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ABSTRACT

Several new properties of the first decimal digits of the powers of 2 are presented.
It is shown that the consecutive members of the sequence of the first digits of powers
of 2 appear in one of five strings. Some statistical properties such as probabilities of
occurrence of the strings, their transition probabilities, etc. are presented. The
associated state transition graphs are also displayed. It is found that the process of
generating strings follows a non-Markovian process but is erg()uu., The relation of
these properties to ergodic theory is mentioned, and possible applications to informa-

tion theory, computer science, and statistical mechanics are briefly stated.

I. INTRODUCTION

T+ L honn Lo £fae o ey
iU a8 Deen Kiiowll 10r OVer a Coniury
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numerical data expressed in decimal form is arranged according to the flrst
digit, without consideration of the position of the decimal point, the resulting
nine digits do not occur in equal proportion. In fact, they obey a logarithmic
law. Newcomb [1] was the first to draw attention to this problem in 1881, and
Frank Benford [2] supplied a lot of data in support of the law, collected from
a wide variety of sources, such as telephone directories, lists of physical
constants, electricity consumption records, etc. Since then a large number of
investigators from a variety of different dlsc1phnes—mathematlclans econo-

mists, amateurs, etc.—have examined this puc T101TIeN01L popmar account
by Ralph A. Raimi [3] appeared in Scientific Amencan in 1969, and a
technical review was written by him [4] ]ust five years ago The significance
Uf thb plUblClll fUl ulfuuuauuu pu’)Cé‘;Suug lldb lULUllLly Uccu LUllbluled Uy
Hamming {5], Tsao [6], and Knuth [7]. Hamming argued that the distribution
of the fractional parts of floating-point numbers in arithmetic operations obey
a reciprocal distribution and suggested that this could be applied to hardware,
software, and general computing. Knuth drew attention to the fact that the
most obvious techniques of average error estimation for floating point calcula-
tions are invalid in view of the logarithmic distribution of the first digits. Tsac

has suggested its use in determining the roundoff errors in floating point
considerations. The essence of the argument of Hamming and others lies in

I'}\n nor]1nr nl'\cnﬂrn{wr\n l\" piql{ﬂham [R] f‘\nf‘ f‘\n rnnlprnnol t‘!:‘tﬂl‘\nficn men-

tioned above is the only scale 1nvar1ant distribution. Also Pinkham showed
that the logarithmic law of Newcomb and Benford is a consequence of the

equidistribution nrnnprhl modulo unlty of arithmetic seguences with irrational

CYRGISLIRDULIONL PIOPCIL) 11U rien; SOYRCLICES Wil Aialiollas



New Structural Properties of Strings 223

spacings in the interval [0,1), and the scale invariance assumption on the
underlying probability distribution function.

In mathematics, the theory of asymptotic distributions modulo one intro
duced by Hermann Weyl has been studied extensively; it has its roots in
Kronecker’s investigations of the behavior of fractional parts of linear forms
with integer variables. It gave rise to one of the first ergodic theorems. This is
related to Bohl's work on secular perturbations, Sierpinski’s on irrational
numbers, Borel and Bernstein’s on probability, and Hardy and Littlewood’s
OTi \.uupua.uuuc aypjuzuulauuua and Fourier series. A review of Lhese may be
found in Koksma [9]. These investigations were basic to the ergodic problems
of classical mechanics, as has been recently expounded by Amold and Avez
[10, 11]. The application of these techniques to the first digit problem, in
particular the derivation of the Newcomb-Benford law of the first digits of
powers of 2, may be found in Reference [11]. The use of these ideas in
statistical mechanics has recently been explained by Pomeau [12).

It should be clear from this brief account that the first digit problem is a
significant one with applications to statistical mechanics, information theory,
and computier science. In the present paper, we shall give an entir ‘y' new set
of results concerning the first digits of powers of two. This is a prototype
problem of a general class which will be mentioned at the end of the paper It
is observed that the first digits 1,2,...,9 occur in groups or strings (1248),
(1249), (125), (136), and (137), and these strings appear in an irregular
fashion. Calling the groups a, b, ¢, d, e respectively, we find that if string a
occurred, what follows is either string d or ¢ but not string a, b, ¢, etc,
leading to an interesting tree structure. It will be shown explicitly that the
process is non-Markovian. It was soon realized that the fractions generated by
x, =nlog,,Z (mod 1) are uniformly distributed on an interval [0, 1), from
which we can deduce not only the Newcomb-Benford law for the occurrence
of integers in our case, but also the probabilities of occurrence of the strings
a, b c, a and e. We also aeauce Dy a geometn(,cu Lonstrucuuu, the
transition probabilities for these processes. Since we have here generated
pseudo-“random” sequences, application to Monte Carlo methods, coding
theory, and cryptography may perhaps be explored, in much the same way as
the decimal sequences of rational numbers have recently been explored for
such applications by S. C. Kak and A. Chatterjee [13].

