
On the Minimum Vocabulary Problem 

N. Chandrasekharan 
Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 

R. Sridhar 
School of Library and Information Science, Louisiana State University, Baton Rouge, LA 70803 

S.S. lyengar 
Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 

The “minimum vocabulary problem” for a dictionary has 
applications in indexing and other domains of infor- 
mation retrieval. A simple directed-graph model of a 
dictionary results in a linear-time algorithm for this prob- 
lem. Since it is known that many minimum vocabularies 
can exist for a dictionary, a computationally useful cri- 
terion for finding a “desirable minimum vocabulary” is 
suggested and an O(lV13) algorithm is outlined, where /VI 
is the number of words in the dictionary, duplicates elimi- 
nated. Furthermore, some enrichments to the model and 
the computational intractability of a variant called the 
l-lexicon problem are discussed. Directions for further 
work are indicated. 

I. Introduction 

Formal approaches have been extensively used for many 
useful problems in library and information science. In par- 
ticular, graph-theoretic techniques are employed for content 
analysis of documents [l-3], citation analysis [4-61 and 
clustering of documents [7,8]. In this paper we apply some 
well-known graph-theoretic techniques to solve the mini- 
mum vocabulary problem for a dictionary. A dictionary can 
be visualized as consisting of a set of words D, some defined 
in terms of the others and the rest not defined in terms of the 
others. 

The minimum vocabulary problem is to obtain a set of 
words A4 such that (a) every word in D can be defined (or 
equivalently, understood) in terms of the words in M, and 
(b) M has the least cardinality among all sets having 
PropeW (4. 

As a terminological aside, it should be noted that the term 
“dictionary” does not necessarily mean a dictionary for a 
natural language, though it is helpful to view it in that sense. 
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The term minimum vocabulary has been used by Moss [9], 
Sharp [lo] and others, and their definition can be seen to be 
equivalent to ours. Further, Taulbee [2] has pointed out that 
no formal method to obtain a minimum vocabulary is 
known. It is interesting to note that Ogden (see [9]) has 
found a set of about 850 words which forms a minimum 
vocabulary of his basic English. 

A minimum vocabulary can find applications in text 
processing and in the reduction of the size of an indexing 
vocabulary of documents for retrieval purposes. By text 
processing we mean content analysis of documents together 
with assignment of terms from the indexing vocabulary. For 
a particular subject, the index terms are collected from the 
relevant documents. Since every term in the dictionary can 
be expressed using the terms in the minimum vocabulary, 
we suggest that the minimum vocabulary be used as the 
indexing vocabulary. Now, for retrieving documents the set 
of search terms are first mapped onto the terms in the mini- 
mum vocabulary and the retrieval proceeds as usual. If the 
indexing vocabulary is not minimum, a greater retrieval 
effort may be needed. This is because the search would be 
carried out using a greater number of terms, in general. 

In this article we propose a simple directed-graph model 
for a dictionary and show that the minimum vocabulary can 
be obtained algorithmically by determining the basis of this 
graph. The algorithms used are well known in the graph- 
theoretic literature. The complexity of the algorithm is of the 
order of the “size” of the dictionary, which is optimal. Since 
it is known that many minimum vocabularies can exist for 
a dictionary, there is a need to see if any minimum vocabu- 
lary is better than the others in some sense. Towards this 
end, we give a natural and computationally useful criterion 
called the access coejjicient of a minimum vocabulary, to 
help choose a desirable minimum vocabulary. Further, in a 
dictionary for a natural language, a minimum vocabulary 
corresponds to a set of words by which all meanings of all 
the words can be understood. Since the minimum vocab- 
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ulary may be a large set and is not always needed, it is useful 
to try to obtain a set of the minimum number of words which 
provide at least one meaning of every word whose meaning 
can be accessed in the dictionary. Unfortunately, we prove 
that this problem is NP complete, that is, no polynomial- 
time algorithm is likely to exist [ 111. 

The paper is organized along the following lines. Section II 
contains the relevant graph terminology, the directed-graph 
model and a simple algorithm to find the minimum vocabu- 
lary. Section III describes some extensions to the model 
and the NP completeness of a variant called the 1-lexicon 
problem. Conclusions are given in Section IV. 

