244

Space and Time Efficient Virtual Quadtress

LESLIE P. JONES anp S. SITHARAMA IYENGAR

Abstract—The quadtree has recently become a major data structure
in image processing. This correspondence investigates ways in which
quadtrees may be efficiently stored as a forest of quadtrees and as a
new structure we call a compact quadtree. These new structures are
called virtual quadtrees because the basic operations we expect to
perform in moving about within a quadtree can also be performed on
the new representations. Space and time efficiency are investigated
and it is shown these new structures often given an improvement in
both.

Index Terms—Algorithm, data structure, forest, image processing,
quadtree.

I. INTRODUCTION

Quadtrees have recently been promoted as a method of
representation of planar regions. The basic relationship be-
tween a region and its quadtree representation is presented in
Hunter and Steiglitz [3]. They also discuss several ways of
manipulating quadtree representations of regions. Pavlidis
[12] describes a method of approximation of pictures by using
quadtrees. A good history of the development of quadtrees
for representing of a region is available in papers of Klinger,
Dyer, and Alexandridis [1], [5]. Samet [7] has given an
algorithm for creating a quadtree from an edge-code (chain
code), a geometric representation of a region. Conversely, an
algorithm to convert an edge-code to a quadtree has been
developed by Dyer, Rosenfeld, and Samet [2]. For additional
information on manipulating quadtree representations of re-
gions refer to Samet’s papers [8]-[10]. For overviews of
related research on image processing data structures see [11],
[13].

This correspondence investigates ways in which quadtrees
may be more efficiently stored as other data structures. Parts
of this correspondence review and refine [4]. In Section II
we present a structure called a compact quadtree. This struc-
ture contains all the information contained in a quadtree but
requires much less space. Section III presents a means of
converting a quadtree to a forest of quadtrees, also with space
savings. We also consider the time efficiency of algorithms
that operate on our representations.

For the purposes of this paper, a region will be the BLACK
portion of a 2™ X 2" array made up of a unit square pixels
colored BLACK or WHITE. A sample region is presented in
Fig. 1 and its quadtree is given in Fig. 2. We will define a
node in a quadtree to be a record containing six fields. If P
is a (pointer to a) node and D is in the set of directions {NW,
NE, SW, SE}, then we may define the fields as follows:

COLOR(P) has value WHITE or BLACK for a leaf, GRAY
for an interior node.
SON(P, D) (pointer to) the son of P in direction D; NIL if
no such node exists.
FATHER(P) (pointer to) the father of P; NIL if P is the
root.

Manuscript received November 15, 1982; revised May 17, 1983.

L. P. Jones was with the Department of Computer Science, Louisiana
State University, Baton Rouge, LA 70803. He is now with the Depart-
ment of Computer Science, Marietta College, Marietta, OH 45750.

S. S. Iyengar is with the Department of Computer Science, Louisiana
State University, Baton Rouge, LA 70803.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-6, NO. 2, MARCH 1984

- C
B
] E
D
Fig. 1. Region with subregions.

The (pointer to the) root of the quadtree will be denoted by
ROOT. We say that the offspring of a node refine that node.
In our figures, the offspring of a node are drawn in the canon-
ical order NW-NE-SW-SE.

We also have a need to refer to nodes by position. For this
purpose we note that any node in a quadtree may be given
unique two-dimensional coordinates (L, K) in the following
way. We give the directions, NW, NE, SW, and SE numerical
values 0, 1, 2, and 3, respectively. The root has coordinates
(1, 0). If P has coordinates (L, K), then its son in direction
DE{NW, NE, SW, SE} has coordinates (L +1, 4K + D).
Clearly, L is just the level of P. As an example, Fig. 2 also
includes the coordinates of some selected nodes. This coor-
dination scheme is analogous to that of Pavlidis [11, p. 105].
Given the coordinates, (L, K), of a node, the sequence of
directional choices on the path from the root to that node
may be recovered in the following way. First, we decompose
K (uniquely) as a sum of the form

L-2 .
K=3% n4 0<n;<3.
i=0

Next we convert the sequence of integers (np _,, ny_3, ",
ng) back into a sequence of directions. For example, given
the node W in Fig. 2 with coordinates (4, 39), we write

39 =(3)4° + (1)4! +(2)4?
to get the sequence (2. 1, 3) or (SW, NE, SE).

