
Efficient Abstract Data Type
Components for Distributed

and Parallel Systems

Farokh Bastani, Wael Hilal, and S. Sitharama Iyengar

ne way of improving a software tures.4 On the one hand, the client knows
system's comprehensibility and the sequence of operations it should per-

0 maintainability is to decompose form, but it cannot control their cost (that
it into several components,' each of Abstract data type is, the time required to perform an opera-
which encapsulates some information con- cor on t d tion). On the other hand, the server knows
cerning the system.2 These components the cost of each operation, but it cannot
can be classified into four categories, the complexity of a control the sequence in which the opera-
namely, abstract data type, functional, tions will be invoked. Hence, neither the
interface, and control components. Such large program by server nor the client has the knowledge to
a classification underscores the need for p a c the time required to perform the
different specification, implementation, operations.
and performance-improvement methods of operations that can This article discusses two methods of
for different types of components. (See be invoked by improving abstract data type perfor-
sidebar.) This article focuses on the devel- other mance-one for distributed systems and
opment of high-performance abstract components another for parallel systems. Both
data type components for distributed and c methods have the desirable feature that
parallel environments. they do not affect the time spent by the cli-
An abstract data type component pro- ent between successive invocations of the

vides a collection of operations that can be server. Our performance measure in both
invoked by other components. In a dis- cases is the response time-the time a cli-
tributed system, an abstract data type can ent spends waiting for the reply to a server
be modeled as a server receiving requests understand since the code for the client operation it has invoked. The response
for its operations from clients.3 The and the abstract data type can be dealt with time is equal to the sum of thewaiting and
server and its clients interact using the separately. Further, the program is easier service times of requests at the server plus
interprocess communication (IPC) primi- to modify since changes in the client code the request and response transmission
tives provided by the operating system and do not require changes in the abstract times. The maximum response time is
can run on either the same or different data type component and vice versa, so important for real-time applications, while
machines. (Here we extend the terms long as the specification of their interface the average response time is important for
"server" and "client" to refer also to the is not changed. other applications.
corresponding entities in sequential and However, a side effect of using abstrac- For distributed programs, we consider
parallel environments.) tions is that system performance deteri- the use of multilevel data structures, which
The use of abstract data types reduces orates due to both the cost of procedure efficiently implement all the abstraction's

the complexity of a large program. The calls and IPC primitives, andtheencapsu- operations if the state of the data structure
program becomes easier to develop and lation of the abstraction's data struc- satisfies certain conditions. The process-

October 1987 0018-9162/87/1000-0033501.001987 IEEE 33

ing of an operation may move the data Distributed programs methods available for sequential
structure to a state that does not satisfy programs-such as maintaining additional
these conditions. If the data structure is variables to dynamically detect invocation
not restructured to satisfy these condi- In distributed programs, the server runs sequences or transforming the source code
tions, the performance can deteriorate. on a dedicated processor, and clients of the client-either will not be useful for
We discuss and compare two policies for invoke its operations via remote procedure or cannot be applied to distributed (or even
restructuring multilevel data structures. calls. In this environment, each compo- concurrent) programs. Instead, the

For parallel systems, we consider an nent comprising the software system can abstract data type component must pro-
implementation of abstract data type be implemented as a group of processes vide efficient implementation of all its
components that provides extremely high with a dedicated processor allocated to it. operations. However, this objective is dif-
performance-typically, constant time If an abstract data type component has ficult to achieve with conventional data
implementation of all the operations of the several clients, the sequence of operations structures since a data structure typically
data type. Our approach is based on the invoked by one client can be interleaved in permits efficient implementation of some
notion of broadcasting sequential arbitrary ways with those of other clients. operations at the expense of others. For
processes.5 Hence, performance improvement example, using an array for a linear list

jOurtsifptionofsofwae mpntsis-basedon theFsla- b*adsequenc / <(3) the use of context-dependent transformations, and
relationship b een their;OInput O(someseouene >} (4) the u.ise of slf-reorganizing data structures.
jand state0, S~Acompoujentcn be implemented as eith,er a Fw al cempoMnnis. These components correspond to
jiwoui.In: a seiuenllal:program or a groupmof processes in a mathematical functions that operate on abstract data types

f u _-p These componentsprove eetVi: Functional forma offponentsdo notretain an state inform
a co~Jon ~4i~~okmjpeh~en somematheatIca ton,84~O iepnd onlyonl. urthe,oo, 1 ;sin, cannot bobJeCs~oh li~f~ fl sets Thee obJ~ts IVe gneraed wihoutknowig al I, 1 hshs. Theycan be spedf-

stl3thaf~e&b.tn yu$Tng a set of value-returning fled usIng Input/outputassertions. Theycanbeesystemati-
~ function; (0- *~Aker-retatlon-to-stronger-ranion program co0struction

function).~bt 4pes~, C)and ~the nexct state, 81 Tepfomnef fucialopont can be
~re fnctJo.p~$~iey~~ bespecified using the Axb lmwvdb orecoetasomto riecuriaW elimina-
matic$P.~f*$~I~L~~h4" wichi essentially d6sc,ibes the tnmehd.Ssoiarysare used to,obtain efficient func-

