
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 6, JUNE 1985 563

A Maximally Parallel Balancing Algorithm for N = 2' - I nodes. If the i,J)th node exists in T then
Obtaining Complete Balanced Binary Trees CVALN((i,j)) = 2` + (j - 1) * 2

ABHA MOITRA AND S. SITHARAMA IYENGAR Proof: Let us consider a complete balanced binary tree struc-
ture T with its nodes labeled by Inorder traversal. The label associ-

Abstract -We present a new iterative balancing algorithm for binary ated with each node corresponds to the number of nodes with data
trees of size N = 2" - 1 by exploiting the similarity of pointer restructur- value less than or equal to its own data value. Thus, the (i, Ilth node
ing at each level. We also extract parallelism from this algorithm to yield (if it exists) is labeled 2` by the Inorder traversal. Further, if node

* . ~~~~~~~~~~~i,k) is labeled y,then the niode on the same level to its immediatea constant time complexity balancing algorithm for an N-processor con- (i,) is labeled ythen then llo ts ifdte
figuration. This achieves the theoretical limit of speedup possible. right (if it exists) is labeled y + 2"i It then follows that if the

(i,j)th node exists, CVALN((i,j)) = 2' + (j - 1) * 2n±l. o
Index Terms-Balancing binary trees, binary search trees, complete Fact 2: Consider a complete balanced binary tree T with

binary trees, parallel algorithm. N = 2' - I nodes: if the (i,j th node, i < n, has nodes (i 1, j I) and
(i2,j2) as its LSON and RSON, respectively, then
CVALN((i,j1)) = k - 2n-i-'andCVALN((i2,j2)) = k + 2?1-1

I. INTRODUCTION where k = 2` + (j - 1) * 2?1-'+i
Binary search trees provide a method of data organization which Proof. From Fact 1 we know that CVALN((i,j)) = 2"1 +

is both flexible and efficient. Furthermore, records are retrieved (j - 1) * 2 We also know that in a complete balanced binary
from binary search trees in an average time proportional to log N tree the (i,j)th node (i < n) has (i + 1, 2 * j - I)th and
where N is the size number of nodes of the tree. The task of bal- (i + 1, 2 * j)th nodes as its LSON and RSON, respectively. So,
ancing a binary search tree is to adjust the left and right pointers of
all the nodes in the tree so that the search path is optimized. For an CVAL(Ki + 1, 2 * j 1) 2n-(i+
overview on algorithms for balancing binary search trees see [I]-[6] + ((2 *j - 1) - 1) * 2n-(i+1)+I
and the references therein.

Recently Chang and Iyengar [2] presented an algorithm (hereafter = k - 2'--'
referred to as the C-I algorithm) to balance binary search trees in CVALN(i + 1, 2 * j)) 2n-(i+l) + (2 * j 1) * 2n-(i+i)+I
O(N) time. This algorithm can be summarized as follows.
Phase 1: Traverse the tree in Inorder, storing pointers in the = k + 2n-i-1.

array LINK.
Phase 2. Procedure GROW(LOW:HIGH) recursively con- This means that for balancing a binary search tree with N -

structs a balanced binary search tree for the nodes LINK(LOW: 2n - 1 nodes, the node corresponding to the kth cell in the array
HIGH). LINK will be the (i,j)th node as determined by the equation
The interesting aspect of the C-I algorithm is that the left and

right subtrees rooted at the root are grown simultaneously. In par- k = 2" + (j - 1) * 2ni+1 (1)
ticular, if the root is linked by the Mth cell in the array link, then,
for all K < M, if LINK(K + M) has LINK(j 1) and LINK(j2) as its Further, if i < n, then it will have nodes corresponding to the
LSON and RSON, then LINK(K + M) has LINK(j 1 + M) and klth and k2th cell as its LSON and RSON, as determined by the
LINK(j2 + M) as its LSON and RSON. This is referred to as the following equations:
"folding" method with a folding factor M. Further details can be
found in [2]. kl = k - 2n (2)