In the next section we present the results concerning the probability
distributions of the integers and the strings, of which the first (as already
mentioned) is well known, but the second is new, to the best of our
knowledge. In Section III, we give the transition probabilities for both the
integers and the strings, both of which are new. In the Section IV we
explicitly show that the process is non—Markovian. In the final section, a

summary of our results and extensions of these ideas will be given.
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II. PROBABILITY DISTRIBUTIONS OF THE INTEGERS AND THE
STRINGS

The powers of two may be generated by the linear recursion x,, ;= 2x,,
with x, =1. (This form of generating the powers of 2 will prove useful in
generalizing the ideas later on). A computer program in FORTRAN on an IBM
3033 system for listing the first digits of 2" was written, and the results were
compiled for n = 0 to 1999, and in fact to even larger numbers (we went up
to 4000). The program was also designed to arrange the strings as they
occurred, as well as to pick off the frequency of occurrences of the digits
1,...,9 in groups of size ranging from 99 to 103 (ie., n = 0-99, 100-199,
200-298, etc.), as well as the strings a,...,e in groups of size varying between
29 and 31 from the same set of numbers. The sizes of the string groups varied
a little because we wanted the groups of strings picked from the same sets as
the integers, but it is not crucial for the discussion to follow. The computer
programs were also designed to pick other groups of groups and their
frequencies of occurrences, etc. A paper on this aspect of the work is already
submitted for publication [14]. Table 1 gives the actual numbers generated by
2" for n =0 to 100 and their decimal representation, namely p.xyz... X 10%;
for n up to 50, such a set of numbers is given in NBS tables. In Table 2 we
give the string sequences generated from the first digits of 2" for n =0 to
4000. It is interesting to note that the first digits of 2 ™", written in the form
g.abc... X10 ~, generate a similar pattern of string sequences.

Several interesting observations are in order at this stage, which though
evident, do not seem to have been noted before in the vast literature on the
subject. In Figure 1 we display graphically how the first digits move around
as we multiply by 2 successively. For example, the first digit 1 will go to 2 if
the digit following it is less than 5 and will go to 3 if the digit following it is
greater than or equal to 5, and so on. The structure of the graph shown in Fig.
1 is thus evident. In Fig. 2, we represent a similar movement of the strings.
To understand this, we shall give here an intuitive geometric construction.
Before we go into this, let us mention that in Fig. 3 we represent the nine
digits 1,...,9 on a line segment on which points numbered 1 to 10 which are
equally spaced and the segments are numbered sequentially from 1 to 9. Also
shown in this figure is the mapping of the line segment (1,10) to (0,1) by a
logarithmic transformation, to which we shall return presently. In Fig, 4, we
construct a line segment from 1 to 2 with segments marked 1.125, 1.250, 1.5,
and 1.750, and the names of strings are shown, To understand this construc-
tion, we make the following observation. We first pick an integer n, such that

2" = 1.xyz... X 10%0, (1)
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TABLE 1

DECIMAL NUMBERS GENERATED BY 2" For n = 0 1o 100
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T

26
27
28
29
30
31
32

34
35

74
QU

37
38
39
40
41
42

0.1000E01

0.200E +01
0.400E + 01
0.800E +01
0.160E + 02
0.320E + 02
0.640E +02
0.128E+ 03
0.256E +03
0.512E +03
G.102E + 04
0.205E + 04
0.410E + 04
0.819E +04
0.164E + 05
0.328E+05
0.655E + 05
0.131E+06
0.262E + 06
0.524E +06
0.105E+07
0.210E+07
0.419E + 07

N QO 4 Ny
V.000L T U/

0.168E + 08
0.336E +08
0.671E+08
0.134E +09
0.268E + 09
0.537E+09
0.107E+ 10
0.215E+ 10
0.429E + 10
0.859E+ 10
0.172E+11
0.344E+11

N eI ;11
V.UoinLT11

0.137E+ 12
0.275E+ 12
0.550E + 12
0.110E+13
0.220E + 13
0.440E + 13

(o R R

16
32
64
128
256
512
1024
2048

4096
8199

fe B v )4

16384
32768
65536
131072
262144
524288
1048576
2097152
4194304

16777216

33554432
67108864
134217728
268435456
536870912
1073741824
2147483648
4294967296
8589934592
17179869184
34359738368

NQMIQ AT ORAN

68718476736
137438953472
274877906944
549755813888

1099511627776

2199 23255552

4398 46511104
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TABLE 1 (Continued)

43 0.880E+13 8796 93022208
44 0.176E + 14 17592186044416
45 0.352E + 14 35184372088832
46 0.704E + 14 70368744177664
47 0.141E+15 140737488355328
48 0.281E+15 281474976710656
49 0.563E+15 562949953421312
50 0.113E+16 1125899906842624
51 0.225E + 16 2251799813685248
52 0.450E + 16 4503599627370496
53 0.901E + 16 9007199254740992
54 0.180E + 17 18014398509481984
55 0.360E + 17 36028797 18963968
56 0.721E+17 72057594 37927936
57 0.133E+ 18 144115188 75855872
58 0.288E+18 288230376151711744
59 0.576E+18 576460752303423488
60 0.115E+19 1152921504606846976
61 0.231E+19 2305843009213693952
62 0.461E+ 19 4611686018427387904
63 0.922E+19 9223372036854775808
64 0.184E +20 18446744073709551616
65 0.369E + 20 36893488147419103232
66 0.738E +20 73786976294838206464
67 0.148E+21 147573952589676412928
68 0.295E +21 295147905179352825856
69 0.590E +21 590295810358705651712
7Q 0.118E +22 1180591620717411303424
71 0.236E + 22 2361183241434822606848
72 0472E+22 4722366482869645213696
73 0.944E + 22 9444732965739290427392
74 0.189E+23 18889465931478580854784
75 0.378E +23 37778931862957161709568
76 0.756E +23 75557863725914323419136
77 0.151E +24 151115727451828646838272
78 0.302E + 24 302231454903657293676544
79 0.604E +24 604462909807314587353088
80 0.121E+25 1208925819614629174706176
81 0.242E +25 2417851639229258349412352
82 0.484E +25 4835703278458516698824704
83 0.967E +25 9571406556917033397649408