0162-8828/84/0300-0244301.00 © 1984 IEEE



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-6, NO. 2, MARCH 1984

NE

(Y (2,0) (2,1)

(2,0)
(3,4)
(4,26)
(3,9)
(4,48)

OO w>

LU [ I I}

n<c

245

(1,0)

SE
SW
[ (2,2) (2,3) }f
gord 0O O @ 0O o u
U v
] [] (1 0O U
W E
= (3,10)
= (3,11)
= (4,39)

Fig. 2. Quadtree with coordinates.

Let (L, K) and (L', K') be (the coordinates of) two nodes in
T with L<L'. We note that (L', K') is a descendant of (L, K)
if and only if

KD <K <ka®D 44070 = (g 4 1)4L-L

For example, the leftmost descendant of (2, 3) at level 4 has
second coordinate (3)4% = 48, while the rightmost descendant
has second coordinate (3+1)4%2-1=64-1=63. Clearly,
(L', K') lies to the left of (L, K), and is not a descendant of
(L, K), if and only if

K' <K4@L-D)

while (L', K') lies the right of (L, K), and is not a descendant
of (L, K), if and only if

K'>(K+1)4L"-L,

Compare Fig. 2.

As noted, our space efficient ways of representing a quadtree
are examples of structures we call virtual quadtrees. A virtual
quadtree is any structure which simulates a quadtree in the
sense that we can

1) determine the color of any node in the quadtree;

2) find the offspring in any direction of any node in the
quadtree;

3) find the father of any node in the quadtree.

II. COMPACT QUADTREES

First we present a structure called a compact quadtree. If
T is a quadtree then we will denote the compact quadtree
associated with T by C(T). Each set of four brothers in T is
represented by a single record, called a metanode, in C(T). We
say that the metanode refines the father of the four nodes.
The fields of a metanode M are as follows:

MCOLOR(M, D) for D € {NW, NE, SW, SE}, the colors of
the nodes that M represents;

(pointer to) the first metanode that repre-
sents offspring of a node in T which is
represented in M; NIL if no such meta-
node exists;

(pointer to) the metanode that holds the
representation of the father of the nodes
that M represents, M’s mfather;

described below.

MSONS(M)

MFATHER(M)

MCHAIN(M)

If there are several metanodes that represent offspring of
nodes represented by a given metanode, then these metanodes

— > ,
WBBB | ——> [WBWB WWBW WBWB
(2)

Fig. 3. (a) Compact quadtree C(T). (b) Compact quadtree C(T), with-
out MFATHER links.

are linked via the field MCHAIN. Their order in this linked
list is the same as the order of the GRAY fields in M that they
refine. The compact quadtree for the quadtree in Fig. 2 is
given in Fig. 3(a). Downward links are MSON links, horizon-
tal links are MCHAIN links and upward links are MFATHER
links. Note that the GRAY MCOLOR fields of a metanode M
are in a natural one-to-one correspondence with metanodes in
the chain pointed at by MSONS(M).

The compact quadtree uses the same amount of space as the
quadtree for storage of colors but it uses far less space for
storage of pointers. In our example, the quadtree of Fig. 2
has 41 nodes or 205 pointers. The compact quadtree has 10
metanodes or 30 pointers, a space savings of about 85 percent.
This savings can be expected for any quadtree because its
corresponding compact quadtree will have about 1/4 as many
records and each record will have 3/5 as many pointers.

If we are willing to accept a small degradation in the time
efficiency of finding the mfather of a metanode M, then we
can delete the MFATHER field from all the metanodes and
merely direct the MCHAIN field of the last metanode in a
chain of siblings to indicate the mfather of all the metanodes
in that chain. Fig. 3(b) shows the compact quadtree of Fig.
3(a) altered in this manner. This representation requires that
each metanode M have a 2-bit field MTOEND(M). If there are



246

i nodes in the chain after node M, then MTOEND(M) contains
i. In this way, we can tell if MCHAIN (M) points to its next
sibling or to M’s mfather, and we can identify the GRAY field
in M’s mfather that M refines.

