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Abstract: The space efficiency of recent results on data structures for quadtrees [2,3,4] may be improved by defining a new 
data structure called Translation lnvariant Data Structures (TID). This paper briefly describes the results of this new data struc- 
ture for storing images. 
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1. Introduction 

Quadtrees are often used to store black and 
white picture information. They usually lead to a 

significant savings in storage requirements over the 
original array of  pixels and they facilitate com- 

puter processing and interpretation of  the pictures. 

A variety of techniques have been suggested for 
improving quadtrees including compact quadtrees, 

hybrid quadtrees, forest quadtrees, linear quad- 
trees, and QMAT' s  (quadtree medial axis trans- 
form). The major purpose of  these improvements 
is to reduce the storage required without greatly in- 

creasing the processing costs. All of  these methods 

start with the quadtree and then eliminate some or 

all of  the white and gray nodes and corresponding 
pointers. In general the number of  black nodes in 
a quadtree is about the same as the number of  
white and gray nodes and so the savings achieved 
usually amounts to a factor of  2 or 3 or so. For 
overviews of  related research on data structures for 
quadtrees see [2, 3, 4, 5]. 

This note briefly investigates the following: 

1. Sensitivity of the quadtree structure to the 
placement of  the origin (that is, small translations 

o f  the black image inside the borders of the frame 
can make very large changes in the structure of the 

quadtree). 
2. Definition of  a translation invariant data 

structure (which we name TID) for storing and 

processing images. 
We also describe briefly some other manipula- 

tion algorithms on TID (such as rotation and 

union operations). 

2. Sensitivity of placement 

All the methods of  representing images des- 

cribed in Section 1 form sensitivity to the place- 
ment of  the origin. Two images which are transla- 
tions to each other can give rise to very different 
looking structures. 

Remark 1. If a 2 n - I x 2  n-I  black square is im- 

bedded in a 2 " x  2" white frame then the structure 
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Example 1 Example 2 
Figure 1. Sample regions. 

of  the corresponding quadtree depends on the 
placement of  the black square. 

The above observation can be illustrated as 
follows: Consider a region A (black square) in the 
upper left corner (see Figure 1); then the quadtree 
has five nodes, one of  which is black. If the same 
image is translated diagonally one pixel (see Figure 
2), so that the corner of  the black square is in the 
(2,2) position, then it can be shown that the 
number of  black nodes in the quadtree is equal to 
(2n+ i + 2" - 3 n- 2). 

Therefore we can state the above observations in 
the form of  a theorem. 

2 n -  3 n-2 BLACK nodes plus perhaps some others. 
The only other structure capable of  eliminating 
black nodes is Samet 's quadtree medial axis trans- 
form. Furthermore,  the QMAT for the region 
described in Figure 2 has an interesting structure. 
Most of  the image is covered by only four nodes 
but a sequence of  decreasing sized nodes is needed 
to cover the rest. Mathematically, we can state the 
following theorem. 

T h eorem 2. The QMA T structure for the image 
translated diagonally one pixel has 

GRAY NODES =2 n-3, 
WHITE NODES = a n - 6  

BLACK NODES = 2 n - 2 "  

Proof .  See [1]. 

Thus we can conclude based on the above obser- 
vation that sensitivity to the placement of  the 
origin is a serious problem when translating 
images. 

Theorem 1. The quadtree for the image translated 
diagonally one pixei has 

GRAY NODES = 2  n+ 1 _  3, 

WHITE NODES = 2 n + I -I- 2" + 2 " -  6, 
BLACK NODES = 2  n + l  + 2 n - - 3  n - 2 .  

Proof .  To prove the formulas it is necessary to 
derive recurrence relation among subtrees. A 
detailed proof  for Theorem 1 is given in [11. 

2.1. Performance of  other data structures 

Linear quadtrees, compact quadtrees and forest of  
quadtrees all are inevitably forced to store 2n+l+  

3. New data structure 

Scott and Iyengar [1] introduced a new structure 
for  storing the black pixels of  a region. We refer to 
this structure as TID for reasons described in Sec- 
tion 2. Further TID has been shown to save more 
than two-thirds of  the memory locations used by 
quadtrees. For more one properties and construc- 
tion of  TID see [1]. We now briefly discuss the 
storing of  and searching for a TID structure. 

Each maximal square in a TID is characterized 
by three coordinates (i, j, s). The first two coordi- 
nates specify the location and the third specifies 
the size of  the region. Unfortunately,  unlike linear 
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Figure 2. Quadtrees for Case A and Case B shown in Figure 1. 
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quadtrees, such triples of  numbers do not have a 
natural linear ordering. The best that can be done 
is to choose some priority order for the coordi- 
nator and then order them lexicographically. We 
will assume that i and j are sorted in increasing 
order (for reasons described in detail in [1]). We 
will assume t h a t ' s '  is sorted in decreasing order. 
By symmetry we may assume that i is ordered 
before j .  Thus the question is which of  the three 
possible orderings 

(a) (i, j, s), 
(b) (i ,s, j) ,  
(c) (s, i, j )  

is the best? There is no definitive answer to this 
question. It depends on whether storage or access 
is of  primary concern. 