Throughout this correspondence we assume that the binary tree to
be balanced is of size N = 2' - 1. We present a new iterative k2 = k + 2n1. (3)
balancing algorithm which exploits the similarity of pointer restruc- We can therefore balance a binary tree of size N =2 - 1 as
turing required for all the nodes at the same level, and this algorithm follows.
has a time complexity of O(N). This is a generalization of the Se s
folding method [2] and is referred to as "level restructuring." More array LINK1
significantly, we describe how parallelism can be extracted from arra LiNK.' . . .~~~~~omleit Step 2: Visit the nodes in increasing level order from left'to right,
this new iterative algorithm to yield a constant time setting up appropriate links to construct a balanced binary search
algorithm. This work can be extended as in [7] to extract maximum tree.
parallelism for balancing arbitrary sized binary trees. Steps 1 and 2 are accomplished by the algorithms Al and A2,

respectively.
II. BALANCING BINARY SEARCH TREES THROUGH Algorithm Al. Recursive Inorder traversal for storing the point-

LEVEL RESTRUCTURING ers in the array LINK.

We now show that the pointer restructuring for all the nodes on the procedure MAIN (T) //The tree with root T is to be
same level is similar. traversed//

Definition 1. In a binary tree T, the (i, j)th node refers to the jth declare T, LINKo
node from the left on the ith level, if both exist. F1 procedure TRAVERSE (P, N)

Definition 2: In a complete balanced binary tree T ofN nodes let if P = null then return
CVALN((i,j)) denote the number of nodes with data values less than TRAVERSE (LSON(P), N) //LSON(P) is the pointer to the
or equal to the data value of the (i,j)th node. cz left son of P//
Fact I: Consider a complete balanced binary tree T with N := N + 1

LINK(N) :=P
Manuscript received March 30, 1984; revised December 3,1984. TRVRE(SNP'N /SNP stepitrt h
A. Moitra is with the Department of Computer Science, Cornell University, right son of P//

Ithaca, NY 14853. end TRAVERSE
S. S. Iyengar is with the Department of Computer Science, Louisiana State TRAVERSE (T, 0)

University, Baton Rouge, LA 70803. end MAIN

0018-9340/85/0600-0563$01 .00 © 1985 IEEE

564 IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 6, JUNE 1985

Algorithm A2: Iterative growing algorithm where N = 2 - 1.
Level restructuring is done by visiting the nodes from left to right
in increasing level order, setting up links to construct a balanced
binary tree.

procedure C-LEVEL-STRUCT
declare I, J, K, DIFF, n, N, LINK(l :N), LSON(1 :N), RSON(l N)
for I: = 1 to n do //for each level//

for J := to 2'-1 do //for all nodes on a level//
K = 2n- + (J - 1) 2n-±+1 I/K = CVALN((I,J)), using (1)//
if odd(K) then //leaves//
LSON(LINK(K)) null
RSON(LINK(K)) = null

endif
if even(K) then 7/interior nodes//
Kl := 2n-J-1 + (2 e J - 2) * 2'- //set up left link, using (2)//
LSON(LINK(K)) := LINK(K1)
K2 := 2n--I + (2 * J - 1) * 2"-' //set up right link, using (3)//
RSON(LINK(K)) = LINK(K2)

endif
endfor

endfor
end C-LEVEL-STRUCT

The time complexity of Algorithm Al is O(N). Algorithm A2 is procedure P-TRAVERSE
constructed so that each node is visited exactly once, and hence it declare K, LINK(l:N), NUM(l:N)
also has an O(N) time complexity. for each PE PK do in parallel

LINK(NUM(K)) = K
endfor

ILL. PARALLEL BALANCING ALGORITHM end P-TRAVERSE
In this section we develop a parallel balancing algorithm for

binary search trees with N = 2 1 nodes. What we are seeking is B ParallelAlgorithm for Growing Complete
a decomposition of the balancing problem so that the resulting BalancedBinaryTrees
algorithm can be run on an N-processor configuration. The model of The straightforward approach for transforming Algorithm A2 into
parallel computation that we will be using is a simplification of the a parallel algorithm would be to allocate one processor per cell in the
shared memory model (SMM). This model can be characterized array LINK and to have each processor set up its own links to
as follows. construct a balanced binary tree. For this, a processor Pk associated