84 0.193E +26 19342813113834066795298816
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TABLE 1 (Continued)

85 0.387E + 26 38685626227668133590597632
86 0.774E + 26 77371252455336267181195264
87 0.155E+27 154742504910672534362390528
88 0.309E + 27 309485009821345068724781056
89 0.61SE+27 618870015642690137445562112
0.124E + 28 12379400392853802748991

91 0.248E + 28 2475880078570760549788248448
92 0.495E +28 4951760157141521099596496896
93 0.990E + 28 9903520314283042199192993792
94 0.198E +29 19807040628566084398385987584
95 0.396E +29 39614081257132168796771975168
96 0.792E + 29 79228162514264337593543950336
97 0.138E + 30 158456325028528675187 87900672
98 0.317E+ 30 316912650057 57350374175801344
99 0.634E + 30 633825300114114700748351602688
100 0.127E+31 1267650600228229401496703205376

where l' is an 1nfn¢rnr Thus 1, xyz. stands for the number 27 expressed in

h, o)
AY A s SRS AV UIT i -~ ¥y

decimal notatlon and the first digit associated with 2" is

this by 2, we generate either 2 or 3 according as x <5 or x > 5. If we begin
with 1, then, on multiplying by 2 successively we obtain the string (1,2,4,8)

as long as 1.xyz... is in the interval [1,1.125). Thus these decimal members in
the interval [1, 1.125) generate the string a. Similarly the segment [1.125, 1.25)

generates the string b, and so on. To establish the pathways given in Fig. 2,

let us take the case of the string a. The last digit in this string is of the form

8.pgr... X 10%, say. Upon multiplication by 2, this goes over to 1.p’q’r’... X
10+ and we need to check where 1.p’g’r’ is in Fig. 4. P.\,...\,...bums Lhat 8

maps to 1.6 in this representation, we see that it lands on the interval d in Fig.

4. Now if p <5 in 8.pgr..., a lands on d until, when p becomes 9, g becomes
Q ate it gnec to 1 R at thic auter imit Thic liec in tha intarval markad » Thue

Wy WLl Av 5\.’\40 LU/ AW AL LLIAT UUILLWL RISEIALe A 11D WO 11 Ulv llilvid vl llialnnuua e LUy
we observe that a goes either to d or e. By a similar analysis we can easily

construct the graph associated with the movements of the strings a,...,e
C"In‘l"‘l In pl" O

shown in Fig. 2.
We now give the results concerning the probabilities of occurrence of the
digits and the strings. In Table 3 we give the frequency distribution of the

first r:licnfc in 2" and in Table 4 their prr\kal'“‘:hpc of occurrence. We state and

prove the asymptotic results in the form of theorems, the first of which is
known, as stated before.
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TABLE 2

STRING SEQUENCES GENERATED FROM FIRST DIGITS
oF 2" For n =0 To 4000

A. K. RAJAGOPAL ET AL.

1248 136 125 1248

136

1249

136

125
125
136
137

1248
1249
125
125
136
137
1248
1249
125
136
136
137
1248
1249

1248
1249
125
136
136
137

136
137
1248
1249
125
136
136
137
1248
1249
125
136
136
137
1248
1249
125
136
137
137
1248
125
125
136
137
1248
1249
125
125
136
137
1248
1249
125
125
136
137
1248
1249
125
136
136
137
1248
1249
125
136
136
137
1248
1249
125
136

125
136
136
137
1248
1249
125
136
136
137
1248
1249
125
136
137
137
1248
125
125
136
137
1248
1249
125
125
136
137
1248
1249
125
125
136
137
1248
1249
125
125
136
137
1248
1249
125
136
136
137
1248
1249
125
136
137
137
1248
1249

1248
1249
125
136
136
137
1248
1249
125
136
137
137
1248
125
125
136
137
1248
1249

1248
1249
125
136
137
137

136
137
1248
1249
125
136
136
137
1248
1249
125
136
137
1248

1248

136

1248
1249
125
136
137
137
1248
125
125
136
137
1248
1249
125

137
137
1248
125
125
136
137
1248
1249
125
125

137
1248
1249

125
136
137
1248
1249
125

136
137
1248
1249
125
136
136
137
1248
1249
125
136
136
137
1248
1249
125
136
137
1248
1249
125
125
136
137
1248
1249
125
125
136

125

137
1248
1249

125
136
137
1248
1249
125
125
136
137
1248
1249
125
125
136
137
1248
1249
125
136
136
137
1248
1249

136
136
137
1248
1249

136
137
137
1248
125
125
136
137
1248
1249
125
125
136
137
1248
1249
125
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TABLE 2 (Continued)