~ V4unction. An 4bstract tional components In parallel envlronment&
data typecomp~,enf can 13* Imlemented by fol6win~these~Thesef compo"n'ents' operate on,

steps: unbounded ~~~~~~~~~~~~~~~~inuadoutput data steam1s or j~oeuecall.tre4w~ *t~cinpe, an intiraceuloindul fo a singl charac-

ln~t~*s ap.%iict# V* a*t~l*.s he se of sates ll costuchta thIsp isi a egnrtdo h

^ 4 0 s*dl;*d:;~~~~~~~~~~~~~~~~eiss~~~toa: :t061)rOneayo f civn fiin mp etto fitr
Iefl$aizatio 0fctosto establish the face components is to eops h rnlto noant

the ~W¶~f~b~khe tion, a5UfllUl9 Couitmi ompemets These omponenits usually occur at; V "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Po

34 COMPUTER

n=20

Array of elements

t~~~~`23 1I

(Satsfies strong invariant)

(Sabsfies weak invariant only)

Figure 1. A multilevel data structure for the linear list module.

component optimizes retrieval or update invariants 11, I2, . . ., I,,, such that (1) ith(l:list; i:integer) - return the ith
of the ith item in the list while penalizing (1) D always satisfies II; element in list 1.
its addition or removal. (2 ', , (2) Append(list;i:integer,e:element)

Multileveldatastructures facilitateeffi- Idenotes logical implication; and -1 add element e after the ith ele-
cient implementation of all the operations does nogica Ijpica t an ment in list I.
of the data type, provided the data struc- (3) If D does not satisfyIj then it can (3) Delete(llist hinteger) - remove the' .. . ~~~~~bemade to satisfy 19 without chang- (3 -eee1ls;iitgr *rmv h
ture is in a state that satisfies certain con- ith element from list 1.
ditions.6 The data structure may need to ng the formation contained inD;
be restructured to satisfy these conditions improve the performanceaofDw The ith element can be located effi-
so as to avoid deterioration in the service i ciently using an array, while insertion of
time (that is, the time required to process I, is referred to as the weak invariant of a new element or deletion of an existing
an operation). One approach is to assign D while In is the strong invariant of D. An element can be done efficiently using a
this task to a separate maintenance process activity that causes D to satisfy Ij is called linked list. We can combine these two data
running concurrently with the foreground a maintenance action. Two important structures to take advantage of their best
process that accepts and processes client maintenance strategies for distributed sys- features, as suggested by Lampson.7 Fig-
requests.378 tems are periodic maintenance and con- ure I illustrates this multilevel data

current maintenance. A maintenance structure.
Multilevel data structures. Multilevel strategy is said to be periodic if the strong Each node in the linked list pointed to

data structures can be characterized by invariant is established periodically, for byp contains the starting and ending posi-
weak and strong invariants. When the data example, after every Tseconds or after the tions of a partition (that is, a sequence of
structure satisfies the strong invariant, the completion ofMrequests. A maintenance elements in the array). The strong invari-
average service time is small. Processing an strategy is said to be concurrent if a sepa- ant is that the linked list contains at most
operation-performing function (0- rate process, called the maintenancepro- one node. The weak invariant is that each
function) may leave the data structure in cess, performs the maintenance work. The partition is nonempty and partitions cor-
a state that does not satisfy the strong maintenance process establishes the strong responding to different nodes do not over-
invariant but does satisfy the weak invar- invariant after a finite period of time in lap. When the strong invariant is satisfied,
iant. As more and more 0-functions are which there are no further client requests. the foreground process can efficiently
processed, the average service time For each client request, the foreground locate an element. It can update the list by
increases. Hence, the data structure has to process executes the desired operation and splitting a partition into two and creating
be restructured to reestablish the strong sends back the response to the client. a new partition, if necessary. This proce-
invariant. Multilevel data structures can be used in dure increases the number of nodes in the

implementing many abstract data types. linked list. In this case, only the weak
Definition. A multilevel data structure For example, a linear list component pro- invariant is satisfied. If no maintenance

D has associated with it a sequence of vides the following operations: action is taken, the data structure can

October 1987 35

gradually degenerate into an ordinary separate area called the work area. There previous case, wherein the granularity of
linked list resulting in a loss of perform- are three steps: the indivisible actions of the maintenance
ance. The maintenance process must con- (1) noninterruptible foreground pro- process is gradually made finer and finer.
solidate the various partitions into one cess and noninterruptible main- Hence, the foreground process does not
partition so that the linked list will contain tenance process, have to wait for a maintenance cycle to be
only one node, thus reestablishing the (2) noninterruptible foreground pro- fully completed before serving a new cli-
strong invariant. cess and interruptible maintenance ent request.
The strong and weak invariants for the process, and Foreground process:

multilevel data structure shown in Figure (3) interruptible foreground process Rely condition:
I can be formally specified as follows: and interruptible maintenance The maintenance process does not1tcangbe fovarmally andcess.interruptiblemaintechange the contents of the list.Strong invariant: process. Code:p = nilv(p.next = nilA 1 < p.start < p.end We do not consider the "interruptible The code is the same as in Case 1
Weak invariant: foreground process and noninterruptible since the weak invariant is