Storage is conserved when the primary subdivi- 
sion are large since the value of  the primary 
variable will only be stored once. On this basis, 
Plan (a) can be eliminated since there can be at 
most one maximal square with corner (i , j)  and so 
no savings can be obtained at the second division 
compared to Plan (b) or Plan (c). Plan (b) may be 
better since there may be several squares of  the 
same size with the same i value. 

For storage purposes the competition is between 
Plan (b) and Plan (c). For most images Plan (c) is 
superior since there will be many small squares 
around and so the subsets of size 1, 2, and 3 should 
be quite large allowing for a much greater space 
savings than can be obtained by Plan (b). 

For searching it is important to shorten the 
length of the search whenever possible by skipping 
to the beginning of  the next primary or secondary 
classification. The following discussion assumes 
that the purpose of  the search is to decide whether 
pixel (k, m) is black, i.e. whether (k, m) is contained 
in some square in the TID. 

On this basis Plan (c) can be ruled out since it is 
impossible to determine anything given just s. On 
the other hand, with Plan (a) or Plan (b) we can 
stop the search as soon as k < i .  There remains the 
question whether Plan (a) or Plan (b) allows more 
skipping of  squares. For fixed i, Plan (a) skips all 
squares with j > m .  Plan (b) skips all squares with 
s < k - i .  Which set is larger? This obviously 
depends on the image. For the purpose of  analysis 
we make the following assumptions: 

(1) Every value o f j  is equally likely. 
(2) All possible values of  s (i.e. 1 to numrow- 

i+  I) are equally likely. 
Assumption 1 is true for ' r andom'  squares only 

if they have size 1. For larger squares the distribu- 
tion is skewed, favoring smaller values of  j .  
Assumption 2 is even less reasonable. In most 
images there will be many more small squares than 
large squares. 

For fixed i, Plan (a) skips all squares (/, j, s) with 
I=  i and j >  m. By Assumption 1, this will be about 
half the squares with 1 = i for a random (k, m). Plan 
(b) will skip all squares (l,j,s) with l= i  and 
l + s < k .  By Assumption 2 this will be about half 
the squares with l= i .  Thus by analysis the two 
plans are about the same. However,  both biases in 
the assumptions favor Plan (b), particularly the 
second one. Thus Plan (b) is better. 

4. Translation, rotation, and union of TID's 

A TID is made up of  maximal squares. Each 
square is represented as a triple (i, j ,s) where (i, j )  
is the northwest corner of  the square and s is the 
length of  the side. Thus a TID is just a list of  such 
triples. Translations and rotations applied to the 
image are just simple functions of  these triples. To 
translate a triple (i, j ,  s) by I units right and J units 
up yields 

Tij ( i , j , s )=(i  + I , j  + J,s). 

Rotation by rr/2 is only slightly more complicated 
due to the fact that the NW corner of  a square 
changes upon rotation. The rr/2 rotation around 
the origin is 

R ( i , j , s ) = ( - j , i + s , s ) .  

Rotations around other coordinates can be ob- 
tained by composing R with the appropriate 
translations. 

Superficially unions of  TID's  are straightfor- 
ward - simply take the union of  the two lists. The 
resulting list will be the TID of  the combined im- 
ages whenever the images do not overlap. Two 
problems can occur when the two images overlap. 
A square in one TID may be contained in a square 
from the other TID and thus be redundant,  or 
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several squares from both TID's  could be com- 
bined to form a larger square. The first problem 

can be easily checked. The second problem is 

harder - there appears to be no better solution than 

reforming the array of  pixels and recomputing the 

TID.  On the other hand, the combined lists are 
unlikely to contain many such larger squares (if 

any) and thus should be an adequate representa- 
tion of  the image. 

jects in three dimensions and is presently under in- 

vestigation [6]. 
A software package called 'T IDSOFT '  written 

in PASC~t for VAX 11/780 system, is in prepara- 

tion at the University of  Texas at Austin and LSU- 

Baton Rouge and will be available on request. 

R e f e r e n c e s  

5.  C o n c l u d i n g  r e m a r k s  

The major advantage of  TID's  over other 

methods of  storing images (regular quadtrees and 

efficient storage of  quadtrees) is that TID ' s  are 

translation invariant. This is particularly impor- 
tant if several images are being combined into one 

composite. For example in C A C M ,  March 1984, p. 
248-249 Markkun Tamminen quotes 5198 black 
leaves for the quadtree encoding the circle inscrib- 
ed in a 2~°x2 I° square. The corresponding TID 

has 601 black squares, an 88°/0 reduction. The TID 

structure could be easily extended to deal with ob- 
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