1) There are M processing elements (PE's) or processors. These with LINK(k) should be able to determine the following.
are indexed 1, 2, * * , M, and the ith PE is referenced as Pi. Each PE RI. i, j such that CVALN((i,j)) = k; that is its final position in
has the capability of performing all the standard arithmetic and logic the balanced binary tree.
operations. R2. If it has nonnull LSON, then determine kl such that

2) There is a common memory that is shared among all the PE's. CVALN ((i + 1, 2 * j - 1)) = k 1.
All the M PE's can read and write into this memory at any time R3. If it has nonnull RSON, then determine k2 such that
instance. If two or more PE's attempt to read (write) from the same CVALN((i + 1, 2 * j)) = k2.
memory location, a read (write) conflict occurs. We are interested in a constant time complexity parallel algo-

In the algorithms we will develop, we will ensure that no read or rithm, and under that restriction, we wish to determine all of the
write conflict occurs. above information.

If we allocate processor Pk to process the node with CVAL equal
A. Parallel Traversal ofBinary Tree to k, then Pk may correspond to different indexes (i + H,j), H =

If N-processors are available, each node of the binary search tree 0, 1, 2, *. (note j will be constant) depending on the size of the
can be associated with a unique processor. We assume that with complete balanced binary tree. For example, CVAL4(2, 2)) = 6,
every node in the input binary search tree an additional field and also, CVAL15((3, 2)) = 6. But what are invariant over the size
NUM(I) gives the number of nodes with the key values less than or of the complete balanced binary tree are the indexes h, j where
equal to that associated with node I. The value of this new field is h = n - i. So if h, j values are permanently associated with a
altered only when entries are added or removed from the binary processor Pk and if the total number of nodes in the tree is passed as
search tree. The value of this field can be updated as entries are an argument/parameter, then the processor can determine its in-
added and deleted from the binary search tree without increasing the dexes (i,j), and hence requirement Rl can be met in constant time.
time complexity of performing these operations. It is this observation, by which we can assign computation to the

With this additional information, the traversal of the binary processes in such a way that the indexes h and]j are kept constant
search tree can be accomplished simply by linking node I with as the size of the array changes, that allows us to derive a constant
LINK(NUM(I)). Furthermore, the processing associated with time complexity parallel algorithm. (If it is not possible to associate
node I does not depend upon, or interfere with, the processing the constants h, j permanently with a processor, then the indexes i,
associated with any other node. This is due to the fact that all nodes j can be determined for each process Pk, but not in constant time.)
are linked to unique cells in array LINK. So, all the computation The requirements R2 and R3 can be satisfied very easily in
associated with nodelI is done by processor P,, and the traversal of constant time since from Fact 2 we know how to calculate
the entire binary search tree can be accomplished in a constant CVAL2n_,((i,j)) forany arbitrary iand]. The Algorithm A4follows
amount of time. This leads directly to Algorithm A3. immediately. This algorithm has a constant time complexity when
Algorithm A3: Parallel traversal algorithm by processes P1 run on an N-processor configuration; and it involves no possibility

PN, one for each node of the tree executing simultaneously. of read or write conflicts.

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-34, NO. 6, JUNE 1985 565

Algorithm A4: Parallel growing algorithm for the construction of [4] E. Horowitz and S. Sahni, Fundamentals ofData Structures. Potomac,
a balanced binary tree by simultaneously executing processes MD: Computer Science Press, 1976, pp. 442-456.
PI, * , PN, one for each cell in the array LINK, where [5] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
N = 2-n 1. Searching. Reading, MA: Addison-Wesley, 1973.

