGTH/2m; 

while M > 0 do {transform} 

begin 

T -- ROOT; ~move on ROOT in anticipation 1 

ROOT -- RSON(ROOT); 

RSON(T) ~ LSON(ROOT); 

LSON(ROOT) -- T; 

T ~ RSON(ROOT); 

L ~ ROOT; 

for I ~ 2 to M by 1 do Ishift} 

begin 

R -- RSON(T); 

RSON(L) -- R; 

RSON~T) ~ LSON(R); 

LSON(R) ~ T; 

T -- RSON(R); 

L -- R; 

end; 

BACKBONE_LENGTH ~ BACKBONE_LENGTH - M - I; 

M -- LBACKBONE_LENGTH/2J; 

end; 

end; 

Day's Algorithm 
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TABLE I. Performance of the Algorithms 

Algorithm 
Martin/Ness Bentley Day 

[1] [2] [3] 

Chang/lyengar 

S P1 P2 

Right-Threaded No No Yes No No No 
Input Tree 

Additional Work Space Yes Yes No Yes Yes Yes 

Run Time* O(n) O(n log2 n)** O(n) O(n) O(n) O(n) 
Parallel Execution No No No No Yes Yes 

Sorting No No No No No Yes 

(P)-Perfect or P P R P P P 
(R)-Route Balanced 

* n is the total number of nodes. 
** Build and balance a tree instead of reorganizing an existing one. 

are  able  to sor t  t he  nodes  a n d  r e g e n e r a t e  s u b t r e e  
po in t e r s  in  the  s a m e  t ime.  

Day 's  a l g o r i t h m  uses  a s tackless  t r ave r sa l  to b u i l d  a 
l i n k e d  list a n d  a loop to r eo rgan ize  t he  l i n k e d  list to a 
r o u t e - b a l a n c e d  t ree  s t r u c t u r e  w i t h o u t  a u x i l i a r y  s torage 
a n d  recurs ion .  T h e  ave rage  t i m e  r e q u i r e d  c a n  be  fig- 
u r e d  as s h o w n  be low:  

T(n) ~ Con + C1 ~ (t_(n - i)/2i_j) 
i=1 

<- Con + Cl(n - 1)(1 - 2-") = O(n) 

w h e r e  Co is the  ave rage  t ime  to vis i t  a node  d u r i n g  
t raversa l ;  C1 is t he  t i m e  to go t h r o u g h  t he  r e s t r u c t u r i n g  
loop once;  n is the  to ta l  n u m b e r  of nodes  in  a t ree  
(n >__ 3); a n d  a = L1og2n.3. 

Day 's  a l g o r i t h m  is a more  ef f ic ient  s e q u e n t i a l  ba l anc -  
ing a lgor i thm,  if pe r fec t  b a l a n c e  is no t  r equ i red .  How-  
ever ,  in  o rde r  to use  th i s  a lgor i thm,  a t h r e a d e d  t ree  has  
to be  m a i n t a i n e d .  P rope r t i e s  of p r ev ious ly  d i scussed  al- 
go r i t hms  are  s u m m a r i z e d  in  Tab le  I for compar i son .  

5. S U M M A R Y  
We h a v e  p r e s e n t e d  a n  ef f ic ient  A l g o r i t h m  S to global ly  
b a l a n c e  b i n a r y  s e a r c h  t rees  t h r o u g h  fo ld ing p r o v i d e d  
t ha t  t he  o rde r  of all  nodes  is p r e d e t e r m i n e d  a n d  t he  i t h  
i t e m  can  be  f o u n d  g iven  i. B a l a n c i n g  a t ree  t h r o u g h  
folding revea l s  pa r a l l e l i s m  in  t he  p o i n t e r - r e s t r u c t u r i n g  
p rocedure .  Th i s  is a use fu l  a d v a n t a g e  in  a pa ra l l e l  proc-  
ess ing e n v i r o n m e n t .  

Two para l le l  a l g o r i t h m s  to b a l a n c e  b i n a r y  s e a r c h  
t rees  are  proposed.  A l g o r i t h m  P1 pa r t i t i ons  a set  a n d  
b a l a n c e s  left  s u b t r e e s  a n d  r igh t  s u b t r e e s  s i m u l t a n e -  
ously.  A n o t h e r  para l l e l  a lgor i thm,  P2, ac tua l ly  sorts  t he  
records  a n d  m a k e s  p o i n t e r  r e g e n e r a t i o n  a n  i n d e p e n d -  
en t  act ivi ty .  A c o m p a r i s o n  of ou r  a lgo r i t hms  w i t h  o t h e r  
ex i s t ing  a lgo r i t hms  is g iven  in  Tab le  I. 

A c k n o w l e d g m e n t s  T h e  a u t h o r s  w i s h  to t h a n k  a n  
a n o n y m o u s  re fe ree  for a n u m b e r  of v a l u a b l e  sugges-  
t ions  a n d  cr i t ic isms.  T h a n k s  are  due  to Professor  Hor-  
owi tz  for h is  c o m m e n t s  on  ou r  paper .  We  w o u l d  also 
l ike to t h a n k  Professor  Moi t r a  for h e r  c o m m e n t s  on  th i s  
paper .  

REFERENCES 
1. Bentley, J.L. Multidimensional binary search trees used for associa- 

tive searching. Commun. ACM 18, 9 (Sept. 1975), 509-517. 
2. Day, A.C. Balancing a binary tree. Comput. J. 19, 4 (Nov. 1978), 360- 

361. 
3. Horowitz, E., and Sahni, S. Fundamentals of Data Structures. Com- 

puter Science Press, Inc., Potomac, MD, 1976, pp. 442-456. 
4. Iyengar, S.S., and Chang, H. Algorithms to create and maintain bal- 

anced and threaded binary search trees. Submitted for publication 
Software and Practice Journal November 1982. 

5. Iyengar, S.S., and Chang, H. A fast global algorithm to balance bi- 
nary search trees. Submitted for publication, 1984. 

6. Knuth, D.E. The Art of Computer Programming, VoL 3: Sorting and 
Searching. Addison-Wesley Publ. Co., Inc., Reading, MA, 1973, p. 
722. 

7. Martin, W.A., and Ness, D.N. Optimal binary trees grown with a 
sorting algorithm. Commun. ACM 15, 2 {Feb. 1972), 88-93. 

8. Moitra, A., and Iyengar, S.S. Maximally parallel algorithms to bal- 
ancing binary search trees. Submitted to IEEE Trans. Comput. for 
publication. 

CR Categories and Subject Descriptors: E.1 [Data]: Data Structures-- 
trees; F.1.2 [Computation by Abstract Devices]: Modes of Computation; 
F.1.3 [Computation by Abstract Devices]: Complexity Classes; F.2 [The- 
ory of Computation]: Analysis of Algorithms and Problem Complexity 

General Terms: Algorithms, Theory 
Additional Key Words and Phrases: binary search tree, computa- 

tional complexity, parallel algorithms' folding method 

Received 4/82; revised 3/83; accepted 11/83 

Author's Present Address: Hsi Chang and S. Sitharama lyengar, Depart- 
ment of Computer Science, Louisiana State University, Baton Rouge, 
LA 70803. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

?02 Communications of the ACM July 1984 Volume 27 Number 7 


