
Pattern Recognition Letters 3 (1985) 211-214 May 1985
North-Holland

A new data structure for efficient storing of
images

David S. S C O T T
Department of Computer Science, University of Texas at Austin, Austin, TX 78712, USA

S. S i t h a r a m a I Y E N G A R
Department of Computer Science, Louisiana State University, Baton Rouge, USA

Received 11 September 1984

Revised 22 February 1985

Abstract: The space efficiency of recent results on data structures for quadtrees [2,3,4] may be improved by defining a new
data structure called Translation lnvariant Data Structures (TID). This paper briefly describes the results of this new data struc-
ture for storing images.

Key words: Translation invariant data structures, quadtrees and efficient algorithm.

1. Introduction

Quadtrees are often used to store black and
white picture information. They usually lead to a

significant savings in storage requirements over the
original array of pixels and they facilitate com-

puter processing and interpretation of the pictures.

A variety of techniques have been suggested for
improving quadtrees including compact quadtrees,

hybrid quadtrees, forest quadtrees, linear quad-
trees, and QMAT' s (quadtree medial axis trans-
form). The major purpose of these improvements
is to reduce the storage required without greatly in-

creasing the processing costs. All of these methods

start with the quadtree and then eliminate some or

all of the white and gray nodes and corresponding
pointers. In general the number of black nodes in
a quadtree is about the same as the number of
white and gray nodes and so the savings achieved
usually amounts to a factor of 2 or 3 or so. For
overviews of related research on data structures for
quadtrees see [2, 3, 4, 5].

This note briefly investigates the following:

1. Sensitivity of the quadtree structure to the
placement of the origin (that is, small translations

o f the black image inside the borders of the frame
can make very large changes in the structure of the

quadtree).
2. Definition of a translation invariant data

structure (which we name TID) for storing and

processing images.
We also describe briefly some other manipula-

tion algorithms on TID (such as rotation and

union operations).

2. Sensitivity of placement

All the methods of representing images des-

cribed in Section 1 form sensitivity to the place-
ment of the origin. Two images which are transla-
tions to each other can give rise to very different
looking structures.

Remark 1. If a 2 n - I x 2 n-I black square is im-

bedded in a 2 " x 2" white frame then the structure

0167-8655/85/$3.30 ~ 1985, Elsevier Science Publishers B.V. (North-Holland) 211

Volume 3, Number 3 P AT T E R N R E COGNITION LETTERS May 1985

Fo'l,glgl~

Example 1 Example 2
Figure 1. Sample regions.

of the corresponding quadtree depends on the
placement of the black square.

The above observation can be illustrated as
follows: Consider a region A (black square) in the
upper left corner (see Figure 1); then the quadtree
has five nodes, one of which is black. If the same
image is translated diagonally one pixel (see Figure
2), so that the corner of the black square is in the
(2,2) position, then it can be shown that the
number of black nodes in the quadtree is equal to
(2n+ i + 2" - 3 n- 2).

Therefore we can state the above observations in
the form of a theorem.

2 n - 3 n-2 BLACK nodes plus perhaps some others.
The only other structure capable of eliminating
black nodes is Samet 's quadtree medial axis trans-
form. Furthermore, the QMAT for the region
described in Figure 2 has an interesting structure.
Most of the image is covered by only four nodes
but a sequence of decreasing sized nodes is needed
to cover the rest. Mathematically, we can state the
following theorem.

T h eorem 2. The QMA T structure for the image
translated diagonally one pixel has

GRAY NODES =2 n-3,
WHITE NODES = a n - 6

BLACK NODES = 2 n - 2 "

Proof . See [1].

Thus we can conclude based on the above obser-
vation that sensitivity to the placement of the
origin is a serious problem when translating
images.

Theorem 1. The quadtree for the image translated
diagonally one pixei has

GRAY NODES = 2 n+ 1 _ 3,

WHITE NODES = 2 n + I -I- 2" + 2 " - 6,
BLACK NODES = 2 n + l + 2 n - - 3 n - 2 .

Proof . To prove the formulas it is necessary to
derive recurrence relation among subtrees. A
detailed proof for Theorem 1 is given in [11.

2.1. Performance of other data structures

Linear quadtrees, compact quadtrees and forest of
quadtrees all are inevitably forced to store 2n+l+

3. New data structure

Scott and Iyengar [1] introduced a new structure
for storing the black pixels of a region. We refer to
this structure as TID for reasons described in Sec-
tion 2. Further TID has been shown to save more
than two-thirds of the memory locations used by
quadtrees. For more one properties and construc-
tion of TID see [1]. We now briefly discuss the
storing of and searching for a TID structure.

Each maximal square in a TID is characterized
by three coordinates (i, j, s). The first two coordi-
nates specify the location and the third specifies
the size of the region. Unfortunately, unlike linear

A BC E H O O I O KL M

Figure 2. Quadtrees for Case A and Case B shown in Figure 1.

212

Volume 3. Number 3 PATTERN RECOGNITION LETTERS May 1985

quadtrees, such triples of numbers do not have a
natural linear ordering. The best that can be done
is to choose some priority order for the coordi-
nator and then order them lexicographically. We
will assume that i and j are sorted in increasing
order (for reasons described in detail in [1]). We
will assume t h a t ' s ' is sorted in decreasing order.
By symmetry we may assume that i is ordered
before j . Thus the question is which of the three
possible orderings

(a) (i, j, s),
(b) (i ,s, j) ,
(c) (s, i, j)

is the best? There is no definitive answer to this
question. It depends on whether storage or access
is of primary concern.