[6] W. A. Martin and D. N. Ness, "Optimal binary trees grown with a sorting
procedure PC-LEVEL-STRUCT algorithm," Commun. Ass. Comput. Mach., vol., 15, pp. 88-93, Feb.

declare N, LINK(1:N), LSON(1:N), RSON(1:N) 1972.
for each PE PK do in parallel [7] A. Moitra and S. S. Iyengar, "Derivation of a maximally parallel algorithm

declare n, H,J, K for balancing binary search trees," Dep. Comput. Sci., Cornell Univ.,
constant H, J Ithaca, NY, Tech. Rep. 84-638, Sept. 1984.
n := [log(N + 1)
I := n -H
if odd(K) then //leaves//
LSON(LINK(K)) = null
RSON(LINK(K)) = null

endif
if even(K) then //interior Insertion Networks

nodes// M. DAVIO AND C. RONSE
LSON(LINK(K)) =LINK(K - 2nl
RSON(LINK(K)): LINK(K + 2n-I-1) Abstract -The problem of inserting an item in a list is frequently en-

endif countered in various application fields such as sorting, compiling, etc. It
endfor is shown that the insertion of an item in a list of N members may be

end PC-LEVEL-STRUCT realized at a cost proportional to N and within a delay proportional to

C. AnalysisofAlgorithmsA3andA4 log N.

Algorithms A3 and A4 both run in constant time independent of Index Terms -Computational complexity, memories, permutation
the size of the input tree. The performance of the algorithm can also networks.
be described by another complexity measure called EPU (effective-

1. INTRODUCTION
ness of processor utilization). This is defined as follows:

The problem of inserting an item in an ordered list is frequently

EPU = complexity of fastest known sequential algorithm encountered in various fields of computer science, for example in
complexity of parallel algorithm * number of processors sorting or compiling. Most frequently, insertion is considered as a

sequential task, to be performed step by step on a conventional
n = 1 general-purpose processor. It is, however, rewarding to attempt to

1 * n design a special-purpose circuit dedicated to the insertion task; such
circuits will provide us with interesting information on various com-

Thus, the new parallel algorithm achieves the maximum possible plexity measures of the insertion problem.
speedup for this particular problem. Furthermore, if we have K We shall consider information-lossless insertion: in this case, the
(K ' N) processors, then the computations can be rescheduled over problem amounts to inserting a distinguished item of the list in an
these processors (processing time = N/K) with EPU still being arbitrary position in that list, and to shifting or relabeling accord-
equal to one. ingly the other items of the list. If the list consists of N elements

numbered 0, 1, * , N - 1, the problem is also equivalent to gener-
ating the N permutations iro, 7rj, * , rN- I where

IV. CONCLUSIONS i) ro is the identity permutation;

In this correspondence we have presented algorithms for bal- ii) for i = 1, N - 1,
ancing binary trees of size N = 2n - 1. We were able to develop a iTi maps j on j + 1 if j < i,
maximally efficient parallel algorithm by exploiting the similarity
of the pointer restructuring of all the nodes at the same level. Of i on 0,
course, a complete analysis should also consider the question of and fixes every j > i. (1)
balancing binary search trees of arbitrary size; we do that in [7].

Insertion networks are thus a particular case of networks gener-
ating a certain class of permutations. Such problems have been dealt
with in many papers, especially the ones concerning the design of

ACKNOWLEDGMENT networks generating all permutations; here the asymptotic lower
The authors would like to thank the referees for their comments bounds for the component cost and delay are O(N log N) and

on this correspondence. 0(log N), respectively [3]. These bounds are obtained by Benes-
type networks [1], [4]. Another specialization consists of rotator
networks [2], which generate the N rotations 7Tk: i -* i ® k

REFERENCES (mod N); here the asymptotic cost and delay are again O(N log N)
and 0(log N), respectively.

[1] J. L. Bentley, "Multidimensional binary search trees used for associative For insertion networks, standard arguments from complexity
searching," Commun. Ass. Comput. Mach., vol. 18, pp. 509-5 17, theory show that the asymptotic lower bounds for the cost and delay
Sept. 1975. are 0(N) and O(log N).

[2] H. Chang and S. S. Iyengar, "Efficient algorithm to globally balance
binary search trees," Commun. Ass. Comput. Mach., vol. 27,
PP. 695-702, July 1984. Manuscript received January 15, 1984; revised June 5, 1984.

[3] A. C. Day, "Balancing a binary tree," Comput. J., vol. 19, pp. 360-361, The authors are with Philips Research Laboratory, 2, Ave. Van Becelaere,
Nov. 1976. Box 8, 1170 Brussels, Belgium.

0018-9340/85/0600-0565$01.00 ©O 1985 IEEE