Vq: Reachable(q,p)-q = nil maintenance process" case since the fore- unchanged.
v(IPartition(q)I >0; ground process generally has a higher pri- Maintenance process:

Vq,r: Reachable(q,p)AReachable(r,p) ority than the maintenance process so as The foreground process does notAq . r-Partition(q) n Partition(r) = 0; to execute the client request as quickly as remove nodes and does not change
where possible. anything in the array.

Reachable(q,p) p = qv(p * nil
AReachable(q,p.next)); Case 1: Noninterruptible foreground Code:Partition(p) { i Ip . nil processand noninterruptible maintenance Compact and merge as above usingA I < p.start c i < p.end < n}; process. In this case, the foreground pro- indivisible actions for moving ele-

cess completes a client request before actions are used for creating andThe strong invariant must be selected so yielding the processor, and the main- deleting nodes.
that all operations of the abstract data type tenance process completes a maintenance Case 3: Interruptible foreground pro-can be executed quickly when the data cycle before yielding the processor. cess and interruptible maintenance pro-structure is in a state satisfying it. Theweakc einriant hartatersatizesf gith heto Foreground process: cess. In this case, the granularity of the

Rely condition: maintenance process is kept unchanged,states after each indivisible action of any The maintenance process does not while that of the foreground process isprocess accessing the data structure. It change the contents of the string. This
depends on the granularity of the concur- condition is required to correctly steadily reduced. This procedure allows
rency (that is, the coarseness of the implement the operations of the the maintenance process to operate con-
indivisibleaction). 'abstract data type. currently with the foreground process.indivisible actions). Code: Also, the foreground process uses explicit

< <search the linked list until the locks to block access to portions of the
Stepwise development method for con- appropriate partition is found based data structure that it needs (or may need)current maintenance. The code for the upon the position specified by thecurregroundtanmaintenancTh oeprocses client; to access to complete processing a client'sforeground and maintenance processes if the operation is Append or Delete request. Since we do not wish to slow down

can be developed by systematically then the foreground process unnecessarily, theproceeding from coarse-grained concur- split the node into two nodes, if overheads for guaranteeing the semantics
rency to fine-grained concurrency.8 In necessary; of the lock mechanism are mainly takenadditon, ely/uaratee ondiions can

if the operation is Append then o h okmcaimaemil aeaddition, rely/guarantee conditions can begin care of by the maintenance process.
be used to simplify the proof of noninter- create a new node for a new par-
ference at each stage. The rely condition tition in the work area; add ele- Foreground process:
of a process is the assumption it makes ment to this partition Rely condition:
about the behavior of other processes, end-> > The maintenance process does not
while the guarantee condition of the pro- (Note: The symbol "< <" denotes the change the contents of the list.start of an indivisible action; the symbol Code:
cess is the condition other processes expect " > > " denotes the end of an indivisible Use indivisible actions to split a node
it to satisfy after each of its indivisible action.) (for Append and Delete operations)
actions. To ensure that the semantics of Maintenance process: and to create and lock a node for a

the absracionisatifie,temin- Relcoditon: U. new partition in the work area for thethe abstraction is satisfied, the main- Relycondition: TRUE. Append operation; indivisible actions
tenance process must ensure that its guar- Code: are not required for filling the parti-
antee conditions (the rely conditions of the loopforever h tion and then unlocking the cor-
foreground process) are not violated. array towards the high end of the responding node.
Similarly, every indivisible action of the array-no new nodes are created in Rely condition:
foreground process must satisfy the rely this phase; merge the partitions in Te foregrond

rf%nr1;t;^1n~~~~~ ~ ~ ~ .% .1g h rq nl h%, nt, _i The foreground process does notcondition of the maintenance process. In thle array and thlose in thle workcrmv oe n osntcagthe following example, we illustrate this area towards the lowv end of the removen inodhes anddosaotchngstepwise development methodology by invariantis true;»> Code:
applying it to the linear-list abstract data Before moving an element out of atype. We assume that during Append Case 2: Noninterruptible foreground partition, ensure that the foregroundprocess has not locked it; if the parti-operations, the foreground process adds process and interruptible maintenance tion is locked, then either wait until it
elements to a new partition it creates in a process. This case is an extension of the is unlocked or else skip over this par-

36 COMPUTER

..m e jIs m e jIs m e I save I resbre I s f el savel reslore I s m ela s m . .

I m f rf m _ l

Time

Arrival of
request

m: indivisible action of maintenance process
s: time to start an indivisible action (lock)
e: time to end an indivisible action (unlock)
f: indivisible action of the foreground process

save x: time to save the context of process x
restore x: time to restore the context of process x

Figure 2. The overhead for Case 2 (noninterruptible foreground process and interruptible maintenance process).

tition during this iteration; the rest is
similar to the code in Case 2.