Note that if we represent a quadtree as a binary tree [6]
then the space savings is only about 40 percent and the opera-
tion of finding of offspring of a node may also require search-
ing as many as four nodes. The much greater space savings
comes from the fact that we have also removed a level from
the tree,

Naturally, we expect the chaining in the compact quadtree
to cause a performance degradation. Curiously enough, a
simple recursive tree traversal in order NW-NE-SW-SE may be
performed more efficiently on a compact quadtree because
there are fewer metanodes and hence fewer subroutine invoca-
tions and links followed. The space savings will also produce
a time savings on minicomputers with small address spaces
and on virtual memory systems because the amount of pictor-
ial data that can be kept in core is far greater for a compact
quadtree, thus reducing the number of disk accesses.

III. FOREST OF QUADTREES

We next consider a virtual quadtree which can provide a
large space saving when a region nearly fits into a 2" ! X 2771
square or when a picture has several widely separated BLACK
regions. Let T be a quadtree. A forest, F(T), of quadtrees
that represents T consists of a table of triples of the form (P,
L, K) and a collection of quadtrees where:

1) each triple (P, L, K) (in the table) consists of the coordi-
nates, (L, K), of a node in T, and a pointer, P, to a quadtree
(in the collection) which is identical to the subtree rooted at
position (L, K) in T;

2) if (L, K) and (M, N) are coordinates of nodes recorded in
F(T), then neither node is a descendant of the other;

3) every BLACK leaf in T is represented by a (BLACK) leaf
in F(T).

For example, Fig. 4 contains a forest that represents the tree
of Fig. 2. Note that the forest of Fig. 4 corresponds to a de-
composition of the region of Fig. 1 into the subregions shown
in Fig. 1. We will give an algorithm to reduce a tree T to a
forest of quadtrees that represents the tree and we will recon-
struct the original tree T from the forest.

We temporarily add a field TYPE(P) to each tree node P.
(We assume that space for this field is kept separately from
the space for P itself.) The TYPE of P is defined recursively
as follows:

1) the TYPE of a BLACK leaf is GOOD;

2) if an interior node has 2 or more GOOD offspring, then
it is GOOD;

3) all other nodes are BAD.

The forest that represents T consists of all its maximal sub-
trees with GOOD roots, i.e., all the subtrees with the property
that their root is GOOD but all ancestors of their root in T are
BAD.

Let ROOT be (a pointer to) the root of quadtree. The con-
version to a forest of quadtreesisaccomplished by the sequence
of subroutine calls LABEL(ROOT) and FOREST(ROOT, 1, 0),
where the subroutines are described below. The first subrou-
tine traverses the entire tree depth-first and determines the
TYPE of each node. The second subroutine performs a depth-
first traversal locating maximal GOOD nodes and placing the
subtrees they root into the forest. BAD nodes encountered by
FOREST are freed. The algorithms may be applied to the
quadtree of Fig. 2 to get the forest of Fig. 4.

The subroutines are given below in Pascal (we use the nota-
tion given previously for references to fields). We also use the
symbolic constants ROOT, GOOD, BAD, BLACK, WHITE,
and GRAY, all with their obvious meaning. The subroutine
FOREST calls the procedure CREATE(P, L, K) which places

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-6, NO. 2, MARCH 1984

Table

2 0 pointer to A
3 4 pointer to B
4 26 pointer to C
3 9 pointer to D
4 48 pointer to E

Trees in forest

o™

u |
c

Fig. 4. Forest of quadtrees F(T).