1248 136 125 1248 136 125 1248 137 125 1248 137 125 1249 137 125
1249 137 136 1249 137 136 1249 137 136 125 1248 136 125 1248 136
125 1248 136 125 1248 136 125 1248 137 125 1249 137 125 1249 137
125 1249 137 136 1249 137 136 125 124§ 136 125 1248 136 125 1248
136 125 1248 136 125 1248 137 125 1249 137 125 1249 137 125 1249
137 136 1249 137 136 1249 137 136 125 1248 136 125 1248 136 125
1248 136 125 1248 136 125 1248 137 125 1249 137 125 1249 137 136
1249 137 136 1249 137 136 125 1248 136 125 1248 136 125 1248 136
125 1248 136 125 1248 137 125 1249 137 125 1249 137 125 1249 137
136 1249 137 136 1249 137 136 125 1248 136 125 1248 136 125 1248
136 125 1248 137 125 1248 137 125 1249 137 125 1249 137 136 1249
137 136 1249 137 136 125 1248 136 125 1248 136 125 1248 136 125
1248 136 125 1248 137 125 1249 137 125 1249 137 125 1249 137 136
1249 137 136 125 1248 136 125 1248 136 125 1248 136 125 1248 136
125 1248 137 125 1249 137 125 1249 137 125 1249 137 136 1249 137
136 1249 137 136 125 1248 136 125 1248 136 125 1248 136 125 1248
136 125 1248 137 125 1249 137 125 1249 137 136 1249 137 136 1249
137 136 125 1248 136 125 1248 136 125 1248 136 125 1248 136 125
1248 137 125 1249 137 125 1249 137 125 1249 137 136 1249 137 136
1249 137 136 125 1248 136 125 1248 136 125 1248 136 125 1248 137
125 1248 137 125 1249 137 125 1249 137 136 1249 137 136 1249 137
136 125 1248 136 125 1248 136 125 1248 136 125 1248 136 125 1248
137 125 1249 137 125 1249 137 125 1249 137 136 1249 137 136 125
1248 136 125 1248 136 125 1248 136 125 1248 136 125 1248 137 125
1249 137 125 1249 137 125 1249 137 136 1249 137 136 1249 137 136
125 1248 136 125

Fic. 1. Formation of binary tree structure generated by leading digits of 2%,
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F1c. 2. State transition graph of string sequences.

TreEorREM 1. The asymptotic probabilities of the integers k, denoted by
P(k), k=1,...,9, are given by

P(k)= log10(1+ %) @)

For a discussion of this, see Reference [1], [2], [3], [4], [8], and [11]. Our
derivation is similar to the one given in Reference [11] and depends on the
fact that the fractions defined by

x, = nlog,;2 (mod 1) (3)

are uniformly densely distributed on a line segment between 0 and 1. Our
proof shows a method of deducing other asymptotic properties such as
transition probabilities, etc. From Fig. 3, we see that the line segments
marked 1-9 map into the line segments shown at the bottom, whose union is
the segment [0, 1). Since the digits 1,...,9 are generated by the first digits of
2" for a very large collection of n, one collects these integers into bins as in
Table 3. To obtain the probability, one finds the fraction of times a given
integer occurred relative to the total number of integers sampled. In other
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e
oty ——— i i i PO
1.000 1125 1.250 1.500 1.750 2.000
| \ \ \ 1 |
\
. \ | |
I A
| \ |
| \ \ \ \
T \ % |
| | \ 109, \ |
| \ \ \ \ |
I { \ \ | |
| \ \ \ \ |
I 1 \ \ \ |
' [ 1 [ ] i |
(0] 1125 1.250 1.500 1.750 log, . 2.000

Fic. 4. Construction of a line segment from 1 to 2 with segments marked 1.125, 1.250, 1.5,
and 1.750 (the names of the corresponding strings are shown).

words, the sizes of the segments in the interval [0, 1) give us the frequency of
occurrence of the corresponding integer. For example, the segment 1 maps to
[0,10g,,2), and the asymptotic probability of occurrence of 1 is thus log,,2
(total length of segment is 1). Similarly, segment 2 maps to [log,,2,log,,3),
and so P(2) = log,,3 —log,,2, whence

P(k) =log(k +1)—log,o k = logm(1+ %)

as stated in the theorem.

In Table 4 we have listed these asymptotic probabilities also. In Fig. 5, we
have displayed the numerical results as points and the asymptotic answers in
the form of a curve.

We noted earlier that the strings a, b, ..., e also occur in a random fashion.
These strings have the following unique markers. a is associated with 8, b with
9, ¢ with 5, d with 6, and e with 7. We have given in Table 5 the frequency of
occurrence of these string sequences, and in Table 6 the corresponding
probabilities of occurrence, for the same set of 2000 numbers generated in
Table 3. As explained earlier, these strings too can be generated by points
distributed uniformly on a line segment, as in Fig. 4. In the limit of large n
then we can obtain the asymptotic probabilities 7(a) of occurrence of the
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TABLE 3
Freguency DistriBurion oF First Dicrrs 1 TurouvcH 9
IN 2" FOR n uP TO 1000