We have also used this approach for
developing algorithms for maintaining a
queue/sorted-array combination, a binary
tree/sorted-array combination, equiva- Rith
lence relations, hash tables, and a multi- Diskarm
way tree structure for a directory server. t1f_

Performance. The main advantage of ml I E
concurrent maintenance is that the main- Time t2 _-_ - - - -

tenance tasks can be performed whenever
the foreground process is idle. Ideally, the t3 __ _
foreground process will always see the data 44
structure in a state in which it satisfies the I Addional
strong invariant. However, several factors overhead
affect the performance, and trade-offs are
required for achieving optimal per-
formance.
As shown in Figure 2, the performance

for Case 2 (the noninterruptible fore- Figure 3. The overhead due to disk seek-time.
ground process and interruptible main-
tenance process) is affected by the cost of
implementing indivisible actions and con-
text switches, and by the average length of
the indivisible actions of the maintenance
process. The time taken to switch from the
maintenance process to the foreground
process and the time required to start and period, the average waiting time decreases process) decreases as concurrency becomes
end indivisible actions cannot be easily as the average length of the indivisible finer grained, since the overhead of imple-
changed by the application programmer. actions of the maintenance process menting indivisible actions increases rela-
One parameter that can be controlled is the decreases (in other words, as concurrency tive to their average length. As a result, the
average length of the indivisible actions of becomes finer grained). However, the effi- foreground process is less likely to see an
the maintenance process. From Figure 2 ciency of the maintenance process (defined optimal data structure and the processing
we see that, for the first request processed as the proportion of time it does useful time for the request increases.
by the foreground process after an idle work in an idle period of the foreground The average time that the foreground

October 1987 37

\Si,-i-1 requests in the queue,
1 request being served,
i requests served since the
start of this busy period.

P2 P2 A2

Figure 4. Instability of pure concurrent maintenance.

model, the arrival rate of requests is Pois-
son with parameter A, the service time for
the ith request in a busy period is exponen-
tial with parameter pi, and the back-
ground process can reestablish the strong
invariant in zero time. Due to degradation

JA P4 ~~~~~~inthe data structure, jA, is a decreasing
function of i. Figure 5 shows another sys-
tem that has a smaller average service time.
Simple analysis shows that if 3 io0 such
that ,ub<A, then the probability that the
system is in state s, is OViE[O,-o). The sys-
tem will have an infinite number of cus-
tomers in the queue in the steady state.
This instability can be qualitatively

Figure 5. A simple unstable system. attributed to the fact that a busy period
may never end if the average service time
exceeds the average interarrival time.
One solution to this problem is to vary

dynamically the relative priorities of the
foreground and maintenance processes. A

process must wait when it receives a tenance process. (In this example, we strategy that our simulation study shows
request can also be increased by unex- assume that the disk is part of the hard- to be quite good uses the following
pected interactions between the fore- ware system dedicated to the component.) procedure'°: After the foreground pro-
ground and maintenance processes when So far we have assumed that the fore- cess has completed a client request, the
disk-resident data structures are involved. ground process needs to wait at most until maintenance process is invoked to do a

Figure 3 illustrates this situation. the maintenance process completes its cur- complete cleanup with probability 1 -pd,
Assume that the foreground process rent indivisible action (that is, that the where dis a measure of the increase in the

services the last request in a busy period maintenance process always has a lower average service time of abstract data type
and leaves the disk arm positioned at loca- priority than the foreground process). For operations. For example, for the mul-
tionfl. The maintenance process wakes up Poisson arrivals, this condition can make tilevel data structure shown in Figure 1, d
and leaves the disk arm at position m I just the system unstable no matter how effi- can be the number of nodes in the linked
before the start of the next busy period of cient the maintenance process is, since list. Asp increases, the performance of the
the foreground process. If the foreground there is a nonzero probability that the system improves until a critical point is
process needs to position the disk arm near maintenance process will never be sched- reached. If p is increased beyond that
positionfl and far from ml, this adjust- uled. 0 Figure 4 shows the state transition point, the performance deteriorates as
ment causes a delay that would not have diagram for a simplified model of fore- shown in Figure 6.
occurred without the presence the main- ground/background processes. In this Another method of reestablishing the

38 COMPUTER

strong invariant is to perform the main-
tenance tasks periodically rather than
concurrently-for example, after everyM
update operations or after every T
seconds. This approach has two S
advantages: A

(1) It does not require any locking or I
context switches since it can be CD

E
coded as a procedure within the E

co
foreground process. c

(2) Very efficient restructuring code \
can be developed since we can make CD

the assumption that the data struc-
ture will not be modified by any > P Optimal *
other process while it is being re- I
structured. 0.0 1.0