II. Directed-Graph Model of a Dictionary 

We quickly review the pertinent definitions in graph 
theory needed for our purposes. A directed graph G = 
(V, E) is a set of vertices V and a set of edges E c V X V. 
The terms directed path, path length, directed cycle or cir- 
cuit, induced subgraph, indegree, and outdegree have the 
standard definitions found in Harary [ 121. For convenience, 
we use the term graph to mean directed graph and the vertex 
set and graph interchangeably. A vertex v is reachable from 
another vertex w, if there is a directed path from w to v. In 
Fig. 1 the vertex k is reachable from vertex b. A strongly 
connected component of a graph G is a subgraph H such 
that any two vertices of H are mutually reachable. The 
graph induced by {c, d, e}, {g, h, i}, (6) are some of 
the strongly connected components of the graph G in Fig. 1. 
An acyclic graph is a graph having no directed cycles. The 
graph G* shown in Fig. 2 is an acyclic directed graph. In 
general, a graph can be disconnected. Let S,, S,, . . . , S, be 
the strongly connected components of a graph G = (V, E). 
The condensation G* = (V*,E*) of G has V* = 
@1,&r * . . , Sk} and E* = {(Si, Sj): i f j and there is at least 
one edge from a vertex in Sj to a vertex in Sj}. Every 
Si,i = 1,2,... , k is called a supervertex. The graph G* is 
the condensation of G and vertices {c, d, e}, {g, h, i}, {j, k}, 
{a}, {f}, {b} are the supervertices of graph given in Fig. 2. 
A basis of a graph G is a set containing minimum number 
of vertices of G such that every vertex of G can reach a 

i 

FIG. 1. 
G 

G* 
FIG. 2. 

vertex of this set. Trivially, every vertex is reachable 
from itself. Note the change in the definition of the term 
“basis” as found in [12]. It can be seen that the following 
propositions hold: 

PROPOSITION 1: Every acyclic directed graph G 
contains at least one vertex of indegree 0 and a vertex of 
outdegree 0. 

In Fig. 2 vertex {a} has indegree 0 and vertex {j, k} has 
outdegree 0. 

PROPOSITION 2: The basis of an acyclic directed 
graph is the set of vertices with outdegree 0, and, moreover, 
the basis so obtained is unique. 

The basis of the graph G* in Fig. 2 is {{g, h, i}, {j, k}}. 

PROPOSITION 3: The basis of a directed graph G is 
a set of vertices obtained by choosing exactly one vertex 
from each of the supervertices forming the basis of the 
condensed graph G* . Furthermore, the cardinality of a basis 
so obtained is the minimum, in the sense that no other basis 
has a lesser cardinality. 

For instance, a basis of the graph G is {g, h}. 
The above results can be found, stated differently, in 

[ 121. In the next section we formally define the dictionary 
and the directed-graph model. 

A. Minimum Vocabulary of a Dictionary 

We represent a dictionary D as follows: 

‘S[ j t;, t:, . . . ) t:l, 
12 s2 + t:, t:, . . . , t2 

D= 

,S] + t;,t;,. . . ,tj 

where S = (~1, ~2, . . . , Sj} is a set of words called source 
and{t;:p = 1,2 ,..., j,q = 1,2 ,..., I&= Tisasetof 
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words called targets such that D = S U T. Intuitively, for 
every source word sp the definitions of sp appear on the 
right-hand side, in terms of tp4, q = 1,2, . . , lP for all 
p = 1,2,. . . j. The minimum vocabulary problem for D is 
to find a set of minimum number of words M such that every 
word of D can be defined in terms of some word in M. The 
size of the dictionary D is the cardinality of the set obtained 
by taking the disjoint union of S and T, where S and T are 
considered multisets. Note that multiset is a set in which 
duplicates of an element are allowed and disjoint union is 
the usual set union, but duplicates are not eliminated. 