Pf er::;(:h()f Occurrence of the first digit 1 through 9 in 2"
P 1 2 3 4 5 6 7 8 9 Total
0-99 30 17 13 10 7 7 6 5 5 100
100-199 30 19 11 10 9 6 5 6 4 100
200-298 30 17 i3 9 8 7 6 4 5 99
299-398 30 17 13 10 7 8 5 6 4 100
399-498 30 18 12 10 8 6 6 5 5 100
499-597 30 17 13 9 8 7 8 5 4 99
598-700 31 19 12 10 9 7 5 6 4 103
701-800 30 17 13 10 7 7 6 5 5 100
801-900 30 18 12 10 8 7 5 6 4 100
901-999 30 17 13 9 8 7 6 4 5 99
1000-1099 30 17 13 10 7 7 6 6 4 100
1100-1199 30 19 11 10 9 6 5 6 4 100
1200-1298 30 17 13 9 8 7 6 4 5 99
1299-1398 30 18 12 10 8 7 5 6 4 100
1399-1498 30 18 12 10 8 6 6 5 5 100
1499-1597 30 17 13 9 8 7 6 5 4 99
1598-1700 31 19 12 10 9 6 6 6 4 103
1701-1800 30 17 13 10 8 7 6 5 5 100
1801-1900 30 19 11 10 9 8 8 5 5 100
1901-1999 30 17 13 9 8 6 7 5 5 99

Totals

0-999 301 176 125 97 79 69 56 52 45 1000
1000-1999 301 178 123 97 82 65 59 353 45 1000
0-1999 602 354 248 194 161 134 115 105 90 2000

strings a standing for a, b,...,e. They are given by

TueoreM II.  The asymplotic probabilities of occurrence of the strings are

aiven by
goen oy

7(a)=logy(1+3),  7(b)=logy(1+3),

1) £y 1 f1 ¢ 10\
) 7la)=10og\1T5),

o~
N
S

7(c)=log,(1+

31

7(e)=logy(1+1).
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TABLE 4
ProsaBiLITIES OF OcCURRENCE OF FirsT DicrTs
1 TurovucH 9 IN 2" FOR 1 uP TO 2000

Period of
length Probability of occurrences of the first digit 1 through 9 in 2"
P 1 9 3 4 5 8 7 P 9

£k i & (o x [/ i8S i <

0-99 0300 017 013 010 007 007 006 0.05 005
100-199 0300 019 011 0.1 0.09 006 005 006 004

aNnn_ ono n ann N 170 N 171 n NNl N Nnet n N7 n nal NnnNAa n nNne
LN —4T0 V.ovo V.Lia UV.101 (VAVE ) v.uol VAV v.uu1L V.U uv.uo

299-398 030 017 013 010 0.07 008 005 006 0.04
399-498 030 018 012 010 0.08 006 006 005 005
499-597 0303 0.172 0.13 009 008 0.07 006 0051 004
598-700 0.301 0.184 0.117 0.097 0.0874 0.068 0.041 0.058 0.039
701-800 030 0.17 013 010 007 007 006 005 005
801-900 030 0.18 012 010 008 007 005 006 004
901-999 030 017 013 0.09 008 007 006 004 005
1000-1099 030 0.17 013 0.10 0.07 007 006 006 0.04
1100-1199 030 019 011 010 0.09 006 005 006 004
1200-1298 0.303 0.172 0.131 0091 0.081 0071 0.061 0.041 0.051
1299-1398 0.30 0.18 012 010 008 007 005 006 004
1399-1498 030 018 0.12 010 0.08 006 006 005 0.05

14Q0Q0_1207 OH2N N170 N 121 n no n ne nny nne nNneEl nnAa
LXITI—=LITI V.9 V.dlid V.11 AV Vi) AV J V.U ARV V.JJL v.vax

1598-1700 0.301 0.185 0.117 0.0971 0.0871 0.0583 0.0583 0.0583 0.0388
1701-1800 030 0.17 013 010 0.08 007 006 005 005
1801-1900 030 019 011 0.10 0.09 006 006 005 005
1901-1999 0.303 0.172 0.131 0091 0.081 0061 0.071 0.051 0.051

Totals

9-999 0301 0.176 0.125 0.097 0079 0.069 0.056 0.052 0.045
1000-1999 0.301 0.178 0.123 0.097 0.082 0.065 0.059 0.053 0.045
0-1999 0.301 0.177 0.124 0.097 0.0805 0.067 0.0575 0.0525 0.045

Asymptotic 0.301 0.176 0.125 0.097 0.079 0.0669 0.0580 0.0511 0.0458
probability

Note that the logarithms are now taken to base 2.