The disadvantage, of course, is that Probabilityp
maintenance is not invoked only during
idle periods. Bastani, Hilal, and Chen'0
analyze the case where the maintenance isdonalyeathe csevweryM uathe raiteq nes As Figure 6. Optimal parameter for stochastic maintenance.
done after every M update requests. As
shown in Figure 7, as M increases, the
average cost (per request) of maintenance
decreases, while the average service time
increases. Hence, there is a value ofMthat
optimizes system performance.
We have compared the performance of

concurrent maintenance with periodic
maintenance experimentally. Our measure
of performance is the total processing time
for requests, defined as the sum of the
waiting time and the service time of
requests at the server and the request and
response transmission times. The results Ap
indicate that periodic maintenance yields
a better average processing time while con-
current maintenance gives a smaller max-
imum response time. Hence, periodic C Averages time
maintenance is the best approach for F
applications that do not require real-time Average maintenance cost
response, assuming that the arrival process
can be modeled as a Poisson process. The
algorithms for periodic maintenance are M Optimal (perid)
relatively efficient as well as simple. Con-
current maintenance with stochastically
scheduled complete maintenance has a
small variance. Therefore, concurrent Figure7 Optimalparmeterforperiodicmaintenance.
maintenance is viable for real-time appli-
cations, especially if the operating system
provides efficient process synchronization
and context switch facilities.

Parallel maintenance. A restricted ver-
sion of multilevel data structures can be Definition. A restricted multilevel data in the performance of D, and
maintained using several processes run- structureD consists of a sequence ofdata (3) restructuring Di does not require
ning simultaneously on different proces- structures D,,)2, . . ., 1,n with the fol- restructuring D>, jij.i
sors. Let S(D) be some measure of the lowing properties: The data structure shown in Figu-re 1
amount of information stored in a data (1) S(D,) can be decreased by increas- does not satisfy the third condition of this
structure D). For example, for the data ing S(D1+l) without changing the definition. In fact, restricted multilevel
structure shown in Figure 1, S(D) can be information contained in D), data structures are limiited to the imple-
the number of elements stored in the data (2) decreasing S(D,) by increasing mentation of abstract data types that deal
structure. S(D1+ ~) results in an improvement with aggregates such as sets, bags, and

October 1987 3

8. A sorted array is used for fast lookup
and a queue for fast insertion. Also, a tag
assigns the value "dead" or "alive" to

7771^L=XOXE.;e!*;Dn I 11; 101^>o^i;>< ;<REa t ga =Rk; 1each item. The tag is used for achieving
'KIIt1ttI3XU1~ _IJIIflEflhI1LI efficient deletion. This data structure satis-

fies the above definition since:
Queue Sorted array (1) The size of the queue can be

Short-termn storage Long-term storage decreased by moving some keys from the

queue to the sorted array, thus increasing
the size of the sorted array without affect-

Figure 8. A restricted multilevel data structure. ing the information contained in the com-
bined data structure.

(2) This change improves the perform-
ance of the combined data structure.

(3) We can restructure the queue or the
sorted array (for example, by removing
dead items) without having to modify the
sorted array or the queue, respectively.

Restricted multilevel data structures
processes E > -< 7;0<YB F have the important feature that it is pos-

sible to use multiprocessors to achieve effi-
cient implementations. For example, one
processor can remove dead entries from
the queue, another processor can remove
dead entries from the array, while a third
processor moves items from the queue to
the array. The foreground processor can

B2 deal with client requests. This architecture
is shown in Figure 9 where the queue is
stored in memory bankMI which is shared

FB 1B3by processors F, B I and B2, and the sorted
81 B3 array is contained in memory bank M2

which is shared by F, B2 and B3.

Figure 9. Parallel maintenance of a restricted multilevel data structure.
Parallel implementation
of abstract data types
The multilevel data structures discussed

above yield good average response time if
maintenance strategies are selected care-

Append (iUse)of element fully. But, under a heavy load, perform-
Delete (i) ance may bcome worse tha itwould be
Retrieve (i)

with a conventional data structure. In this
section, we discuss an approach to imple-
menting abstract data type components
based on broadcasting sequential
processes.5 Each process runs on a sepa-
rate dedicated processor and can broad-

Figure 10. Parallel implementation of the linear list component. cast messages that will be delivered to all
processes in the broadcast group. Clients
access the abstraction via an interface pro-
cess. This approach has the potential for
providing very short response time for all

search tables. However, this class includes tilevel data structures since Vi, I c i n, we the operations of the abstract data type.
a large number of data structure combina- can define Ij as 1i -Vj, 1 j i, S(Dj) is Further, the time required is independent
tions such as queue combined with a minimum. of the size of the data structure, and the
binary search tree, sorted array, hash As an example of restricted multilevel program is also quite straightforward, at
table, balanced binary tree, B-tree, etc. data structures, assume that we have to least for basic abstract data types such as
The class of restricted multilevel data implement a set abstract data type. One stacks, queues, lists, sets, and symbol
structures is a subset of the class of mul- possible data structure is shown in Figure tables.