A directed graph G for a dictionary D is G = (V, E) = 
T(D), where V = D and E = {(sP, t,“) :p = 1,2, . . , j and 
q = 1,2,. . . , I,}. This means that for every source word u 
a directed edge goes to every target word w on the right- 
hand side of u. Then, accessing a definition of a word can 
be thought of as traversing along the directed edges, starting 
from the vertex corresponding to the word, until a known 
word is reached. Now we state the main result for finding 
the minimum vocabulary of D. 

THEOREM 1: The minimum vocabulary of a diction- 
ary D is a basis B of the graph G = T(D), defined above. 

PROOF: Let u E D. Then there exists a word v E B 
such that v is reachable from u. This is because v is an 
element of the basis. In other words, u can be defined in 
terms of v. So, every word in the dictionary can be defined 
by words in B. Furthermore, B has the minimum cardinality 
by Proposition 3. 

The following algorithm finds the minimum vocabulary 
ofD. 

Algorithm MINVOC (D: dictionary). 

Step 1: Construct the directed,graph G = T(D) = (V,E) 
as defined earlier. 
Step 2: Find the strongly connected components of G. 
Step 3: Obtain the condensed graph G* = (V*, E*). 
Step 4: Find the supervertices of outdegree zero and 
choose a word from each of the supervertices. Call this 
set B. B is a minimum vocabulary. 

The correctness of the algorithm follows from Theorem 1 
and Proposition 3. 

We consider the following dictionary D as an example 
and illustrate the working of the algorithm MINVOC on D: 

‘a -+ g 

b-+-f 
c*e,k 
d-c 
e-d 

D =3 f*h,j 
g+i 

h-g 
i-h 
j+k 

,k*j 

(1) 
(2) 

(3) 
(4) 

The graph G shown in Fig. 1 represents the dictionary D. 
The strongly connected components are the graphs 
induced by {a}, {b}, cf}, {g, h, i), {j, k}, and {c, d, e). 
The condensation G* of G is given in Fig. 2. 
The supervertices with outdegree 0 are {g, h, i} and 
{j, k}. Let B = {g, k} be a minimum vocabulary. 

The adjacency list for G can be found out in time 0(/D]), 
where IDI is the size of the dictionary as defined before. 
Therefore, Step 1 has O(\Dl) time complexity. Steps 2, 3, 
and 4 can be done in O((V[ + /El) time [13]. Since 
O(lV( + [El) = O(/D[), the time complexity of the 
algorithm is O(lD/). 

Ill. Desirable Minimum Vocabulary and NP 
Completeness of l-Lexicon Problem 

As we pointed out earlier, under the interpretation of 
dictionary as one for a natural language like English, our 
model is inadequate. In general, every target can be a group 
of words. We classify two types of such groups of words: 

(1) 

(2) 

Denotational group of words, where the meaning 
of the group can be understood by knowing each of 
its constituent words. For example, (a feeble or 
intermittent light) is a denotational group of words 
defining the word glimmer. 
Nondenotational group of words, where the 
meaning of the group can only be understood by 
considering it as a whole as a new word itself (such 
groups are commonly known as a phrase). (to blow 
one’s top) is a nondenotational group of words. 

Single-word targets can be treated as belonging to either 
category. But it might be realistic to treat such words as 
belonging to the denotational group. Under this generalized 
setting, we merely outline the procedure to get a minimum 
vocabulary. We construct the directed graph as follows. For 
every target which is a denotational group an edge goes from 
its source to every member of the group. Every non- 
denotational group of words is coalesced into a distinct new 
word and an edge goes from its source word to this new 
word. If a group of words contain both denotational and 
nondenotational components, a combination of the above 
two is carried out. It is easy to verify that applying algorithm 
MINVOC to the graph obtained as above, we get the 
required minimum vocabulary. 

Since there can exist many minimum vocabularies, it is 
useful to find out if a particular minimum vocabulary 
is “better” than any other in some sense. We suggest a 

simple and natural criterion to select a desirable minimum 
vocabulary. This is particularly relevant if the dictionary 
represented in the form of a directed graph is to be used for 
retrieval purposes. The criterion used is based on the notion 
of minimizing the number of overall lookups for finding the 
meaning of word until a word in a minimum vocabulary 
is reached. 