We first deduce these probabilities by a straightforward probabilistic
argument and then rederive them by an elegant geometrical construction
patterned after the proof of Theorem 1. As observed earlier, each string is
uniquely determined by the last member in its group, and hence the asymp-
totic probabilities of the strings are proportional to the probabilities of
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urrence of these last members, according to Theorem 1. Hence
m(a) = Alogo(1+%), m(b) = Alog,(1+14),

m(c)=Mogi(1+4),  7(d)=Alog,(1+4), (5)

The constant of proportionality, A, is determined by the condition that the

R ) < 3k readern ok

total prODabmty L,aaa'ﬂ(a)—- .l, and so A = ('0810") ! and thus we arrive at

4.
The geometric proof uses the uniform distribution of x,, = nlog,,2 (mod 1)
........... L . ll L~ samnfial i

as IUuUWb llllb p.lUUI, as Wl.u1 u1aL Ul LNneorem 1, wiu b€ most user in
deducing the transition probabilities to be discussed in the next section. We
now consider Fig 4, and recall how the line segment [1,2) gives rise to the

,,,,, R . N T tha lina gagmant haname mniformly

SII'IIlg& dyeonr € Since the poifits Oni Ui® L€ Segmieiit OCCOME unndimay



236 A. K. RAJAGOPAL ET AL.

TABLE 5
FreqQueENcy DisTRIBUTION OF STRING SEQUENCES oF Dicits
String

sequence: a <1248 b « 1249 c <125 d < 136 e« 137
0-99 5 5 7 7 6
100-199 6 4 9 6 5
200-298 4 5 8 7 6
299-398 6 4 7 8 5
399-498 5 5 8 6 6
499-597 5 4 8 7 6
598-700 6 4 9 7 5
701-800 5 5 7 7 6
801-900 6 4 8 7 5
901-999 4 5 8 7 6
1000-1099 6 4 7 7 6
1100-1199 6 4 9 6 5
1200-1298 4 5 8 7 6
1299-1398 6 4 8 7 5
1399-1498 5 5 8 6 6
1499-1597 5 4 8 7 6
1598-1700 6 4 9 6 6
1701-1800 5 5 7 7 6
1801-1900 5 5 9 6 5
1901-1999 5 4 8 6 7
0-999 52 45 79 69 56
1000-1999 53 44 81 65 58
0-1999 105 99 161 134 114

distributed upon taking the logarithm to base 10, we arrive at the line
segment displayed at the bottom of Fig. 4, which now goes from 0 to log,2
and the segments a,...,e correspondingly get mapped as shown there. Hence
the asymptotic probabilities of occurrence of the strings are given by the ratio
of the corresponding lengths on the logarithmically mapped segment to the
total length:

1 1.125
7(a)= % =log,1.125 =log,(1+ %),
logpl25-logpl125 . 195 .
m(b)= log 02 = log, T 55 ~loga(1+4)

and so on, as given by Equation (4).
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TABLE 6
ProBABILITY DISTRIBUTION OF STRING SEQUENCES OF DicrTs
String
sequence: a « 1248 b« 1249 c <125 d <136 e« 137
0-99 .1667 .1667 .2333 2333 .2000
100-199 .2000 1333 3000 2000 .16667
200-298 1333 .16667 .26667 2333 .2000
299-398 .2000 1333 2333 .26667 .2000
399-498 .16667 .16667 26667 2000 .2000
499-597 .16667 .13333 .26667 2333 .2000
598-700 .1936 .1290 .2903 .2258 1613
701-800 .16667 .1667 2333 .2333 .2000
801-900 .16667 1337 .26667 .2333 .16667
901-999 .1333 .1667 .26667 2333 .2000
1000-1099 2 1333 2333 .2333 2
1100-1199 2 1333 3 2 .1667
1200-1298 1333 .1667 2667 2333 2
1299-1398 2 1333 .2667 .2333 .1667
1399-1498 1667 .1667 2667 2 2
1499-1597 .1667 1333 .2667 .2333 2
1598-1700 1935 1290 .2903 .1935 .1935
1701-1800 .1667 1667 2333 2333 2
1801-1900 .1667 .1667 3 2 .1667
1901-1999 .1667 1333 .2667 2 2333
0-999 1728 .1495 .2625 .206 .1861
1000-1999 1761 .1462 .2691 .2160 1927
0-1999 1713 .1615 .2626 .2186 .186
Asymptotic

probability .169925 .152003 2630344 222392 .19264

In Fig. 6, we have plotted these asymptotic probabilities 7(a) versus a as
lines, and the numerically obtained values from our samples are shown for
comparison.

In the next section, we shall discuss the transition probabilities of the
integers and the strings, as they seem to exhibit interesting features and they
clearly show the non-Markov character of the underlying stochastic process.
This has not been studied before.

PR

The idea of transition probabilities is a useful one in discussing the
statistical properties, as these give a feel for the “movement” of the events
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studied. The transition probability T(p — g) is the probability that an event p
will go to an event q in the next trial. It is usually written in the form of a
matrix.

From Figures 1 and 2, it is clear what happens in our system. For integers,
the derivation of the asymptotic transition matrix is easy to deduce from
Figure 1. Clearly 1 can go only to 2 or 3, and so T(1 —» 2) and T(1 — 3) are
nonzero while all other T(1 — k) are zero. Since the paths are exhausted, the
sum T(1 — 2)+ T(1 — 2) must equal unity. In this way, in conjunction with
Fig. 1, we obtain the matrix T(p — @) after a little computation. We will now
give the algebraic derivation and then a geometric method based on the line
segment theorem and these results are stated in the form of a theorem.