40 COMPUTER

Example 1. Figure 10 shows n processes
(P0, P,,. . ., P,, ,) implementing the lin-
ear list abstract data type component dis-
cussed earlier. Iis the interface process that
accepts client requests. Each process Pi
has a counter denoted by ci, a status flag await command
denoted by si, and an element denoted by
ei. The status flag si takes on two values- case command of
"occupied" if ei contains a valid value, ith(i)
and "free" if it does not. If si is si=occupiedandci=i-'sendei
"occupied," then ei is the cith element in si * occupied or ci* i-skip
the linear list. If si is "free," then Pi is the
cith process on the stack of free processes. ei=Si = occupied and ci<i-'skipThe process with counter 0 is at the head si = occupied and ci = i
of the stack. Initially, ci= iand si= "free" -si: = free; ci: =0; send OK
for 0cicn- 1. si = occupied and ci> i-ci: = ci -1
The algorithm for each Pi is shown in si= free-pci: = ci+ 1

Figure 11. The primitive send e transmits Append(i,e)
message e to the interface process while si = occupied and ci> i-ci: = ci + 1
skip denotes a null action. This algorithm si = occupied and cis i-skip
is an efficient constant time algorithm. Its si = free and ci>0ci: =ci -1
correctness can be easily proven by si= free and ci = 0
specifying the representation (or data
structure) invariant and showing that it is end case
established initially and reestablished after
the completion of each update operation. forever
The mapping function relates the value-
returning functions (in this case only ith)
to the representation." The representa- Figure 11. Code for the linear list component.
tion invariant and the mapping function of
the implementation shown in Figure 11 are
given below.

Let FREE = {iisi = free}
Representation invariant:

(1) V{j, I ' j < IFREEI J k:
sk = freeAck = j - 1 ith(i)A
(2) Vj, I cj c n - IFREEI J k: if i< 1 then raise IndexUnderflow
sk = occupiedAck = j elsif i > size then raise IndexOverflow

Mapping function: else
ith(i) = ek where sk = occupiedAck = i begin

broadcast ith(i)
If I does not receive an OK (for Delete if response received in the next cycle then send element to client

and Append) or an element value (for ith) else rise HardwareFailure
in the next cycle, it raises the appropriate end;
exception. Because only one process can Delete(i)-*
respond for each command, there is no if i< 1 then raise IndexUnderflow
delay for collision resolution. The code for elsif i> size tbhe raise IndexOverflow
the interface process is shown in Figure 12. else
It uses a variable named "size" (initialized beginbroadcast Delete(i)
to 0) to track the number ofelements in the if no response received in the next cycle then raise HardwareFailure
list. The primitive broadcast e transmits else size: = size- I
message e to all processes in the broadcast end;
group. Append(i,e)-

if i<O then raise IndexUnderflow
elsif i>size then raise IndexOverflowExample 2. As another illustration, con- else

sider the problem of implementing a de
SearchTable abstract data type to provide broadcas Append(i,e)
the following operations: if no response received in the next cycle then raise ListOverflow

else size: =size+ 1
* Add(k,e)-add element ewith key kto end;

the SearchTable.__ _

* Delete(k)-'delete the element
associated with key k. Figure 12. Interface process for the linear list component.

October 1987 41

* LookUp(k)-return the element
associated with key k.

Standard implementations of a Search-
Table abstract data type cannot simultane-

Delete(k).4_ Search table of element ously optimize LookUp, Add, and Delete.

Lookup (k) _ 1 _ For example,
(1) an unsorted array is poor for

LookUp and Delete but good for
Add;

(2) a sorted array is good for LookUp
but poor for Add and Delete;

Figure 13. Parallel implementation of the search table module. (3) a binary search tree has amuch bet-
ter Add and Delete performance
than a sorted array, but it has a
slightly worse LookUp time;

(4) a balanced tree improves the
LookUp time ofa binary search tree
at the expense of Add and Delete;

(5) the performance of a hash table
repeat using open addressing becomes

awaitcommand
poor as the number of Delete
requests increases, unless it is res-

case command of tructured periodically; similarly, a
hash table using chaining deteri-

Add(k, e)- orates in performance as the indi-
ci =O-ki =k; ei: e; ci: =- vidual lists get longer.
ci>O- ci:=ci- I
ci<O-skip Figure 13 shows the structure for an

Delete(k)- implementation of the SearchTable com-
ci < 0 and ki= k-ci: = 0 ponent using broadcasting sequential
ci <0 and ki k-skip processes. Each Pi contains a key (k), an
ci 2 0-'ci: = ci + I element (ei), and a counter (ci). Initially,

LookUp(k)- ci= i for O i n- 1. The code for each Pi
ci <0 and ki = k-send ei is shown in Figure 14. Process Pi contains
ci20 or ki * kDskip an element if ci = - 1; otherwise it is the

cith process on the stack of free processes.
The code for the interface process is shown

forever in Figure 15. This implementation is sim-
pler than most standard implementations.
At the same time, since there is no need for

Figure 14. Code for search table component.
collision resolution, this implementation
has a very rapid response time.