Let S,, Sz, . . . , SI be the supervertices of outdegree 0 in 
G*.AllS;,i = 1,2,. .., 1 can be considered as sets, whose 
elements are words. A minimum vocabulary is an element 
of the set S = S, X SZ X . . . X S,. Again, we consider 
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every basis as a set, rather than as a tuple. Let the set of 
all minimum vocabularies be {B,, . . . , B,} = S. Clearly, 
m = IS,\ X (&I X . . . X IS,\. Let x E D - Bi . Then we 
define R(x, Bi) as the set of words in Bi reachable from x. 
Let bi E R(x, Bi) and d(x, b;) represent the minimum path 
length from x to bi. The access coefJicient of a minimum 
vocabulary Bi is defined as AC(Bi) = CxED-B,&ER(x,B,) 
d(x, bi). The desirable minimum vocabulary is a basis 
Bj such that AC(Bj) 5 AC(Bi), i = 1,2,. . . , m. Let 
Si = {S], . . . ,s,li}, for all i = 1,2,. . . ,m. The aim is to 
find out a set V = {sl, . . . , s,} such that Si E S,, 
i = I,..., m and AC(V) 5 AC(M) for all minimum vo- 
cabularies M. Now, we outline the steps needed to obtain a 
desirable minimum vocabulary. Let U = U EI Si . 

(1) 

(2) 

(3) 

For every word b in iJ, find the sum of distances D(b) 
from all words reaching b. 
In any supervertex Si, take the word having the 
minimum D(b) over all b in Si, as an element of the 
desirable minimum vocabulary V. 
Do (2) given above, for all the supervertices. The 
words so chosen comprise V. 

In fact, one can find the shortest distance between each pair 
of vertices and select the relevant distances needed for the 
steps (1) and (2) above. An algorithm for finding the 
desirable minimum vocabulary using the above ideas has 
O(/W)3) time complexity, where W is the set of words in D, 
duplicates eliminated. Note that the access coefficient as we 
have defined is a simple criterion and open to further 
improvements or changes. 

Now we work out the steps for obtaining the desir- 
able minimum vocabulary for the dictionary D given in 
Section II, part A. 

1. The vertex {g, h, i} is a supervertex. Vertex g is reach- 
able from a, b, h, and i. The distance of g from a, b, h, 
and i is 1,3,1,2, and 2, respectively. The sum of these 
distances is equal to 9. Similarly, h, i, j, and k have 
their sum of distances from other vertices equal to 
9, 12,13, and 11, respectively. 

2. Vertices g and h in the supervertex {g, h, i}, have their 
sum of distances equal to 9 which is a minimum. There- 
fore either g or h is chosen to be an element of the 
desirable minimum vocabulary. Similarly, vertex k 
with its sum of distances equal to 11 is chosen from 
the supervertex {j, k} as an element of the desirable 
minimum vocabulary. 

3. The desirable minimum vocabulary is either {h, k} or 
kp k>. 

We know that the minimum vocabulary B for a dictio- 
nary helps understand every definition of every source 
word. Since B could be a huge set in general and may not 
be needed for all purposes, we study the following problem: 

l-Lexicon Problem. 

INSTANCE: Given a dictionary D = S U T, repre- 
sented as in Section II, and a positive integer k. 

QUESTION: Does there exist a set of words B c D 
such that \B/ 5 k and every source word can have at least 
one word in B serving as its meaning? 

In Fig. 3, we have a graph representation for a dictionary 
D. The minimum vocabulary for D is {c, d, e}. For the 
l-lexicon problem it is enough to know the word d to know 
one definition of every source word. 