THeoReM III.  The asymptotic transition probability matrix T(p — q) for
going fromptog(p,q=1,..., 9) is as given in Table 7.
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TABLE 7
\
N1 Q Q A = a - Q
p\l r4a [ = v v K fed b4
1 0 logyo(}) logs(}) 0 0 0 0 0 0
20 0 0 1086/4(%) logg,4(£) 0 0 0 0
30 0 0 0 0 logg 4(3) logg (%) 0 0
4.0 0 0 0 0 0 0 logo,/5(3) logg s(F)
5 1 0 0 0 0 0 0 0 0
6 1 0 0 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0
9 1 0 0 0 0 0 0 0 0

The direct algebraic method is to observe that, for example, T(1 — 2) is

proportional to the probability of occurrence of 2, viz. P(2)=log, (2). and

MESSREITS R A p VTSRS S AR s A Meioh2 s S

T(l — 3) is proportional to P(3) = log,,(%). But since their sum must be unity,
the proportionality constant is just [log,,(1)] !, and hence we find the entries

in the transition matrix given in Table 7.

In the geometric derlvatlon, we appeal to Figure 3. We observe that if we
start with 1 we land on 2 or 4. In other words, the segment [2, 4] in the top of
Figure 3 is reached by all decimal numbers of the form l.xyz... upon
multiplication by 2. If x in 1.xyz is less than 5, we get points in the segment
[2,3), and if x > 5, we get points in [3,4]. Using the logarithmic mapping

underneath, the asvmntotic transition nrnha}'ullhpc are deduced. It is im-

RLRGOINCAUE, W0 &S IRpPULL ialisiuis {URDRRDEMICS Qe GO, 20 IS LA

portant to observe that the first numbers beginning with 1 are all of the form
1.xyz... X 10%, which move to the points in the segment lying in [2,4) upon

multinlication hvy 9. Similar arcuments hold for » xuz. .. X ln'" fnr finding the

multiplication by 2. Similar arguments hold for p.xyz.. finding the
transitions from p to the corresponding ¢’s. It is qulte clear that the integers
5, 6,7, 8,9 all go to 1, and hence that part of the transition matrix is obtained

fnvln“v

The calculation of the transition probabilities for the strings is a little more
subtle. To establish the pathways the strings take, we find the geometric

constructon given in Fig, 4 is most transnarent, Let us examine the string g
construction given 1n rig. 4 1s most transparent. 1.et us examine the sinng a.

The last digit in this string is of the form 8.xyz... X 10¥, say. Upon multiplica-
tion by 2, this will go over to l.x’y’z’... X 101, and we need to check

where thic fraction is on the ton ceoment of Fio. 4 Ramamberine that tha
WiIICKT LS IaClion 1S 06 W0 0P SOLINCIN U6 111G, 4. fWIliTOCNg Al uic

string a corresponds to points in the segment [1,1.125) it is clear that 8 goes
to 1.6 in this representation and hence lands in the segment marked d in Fig.
4. Since 8 occurs in the form 8.xyz..., it is clear that all numbers with x <5
will land to the right of 1.6 in segment d, and this goes on till x =9, y =9,
etc., which implies that such numbers 8.999... go up to 1.8 at the outer limit.

In other words, a goes to d or e.
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It is now important to realize from this discussion that the segments d and
e are not fully covered by the points so generated. Hence the transition
probabilities are proportional to the respective lengths of the segments after a
log,, mapping. The string b, which has 9 in it, lands on ¢ only because upon
multiplication by 2, 9.xyz... is at least 1.8 and at most 2. Since b — ¢ only,
this transition probability is unity. We thus obtain

Tueorem IV. The asymptotic transition probability matrix §(a — B8) of
the strings (a, B=a, b,...,e) is as given in Table 8.

In the actual evaluation of this matrix, we employed the above description
of the process and the fact that

J(a—d)=A(log,u1.75—log,,1.6)

5(a—e)=Alog;y1.8~log,,1.75)

TABLE 8
B
a a b c d e
1.75 1.8
a 0 0 0 logg/S(TG—) logg/a(i?—s)
b 0 0 0 0 1
12
¢ loge,5(1.125) logg,s 1125 0 0 0
1.125 14
d 0 log7/6( ETE ) log7/6(——1‘125) 0 0
15 1.6
e 0 0 log8/7(-ﬁ) logs/—,(i—) 0
TABLE 9

THE AsYMPTOTIC TRANSITION PROBABILITY MATRIX 75(a — )
OF THE STRINGS (&, S =a, b, ¢, d, e)

1248 «a 1249 « b 125« ¢ 136 < d 137<e

1248 < a 0 0 0 0.7767 0.2233
1249 « b 0 0 0 0 1
125« ¢ 0.6519 0.34810 0 0 0
136 « d 0 0.2654 0.7346 0 0
137« e 0 0 0.5085 0.4915 0
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and others are zero. Since the sum should be unity, A = [log(1.8,/1.6)] ! and
the results are as given in the matrix.

We have obtained these quantities numerically also for 613 strings (2",
n = 0-1999), and they are given in Table 9.

We have developed computer codes for calculating probabilities of occur-
rence of pairs, triples, and quadruples of strings as well as path probabilities
for the occurrence of strings in successive trials such as #(a — Bv) etc., which
have also been represented as tree structures. These results are given in Ref.
{14]. In the next section we shall give an explicit proof that the string
sequences are non-Markovian.

IV. NON-MARKOVIAN NATURE OF THE PROCESS

The process of branching from a string I to a string J can take place in n
intermediate steps, where n can be 0,1,2,3,.... An example of a one step
process is treated below.