Implementation considerations. The
above method allows us to implement
abstract data types in the form of hard-
ware components using VLSI technology.

Add(k,e)- The interconnection network is simple,
broadcast LookUp(k) and all the processors execute the same
if no response received in the next cycle then broadcast Add(k,e) code. Further, the code is short, and the
else raise DuplicateKey memory requirement per processor is just

Delete(k)- a few words. Hence, several processors can
broadcast LookUp(k) be packed onto one chip. This method can
if response received in the next cycle then broadcast Delete(k) significantly improve the performance of
else raise NoSuchKey heavily used systems software. For exam-

LookUp(k)- ple, a priority queue component can be
broadcast LookUp(k) used to speed up operating system
if response received in the next cycle then send element to caller schedulers, a symbol table component can
else raise NoSuchKey be used for compilers, and search table

components can be used for implementing
log files and data dictionaries in database

Figure 15. Interface process for the search table component. systems.

42 COMPUTER

Some trade-offs involved in the VLSI service time. Another possibility is to repli- ity and allows use of a standard chip for
implementation of abstract data types con- cate the code at each processor, but this applications where the size of the abstract
cern the interconnection structure for the reduces the number of processors availa- data type may exceed chip capacity.
processors, the placement of the code, and ble for the abstract data type. An alterna- The implementation using broadcasting
the limitation imposed on the size of the tive approach is to replicate the code for sequential processes can be made fault-
abstract data type by the number of the frequently executed commands (for tolerant to processor failures by using
processors on a chip. Two possible inter- example, LookUp) and to broadcast the redundancies. However, unlike methods
connection options are (1) to connect all code for the remaining commands (for for conventional data structures, there is
the processors to the same bus and (2) to example, Add and Delete). no central processor to detect and repair
have a tree-structured bus. The perform- The limitation due to the number of errors in the data structure. One strategy
ance in the latter case is better than in the processors on a chip can be overcome by is to use primary and secondary processors
former, since the signal traverses a shorter using both broadcasting sequential for storing each item. (The number of
distance. However, if the bus loops back processes and conventional data struc- processors need not be doubled since a
to the interface processor in the former tures. When the processors are all processor can be the primary processor for
case, the interface processor can monitor occupied, the interface processor can store one item and the secondary processor for
the bus after transmitting a request to information in its own memory. Whenever another item.) Also, the response period
verify that there are no transmission it receives a request, it can broadcast it to for each request that is broadcast by the
errors. This option can significantly the processors while simultaneously interface processor can be extended to
improve system reliability without incur- searching its own data structure. If it include responses from both the primary
ring the performance penalty that reliable receives a positive response from one of and secondary processors. In this way, if
broadcast protocols incur. the processors, it can abort its own search; either response is absent, a free processor
The size of each processor can be otherwise it can continue to process the can assume the identity of the failed

reduced by placing its code in the interface request itself. When a processor becomes processor for that item. This provision
processor. In this case, the interface free, the interface processor can move enables the system to recover from a sin-
processor broadcasts the request and the some information from its data structure gle processor failure. Periodic unsolicited
code associated with it. Each processor has to the free processor. In this way, the responses can also be generated by both
only the CPU and its private data. This broadcasting sequential processes can the primary and secondary processors to
method allows packing a larger number of serve as a cache for the abstract data type. reduce the likelihood of having more than
processors on one chip but increases the This procedure improves system flexibil- one unrecovered failure at any given time.

H I G H P E R F O R M A N C E S Y S T E M S

Digi1talhas itnow
High VAXcluster * Program Business Office

Senior and Principal Engineer positions available. You will define the marketplace for
Performtnance VAXclusters, apply systems engineering expertise to the development of system solutions,

and participate in developing new generations of VAX* systems, developing capacity analysis
services and defining future product requirements. A BSEE/CS or equivalent, excellent pro-
ject/negotiation skills and thorough (at least 5 years') knowledge of VAX/VMS * systems.

products demand high perfor- Desired mix of VAX experience would include: system-level software definition, system
mance professionals to bring management/technical support, user training, network support, and capacity planning.
them to market. We are in the Advanced Afchitectufe
busingandntegratlong high per- Senior and Principal Engineer positions available. Advanced development of next genera-
formance systems for world- tion High Performance Processor Systems. Development and leadership roles in: definition
wide science, engineering and of processor internals, evaluation and selection of key technologies; definition of CAD
commercial markets;. strategy and requirements and translation to design process, IMS, CAD tools; development

and validation of models to explore and evaluate alternate processor systems and organiza-
Join Digital's High Performance tion in terms of performance.

Sysztems, a
h

prme enginerin Call (617) 467-5563 COLLECT or write to: Linda Marston, Digital Equipment
exceptional growth and Corporation, Dept. 1001 7685, 200 Forest Street, MRO1-1/MS, Marlboro, MA 01752.
visibility. Trademarks of Digital Equipment Corporation.

We are an affirmative action employer.