Note that the l-lexicon problem is posed as a decision 
problem, that is, as a problem having a “yes” or “no” solu- 
tion. In general, we may be more interested in finding a 
solution as a collection of objects, rather than a mere “yes” 
or “no.” For example, in the l-lexicon problem we could be 
interested in finding the set B with (BI 5 k, if it exists. Such 
problems are known as the optimization problems as 
opposed to their decision versions. The main idea behind 
studying decision problems is that if the decision problem 
itself is computation& hard, then the corresponding opti- 
mization problem is at least as hard. So, by showing that the 
l-lexicon problem is NP complete we are actually showing 
that finding the set B whose cardinality is at most k is as 
hard. All NP-complete problems are known to have only 
algorithms with exponential time complexity, that is, com- 
putationally expensive algorithms. Informally, a problem X 
is complete for a class of problems C, if X E C and X is 
computationally as hard as any other problem in C. In other 
words, X is one of the hardest problems in the class C. 
Hence the NP-complete problems are the hardest problems 
in the class NP. We can say that the class NP contains most 
of the important problems which are useful from a practical 
point of view. Though it would be beneficial for the reader 
to have a background in the theory of NP completeness 
(Garey and Johnson [ ll]), we have tried to make the 
presentation self-sufficient. 

Formally, NP is the class of decision problems that can 
be solved by polynomial-time algorithms on a non- 
deterministic Turing machine. The implication of a problem 
X being NP complete is that no efficient algorithm, i.e., 
polynomial-time algorithm, is likely to exist for X. In order 
to show that a problem X is NP complete, (i) X is shown to 
be in NP, and (ii) A polynomial-time transformation f is 
shown to take a generic instance I of a known NP-complete 
problem Y to an instancef(Z) of X such that I has a “yes” 
solution if and only if f(Z) has a “yes” solution. Now, we 
show that the l-lexicon problem is NP complete, by show- 
ing that a restricted version of the l-lexicon problem called 
the disjoint I-Zexicon problem is NP complete. The disjoint 

a b 

m 
C d e 

FIG. 3. 
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1 -lexicon problem is the same as the l-lexicon problem with 
the additional restriction that S n T = $. Note that the 
disjoint l-lexicon problem has been introduced here more as 
a tool to prove the NP completeness of the l-lexicon prob- 
lem than as an important problem in itself. Now, we state the 
result and indicate the proof. 

THEOREM 2: The disjoint l-lexicon problem is NP 
complete. 

PROOF: Trivially, the disjoint l-lexicon problem is in 
NP. The polynomial-time transformation is from the hitting 
set problem which is NP complete (see [ll]). 

In the hitting-set problem, A is a set and C is a collection 
of subsets of A. Given a positive integer k, the problem is 
to find out whether there exists a subset B of A such that 
every set of C has at least one element in B and that the 
cardinality of B is at most k. 

Let A = {a,, . . . , ap} and C = {C,, . . . , C,} be an 
instance of the hitting-set problem. Here, all Ci ‘s are sub- 
sets of A. Construct an instance of the disjoint l-lexicon 
problem as follows: In the disjoint l-lexicon problem, the 
set S = C and T = A and for every source “word” C, E S, 
i = 1,2,... ,q, the “targets” are a!,~!, . . . ,a?, where 
the set {a,!,af, . . . , a ?} equals Ci . The positive integer k in 
both the problems is the same. The reader may verify that 
this transformation is indeed polynomial-time computable 
and a “yes” solution for the hitting-set exists if and only if 
the instance got ten from the transformation has a “yes” 
solution. 

We illustrate the polynomial transformation from 
the hitting-set problem by means of an example. Let 
A = {c, d, e} and C = {{c, d}, {d, e}} constitute an instance 
of the hitting-set problem. The following instance of a 
dictionary D is produced after applying the polynomial 
transformation given above: 

D = 
1 

k,dl- c,d 
{d, e> * d, e I ’ 

IV. Conclusions 

We proposed a simple directed-graph model by which the 
minimum vocabulary problem was shown to have a linear- 
time algorithm. Furthermore, some extensions and the NP 
completeness of a variant of the minimum vocabulary prob- 
lem were discussed. The apparent limitations of our model 
are with regard to its use for a natural-language dictionary. 
In general, a language like English, will have the same word 

appearing in different tenses. According to our model, each 
such word would be identified as a distinct word. This 
would result in an increase of memory and a possible 
increase in the size of the minimum vocabulary. But this can 
be taken care of by some suitable “higher-level” actions. 
The main use of the model lies in the reduction of the size 
of the index vocabulary for documents pertaining to a field 
and syntactic text manipulations. Identifying more useful 
criteria for finding out a desirable minimum vocabulary 
needs further investigation. 
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