The process of string a going to string c is a one step process. This can take
place in two ways—string ‘a’ can go to string ‘b’ through string ‘d’ or string
‘c’. The following diagram describes the process:

e ° 1248 < a

1249 < b

125« ¢
6 136 «d
()

137«e

Mathematically we can define the above branching process as follows. Let
9o(p, q) be the transition probability matrix of a zero step process. Let 7, be
the transition probability matrix of a one step process. For a non-Markovian
process, 7, = .2, i.e. the transition probability from one state to another is
not independent of the previous states visited. A computation of this path
process of strings indicates that the underlying process is non-Markovian (see
Tables 9, 10, and 11). This is also intuitively evident, as stated in the
Introduction.
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TABLE 10
COMPUTATION OF PATH PROCESS OF STRINGS FOR A ONE-STEP TRANSITION MATRIX T
1248 < a 243 < b 125 «¢ 136 < d 137« e
1248 < a 0 0 1 0 0
1249 < b 0 0 0.3933 0.6067 0
125« ¢ 0 0 0 0.4969 0.5031
136 < d 0.7463 0 0 0 0.2537
137« ¢ 0.0430 0.9750 0 0 0
TABLE 11
COMPUTATION OF J g2 , THE SQUARE OF THE
ZERO STEP TRANSITION MATRIX FOR STRINGS
1248 « ¢ 1249 < b 125 « ¢ 136 < d 137« e
1248 < a 0 0.2061 0.6841 0.1098 0
1249 < b 0 0 0.5085 0.4915 0
125« ¢ 0 0 0 0.5063 0.4537
136 < d 0.4789 0.2557 0 0 0.2654
137« ¢ 0.3315 0.3075 0.3611 0 0

In the next section we shall give a summary of the results reported here as
well as a class of other extensions and observations and possible applications
of our investigations.

V. SUMMARY AND CONCLUDING REMARKS

We have examined the statistical properties of the first digits and the

strings generated by powers of 2. It is clear from the asymptotlc transition
probability matrices for both digits and strings that the underlying stochastic

ANACe 16 MAN_ \ m m ™
process is non-Markovian. From a mathematical point of view, however, the

process is ergodic in the sense of the asymptotic distribution modulo one
[10,11]. This case study is an elegant example of an ergodic but non-Markovian

nrocess. We have now shown [1 ':ﬂ using the fhpnrv of tower structures in

PRULTSS. 1QVO HOW SHOWIL (40, usilly 210 W00s QL OW SUICLRICS

ergodic theory, that the strings found here can be given an elegant mathe-
matical derivation. In fact, it turns out that the number of strings associated
with the 2" problem is five, but the choice of the entities in the strings
themselves and hence their probabilities are not unique. This is intuitively
expected. Another important point that emerges out of this work is that unlike

the digits 1,...,9, the strings a,...,¢ may be an interesting set as candidates
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for generating quasi random events. Observing that #(a) = 0.169925, #n(b) =
0.152003, 7(c) = 0.2630344, n(d)=0.2223923, and 7(e)= 0.192645 are all,
crudely speaking, close to £ = 0.2, and thus the strings occur almost randomly
—unlike the integers, whose probabilities ranged from 0.3010 to 0.0458, quite
far from { (=0.111). From the structure of the transition probabilities
m(a— B), it seems we may have possibilities for application to coding and
cryptography. It may not be out of place here to point out that Uppuluri [16]
has examined a certain probability aspect of the prime numbers within a
Markov theoretic framework. It is intriguing to find that the first digit
problem turns out to be non-Markovian.

The Newcomb-Benford law (Theorem I above) is in fact quite general and
does not depend on the first digits of powers of 2. In fact, the same law
obtains for the first digits of a”. Even more generally, in base b (instead of 10
used in our work), the probabilities of occurrence of the integers p=1,...,b
—1 are log,(1+1/p). But it is expected that the string structures and their
transition probabilities will not be independent of the generator a in a".
Recently Kak [17] has examined 3", 7", 11", etc. in some detail and has found
interesting string structures: graphs associated with the movements of the
integers 1,...,9. J. Robertson et al. [15] show how these string structures
depend on the base (e.g. 3, 7) and are derivable from towers generated by the
underlying ergodic process; they also show that while the number of strings
associated with a given base b is unique, what constitutes these strings is not
unique. Kak [17] surmises that there may be a relationship between the
statistics of the first digits at the input and the output of an exponentiator
modulo n, a transformation which has been suggested for public key encryp-
tion.

The problem of determining the structure of the sequence x, = f(x,_;)
for different classes of f is of considerable current importance in physics and
computer science. Feigenbaum [18,19] has recently suggested that a behav-
ioral universality is associated with a large class of systems obeying the
recursion relation above. The analysis used by us may be of some relevance to
these questions also.

We thank Dr. Mark Robinson of ORNL for many discussions on the topic
of this paper with one of us (A. K. R.), who also thanks the Division of Solid
State, ORNL, for their warm hospitality and support. Dr. S. C. Kak of the
Electrical Engineering Department, LSU, has been very kind in spending his
time to read, criticize, and offer suggestions concerning the applications of the
results of this paper. We thank him profusely.

We are grateful to Professor Raimey of the University of Rochester for his
critical comments on our paper.
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