HEED'-"."

n this article, we have considered effi- Acknowledgments St. Petersburg, Fla., Dec. 1985, pp.
cient implementation of abstract 369-376.
data type components for two classes The authors gratefully acknowledge several 7. B.W. Lampson, "Hints for Computer Sys-

of programs. The motivation for imple- fruitful discussions with 1. Chen, T. Law, D. tem Desgn, E ,
menting these abstract data type compo- Leu, A. Moitra, J. Teng, and I. Yen. The p. 112.
nents is to overcome the frequent authors also wish to thank the six anonymous DijkstrA etaot,"referees for their extensive comments which Collection: An Exercise in Cooperation,"performance loss of abstractions while have greatly improved the quality of the article. Comm. ACM, Nov. 1978, pp. 966-975.
preserving their advantages-compre- This article was supported in part by NSF Grant 9. C.B. Jones, "Tentative Steps Towards a
hensibility, modifiability, provabil- MCS-83-01745. Development Method for Interfering Pro-
ity, and reusability. For distributed systems, grams," ACM Trans. Programming Lan-
multilevel data structures allow efficient guages and Systems, Oct. 1983, pp.
implementation of all the operations of the References 10. F.B.Bastani, W. Hilal, and .R. Chen,
abstract data type. For parallel environ- 1.P. Wegner "Capital-Intensive Software "Performance Analysis of Concurrent
ments, a fast implementation of some Technology," IEEE Software, July 1984, Maintenance Policies for Servers in a Dis-
abstract data types can be achieved using pp. 7-45. tributed Environment," Proc. FJCC 1986,
broadcasting sequential processes. 2. D.L. Parnas, "OntheCriteriaTo BeUsed Computer Society Press, Los Alamitos,

Several interesting research issues remain, in Decomposing Systems into Modules," a i ., pp. 61 1-619.
especially in the parallel implementation of Comm. ACM, Dec. 1972, pp. 1053-1058. 11. J.V. Guttag, "Notes on Type Abstraction"(version 2), IEEE Trans. Software Engi-
abstract data types. These include inves- 3. B. Liskov and R. Scheifler, "Guardians and neering, Jan. 1980, pp. 13-23.
tigating Actions: Linguistic Support for Robust, 12. F.B BastaniandC.V RamamoorthY "ADistributed Programs,"ACM Trans. Pro- Methodology for A .Vn Corrtness

(1) whether architectures other than gramming Languages and Systems, July MethodologyforAssessgtheCorrectness
broadcasting sequential processes 1983, pp. 381-404. Electrical Engineerins, PComputers and
can be used to implement abstract 4. D.L. Parnas and D.P. Siewiorek, "Use of Nov. 1984, pp. 115-144.
data types; the Concept of Transparency in the Design 13. D. Coleman, J.W. Hughes, and M.S.

(2) what range of abstract data types can of Hierarchically Structured Systems," Powell, "AMethod for the Syntax-Directed
be efficiently implemented on each Comm. ACM, July 1975, pp. 401-408. Design of Multiprograms," IEEE Trans.
architecture; and 5. N.H. Gehani, "Broadcasting Sequential Software Engineering, Mar. 1981, pp.Processes," IEEE Trans. Software Engi- 189-196.(3)what methods tolerate memory neering, June 1984, pp. 343-351. 14. P. Zave, "An Operational Approach to

failures, processor failures, and tran- 6. F.B. Bastani et al., "Impact of Parallel Requirements Specification for Embedded
sient transmission errors without Processing on Software Quality," Proc. Systems," IEEE Trans. SoftwareEngineer-
greatly degrading performance. [I First Int'l Conf. Supercomputing Systems, ing, May 1982, pp. 250-269.

Farokh Bastani is an associate professor in the Wael Hilal is currently an assistant professor in S. Sitbarama Iyengar is currently professor of
Dept. of Computer Science, University of the Dept. of Computer Science, University of Computer Science and supervisor of robotics
Houston, University Park. His research Houston, University Park. His research research at Louisiana State University. He has
interests include software design and validation interests are computer-communication pro- authored more than 60 articles in parallel
techniques, distributed systems, and fault- tocols, routing and flow control, local area net- algorithms, data structures and design and navi-
tolerant systems. He is presently investigating works, performance evaluation and modeling gation of intelligent mobile robot. His current
methods of developing inherently fault-tolerant of computer networks, integration of voice and research interests are applying neural network
programs for critical applications. data on networks, and distributed operating techniques for path planning and learning in

Bastani received the PhD degree in computer systems. mobile robots.
science from the University of California at Ber- Hilal received a BS and MS in computer Iyengar received his PhD in Engineering from
keley in 1980 and was a visitor there during the science from the University of Alexandria, Mississippi State. He is presently a visiting scien-
1986-87 academic year. Egypt in 1976 and 1979 respectively. He received tist at Oakridge National Laboratories.

his PhD in computer science from Ohio State
University in 1984.

Readers may write to Bastani at the Department of Computer Science, University of Houston, University Park, Houston, TX 77004.

44 COMPUTER