=]

the triple (P, L, K) in the forest and sets FATHER(P) to NIL.
The call DISPOSE(P) frees the node P. Thus the nodes in
F(T) are a subset of the nodes of T. If, for any reason, this is
undesirable, the algorithm may be easily modified to copy
subtrees of T and place the copies in the forest.
Algorithm—Creation of a Forest of Quadtrees:

FUNCTION LABEL(P:NODE): INTEGER;
(*DETERMINES TYPE(P)*)
VAR
D, VALUE: INTEGER;
BEGIN
CASE COLOR(P) OF
BLACK: TYPE(P) := GOOD;
WHITE: TYPE(P) := BAD:
GRAY:
BEGIN
VALUE :=0;
FORD :=0TO 3 DO
IF LABEL (SON(P, D))=GOOD THEN
VALUE := VALUE+1;
IF VALUE >=2 THEN TYPE(P) := GOOD
ELSE TYPE(P) := BAD;
END (*GRAY?*)
END; (*CASE*)
LABEL :=TYPE(P)
END; (*LABEL*)

PROCEDURE FOREST (P: NODE; L, K: INTEGER);
VAR
D: INTEGER;
BEGIN
IF TYPE(P)=GOOD THEN CREATE(P, L, K);
ELSE
BEGIN
FOR D :=0TO 3 DO
FOREST(SON(P, D), L+1, 4*K+D);
DISPOSE(P)
END;
END; (*FOREST¥*)

The time required for the execution of the conversion is
obviously linear in the number of nodes in the quadtree. The
following can be shown by a simple inductive proof and estab-
lishes a maximum size for the table of F(T).



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-6, NO. 2, MARCH 1984

Theorem: The maximum number of trees in a forest derived
from a quadtree that represents a square of dimension 2kx2
is 4k'1, i.e., one-fourth the area of the square.

Given a forest of quadtrees F, we can easily show how to
reconstruct a quadtree. The reconstructed quadtree R(F)
consists of real nodes (nodes in the forest) and virtual nodes
(nodes that correspond to BAD nodes deleted while creating
the forest). Since virtual nodes require no storage they are
located by giving their coordinates. We denote the virtual
node with coordinates (L, K) by v(L, K).

The root of R(F) is either a real node (if the forest has one
tree) or the virtual node v(1, 0). In either case we know its
location and color in R(F).

The offspring of any real node are found by following links.
If v(L, K) is any virtual node, then its children in directions
DE{NW, NE, SW, SE} have coordinates (L + 1, 4K + D),
respectively. It is a simple matter of a table lookup to see if
the offspring are real nodes or virtual nodes. Also, we can
easily determine the color of a virtual node. It is GRAY if it
has a descendant(s) in the table and WHITE otherwise. The
check to see if the node has a descendant in the table may be
performed efficiently if the table is stored in the left-to-right
order produced by FOREST so we can apply the numerical
test at the end of Section I. For example, we can easily estab-
lish that the virtual nodes v(3, 10) and v(3, 11) of the forest
of Fig. 4 are WHITE because they lie between (in left-to-right
order) the successive elements (3, 9) and (4, 48) in the table.
Since the elements of the table are linearly ordered by this
left-to-right order, we may perform a binary search to check
on the color of a virtual node. If T represents a picture in a
2" X 2" grid, then such a search requires time

O(log(number of trees in forest))
=0(log 4""!)  (by the theorem)
=0(n).

For a real number x, let floor(x) denote the greatest integer
less than or equal to x. The father of a virtual node v(L, K) is
the virtual node v(L - 1, floor(K/4)). If Pis a real node, then
either its father is the real node given by FATHER(P) or else
P is the root of a tree in the forest F. In the latter case, the
coordinates, (L, K) of P, are recorded in the forest and we may
deduce that P’s father is v(L - 1, floor(K/4)). Obviously, if
T is a quadtree, then R(F(T)) is identical to T.

The space savings for a forest of quadtrees can vary enor-
mously. In the example of Figs. 2 and 4 there is a reduction
from 41 nodes for the quadtree to 21 nodes. This may not be
regarded as a 49 percent savings because there is a table with
five entries. If we assume the space for an integer equals the
space for a pointer and we disregard COLOR fields, then the
space reduction is from (41)(5) =205 pointers to (21)(5) +
(5)(3)=105+15=120 pointers, a savings of 41 percent.
Greater space savings is associated with a larger table and, thus,
greater degradation of time efficiency.

We have shown how the fundamental quadtree operations
may be simulated on our virtual quadtrees. Also, we have
considered the performance of these fundamental operations
implemented on our representations shown that performance
degradations are not severe. Since algorithms which work by
moving about in a quadtree (finding neighbors, creating chain
codes, determining pixel color, etc.) use the quadtree via the
fundamental operations described, the algorithms may be
implemented on our representations.