Storage is conserved when the primary subdivi-
sion are large since the value of the primary
variable will only be stored once. On this basis,
Plan (a) can be eliminated since there can be at
most one maximal square with corner (i , j) and so
no savings can be obtained at the second division
compared to Plan (b) or Plan (c). Plan (b) may be
better since there may be several squares of the
same size with the same i value.

For storage purposes the competition is between
Plan (b) and Plan (c). For most images Plan (c) is
superior since there will be many small squares
around and so the subsets of size 1, 2, and 3 should
be quite large allowing for a much greater space
savings than can be obtained by Plan (b).

For searching it is important to shorten the
length of the search whenever possible by skipping
to the beginning of the next primary or secondary
classification. The following discussion assumes
that the purpose of the search is to decide whether
pixel (k, m) is black, i.e. whether (k, m) is contained
in some square in the TID.

On this basis Plan (c) can be ruled out since it is
impossible to determine anything given just s. On
the other hand, with Plan (a) or Plan (b) we can
stop the search as soon as k < i . There remains the
question whether Plan (a) or Plan (b) allows more
skipping of squares. For fixed i, Plan (a) skips all
squares with j > m . Plan (b) skips all squares with
s < k - i . Which set is larger? This obviously
depends on the image. For the purpose of analysis
we make the following assumptions:

(1) Every value o f j is equally likely.
(2) All possible values of s (i.e. 1 to numrow-

i+ I) are equally likely.
Assumption 1 is true for ' r andom' squares only

if they have size 1. For larger squares the distribu-
tion is skewed, favoring smaller values of j .
Assumption 2 is even less reasonable. In most
images there will be many more small squares than
large squares.

For fixed i, Plan (a) skips all squares (/, j, s) with
I= i and j > m. By Assumption 1, this will be about
half the squares with 1 = i for a random (k, m). Plan
(b) will skip all squares (l,j,s) with l= i and
l + s < k . By Assumption 2 this will be about half
the squares with l= i . Thus by analysis the two
plans are about the same. However, both biases in
the assumptions favor Plan (b), particularly the
second one. Thus Plan (b) is better.

4. Translation, rotation, and union of TID's

A TID is made up of maximal squares. Each
square is represented as a triple (i, j ,s) where (i, j)
is the northwest corner of the square and s is the
length of the side. Thus a TID is just a list of such
triples. Translations and rotations applied to the
image are just simple functions of these triples. To
translate a triple (i, j , s) by I units right and J units
up yields

Tij (i , j , s)=(i + I , j + J,s).

Rotation by rr/2 is only slightly more complicated
due to the fact that the NW corner of a square
changes upon rotation. The rr/2 rotation around
the origin is

R (i , j , s) = (- j , i + s , s) .

Rotations around other coordinates can be ob-
tained by composing R with the appropriate
translations.

Superficially unions of TID's are straightfor-
ward - simply take the union of the two lists. The
resulting list will be the TID of the combined im-
ages whenever the images do not overlap. Two
problems can occur when the two images overlap.
A square in one TID may be contained in a square
from the other TID and thus be redundant, or

213

Volume 3, Number 3 PATTERN RECOGNITION LETTERS May 1985

several squares from both TID's could be com-
bined to form a larger square. The first problem

can be easily checked. The second problem is

harder - there appears to be no better solution than

reforming the array of pixels and recomputing the

TID. On the other hand, the combined lists are
unlikely to contain many such larger squares (if

any) and thus should be an adequate representa-
tion of the image.

jects in three dimensions and is presently under in-

vestigation [6].
A software package called 'T IDSOFT ' written

in PASC~t for VAX 11/780 system, is in prepara-

tion at the University of Texas at Austin and LSU-

Baton Rouge and will be available on request.

R e f e r e n c e s

5. C o n c l u d i n g r e m a r k s

The major advantage of TID's over other

methods of storing images (regular quadtrees and

efficient storage of quadtrees) is that TID ' s are

translation invariant. This is particularly impor-
tant if several images are being combined into one

composite. For example in C A C M , March 1984, p.
248-249 Markkun Tamminen quotes 5198 black
leaves for the quadtree encoding the circle inscrib-
ed in a 2~°x2 I° square. The corresponding TID

has 601 black squares, an 88°/0 reduction. The TID

structure could be easily extended to deal with ob-

[1] Scott, D.S. and S.S. lyengar. TID - A translation invariant
data structure for storing images. Technical Report 84,
University of Texas at Austin. Submitted for publication,
May 1984.

[21 Samet, H. (1983). A quadtree medial axis transform.
Comm. ACM 26 (9), 680-692.

[31 Tamminen, M. (1984). Comment on quad- and octtrees.
Comm. A C M 27 (3), 248-249.

[4] Jones, L.P. and S.S. lyengar (1984). Space and time effi-
cient virtual quadtrees. IEEE Trans. Patt. Anal. Mach. In-
tell. 6 (2), 244-247.

[51 Gargantini, I. (1982). An efficient way to represent quad-
trees. Comm. A C M 25 (12), 905-910.

16l Scott, D.S. and S.S. lyengar. TID-3D-application of TID
structure to three-dimensional objects. In preparation.

214