ACKNOWLEDGMENT

The authors wish to thank the referees for their hopeful com-
ments. The compact quadtree modification of Fig. 3(b) was

247

suggested by one of the referees. The need for an MTOEND
field was noted by R. Zarling and the numerical test for left-
to-right ordering was obtained independently by V. Raman.

REFERENCES

[1] N. Alexandridis and A. Klinger, “Picture decomposition, tree

data-structures -and identifying directional symmetries as node

combinations,” Comput. Graphics Image Processing, no. 8, pp.

43-47,1978.

R. C. Dyer, A. Rosenfeld, and H. Samet, “Region representation:

Boundary codes from quadtrees,” Commun. Ass. Comput. Mach.,

vol. 23, pp. 170-179, Mar. 1980.

G. M. Hunter and K. Steiglitz, “‘Operations on images using quad-

trees,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-1,

pp. 145-153, Apr. 1979.

L. Jones and S. Iyengar, ‘“‘Representation of a region as a forest

of quadtrees,” in Proc. IEEE Conf. Pattern Recognition and

Image Processing, Aug. 1981, pp. 57-59.

A. Klinger and C. R. Dyer, “Experiments on picture representa-

tion using regular decomposition,” Comput. Graphics Image

Processing, no. 5, pp. 68-105, Mar. 1976.

D. E. Knuth, The Art of Computer Programming, Vol. 1, Funda-

mental Algorithms. Reading, MA: Addison-Wesley, 1969.

H. Samet, “Region representation: Quadtrees from boundary

codes,” Commun. Ass. Comput. Mach., vol. 23, pp. 163-170,

Mar. 1980.

[8] —, “Connected component labeling using quadtrees,” J. Ass.
Comput. Mach., vol. 28, pp. 487-501, July 1981.

[9] , “An algorithm for converting rasters to quadtrees,” IEEE

Trans. Pattern Anal. Machine Intell., vol. PAMI-3, pp. 93-95,

Jan. 1981.

—, “Region representation: Quadtrees from binary arrays,”

Comput. Graphics Image Processing, vol. 13, pp. 88-93, 1980.

T. Pavlidis, Algorithms for Graphics and Image Processing. Com-

put. Sci. Press, 1982.

—, “The use of algorithms of piecewise approximations for

picture processing applications,” ACM Trans. Math. Software,

vol. 2, pp. 305-321, Dec. 1976.

S. L. Tanimoto and A. Klinger, Eds., Image Data Structures:

Structured Computer Vision. New York: Academic, 1980.

[2]

[3]

(4]

(51

(6]
(71

[10]
(11]
[12]

[13]

Image Segmentation: A Comment on “Studies in Global
and Local Histogram-Guided Relaxation Algorithms”

KEITH PRICE

The paper by Nagin et al.! neglects two important points.
First there is no mention of an earlier histogram based segmenta-
tion method [1] which presents an alternative method to cope
with the problem of overlaping intensity distributions. Second,
the possibility of using a similar recursive technique is men-
tioned (in their flow chart on p. 263') but the importance of
this idea is ignored.

Recursive segmentation methods (e.g., [1], [2]) are much
more powerful than applying the same technique at one level,
without a great increase in algorithmic complexity. The strength
of recursive segmentation methods is that decisions can be de-
layed until there is enough evidence. By selectingonly the best

Manuscript received January 7, 1983. This work was supported by
the Defense Advanced Projects Agency, the U.S. Department of Defénse,
and was monitored by the Wright-Patterson Air Force Base under Con-
tract F-33615-80-(1080), DARPA Order 3119.

The author is with the Department of Electrical Engineering, Univer-
sity of Southern California, Los Angeles, CA 90089.

Ip A. Nagin, A. R. Hanson, and E. M. Riseman, IEEE Trans. Pattern
Anal. Machine Intell., vol. PAMI-4, pp. 263-277, May 1982.

0162-8828/84/0300-0247$01.00 © 1984 IEEE



