
672 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 6, DECEMBER 1987

Communications

Robot Navigation in Unknown Terrains Using Learned
Visibility Graphs. Part I: The Disjoint Convex

Obstacle Case

B. JOHN OOMMEN, MEMBER, IEEE, S . SITHARAMA IYENGAR,
NAGESWARA S . V. RAO, AND R. L. KASHYAP, FELLOW, IEEE

Abstract-The problem of navigating an autonomous mobile robot
through unexplored terrain of obstacles is discussed. The case when the
obstacles are “known” has been extensively studied in literature.
Completely unexplored obstacle terrain is considered. In this case, the
process of navigation involves both learning the information about the
obstacle terrain and path planning. An algorithm is presented to navigate
a robot in an unexplored terrain that is arbitrarily populated with disjoint
convex polygonal obstacles in the plane. The navigation process is
constituted by a number of traversals; each traversal is from an arbitrary
source point to an arbitrary destination point. The proposed algorithm is
proven to yield a convergent solution to each path of traversal. Initially,
the terrain is explored using a rather primitive sensor, and the paths of
traversal made may be suboptimal. The visibility graph that models the
obstacle terrain is incrementally constructed by integrating the informa-
tion about the paths traversed so far. At any stage of learning, the
partially learned terrain model is represented as a learned visibility graph,
and it is updated after each traversal. It is proven that the learned
visibility graph converges to the visibility graph with probability one when
the source and destination points are chosen randomly. Ultimately, the
availability of the complete visibility graph enables the robot to plan
globally optimal paths and also obviates the further usage of sensors.

I. INTRODUCTION
Robotics is one of the most important and challenging areas of

computer science. Robots have been increasingly applied in carrying
out tedious and monotonous tasks, such as normal maintenance,
inspection, etc., in industries. In hazardous environments, such as
nuclear power plants, underwater, etc., robots are employed to carry
out humanlike operations. However, as a scientific discipline, the
area of robotics is fascinating from the directions of challenge,
application, and results. Perhaps the most interesting aspect of
robotics is the gamut of underlying problems that spans from
extremely abstract mathematical problems to highly pragmatic ones.

There are many existing robots capable of carrying out intelligent
and autonomous operations. Examples are SHAKEY [18], the JPL
robot [21], HILARE [8], the Stanford Cart [17], the CMU terrigator
and Neptune robots [24], HERMIES [25], etc. There are many facets to
a completely autonomous robot; among them some of the actively
pursued fields are knowledge representation, task planning, sensor
interpretation, terrain model acquisition, dynamics and control,

Manuscript received March 19, 1986. This work was supported in part by
the National Sciences and Engineering Council of Canada, and by the National
Science Foundation under Grant CDR-85-00022. This correspondence was
presented in part at the 1986 National Conference on Artificial Intelligence,
Philadelphia, PA.

B. J. Oommen is with the School of Computer Science, Carleton
University, Ottawa, ON KIS 5B6, Canada.

S . S . Iyengar and N. S . V. Rao are with the Department of Computer
Science, Louisiana State University, Baton Rouge, LA 70803.

R. L. Kashyap is with the Department of Electrical Engineering, Purdue
University, West Lafayette, IN 47907.

IEEE Log Number 8716968.

specialized computer architectures, algorithms for concurrent com-
putations, path planning and navigation, and coordinated manipula-
tion.

Path planning and navigation is one of the most important aspects
of autonomous roving vehicles. The find-path problem deals with
navigating a robot through a completely known terrain of obstacles.
This problem is extensively studied and solved by many research-
ers-Brooks and Lozano-Perez [3], Gouzenes [9], Lozano-Perez
[14], Lozano-Perez and Wesley [15], and Oommen and Reichstein
[19] are some of the most important contributors. Whitesides [26] is
an excellent reference for various strategies used to solve the find-
path problem. Another problem deals with navigating a robot through
an unknown or partially explored obstacle terrain. Unlike the find-
path problem, this problem has not been subjected to a rigorous
mathematical treatment, and this could be attributed, at least
partially, to the inherent nature of this problem. However, this
problem is also researched by many scientists-Brooks [2], Chatila
[4], Chattergy [5] , Crowley [6], Giralt et al. 181, Iyengar et al. [lo],
[l I], Laumond [121, Lumelsky and Stepanov [16], Rao et al. [20],
Turchen and Wong [22], and Udupa [23] present many important
results. As pointed out in the literature, the navigation through
unknown terrain involves activities such as model acquisition and
learning, sensing, etc., which are absent in the find-path problem.

In this correspondence we deal with the problem of navigation
through an unexplored terrain. A rather elementary method involves
sensing the obstacles and avoiding them in a localized manner. In
more sophisticated methods the terrain is explored as the robot
navigates. Iyengar et al. [lo], 11 11 propose a technique that “learns”
the terrain model as the robot navigates. Initially, the robot uses the
sensor information to avoid obstacles, and the terrain model is
incrementally learned by integrating the information extracted from
the earlier traversals. In this method the partially built model is used
to the maximum extent in path planning, and the regions where no
model is available are explored using sensors. Another important
aspect is to bound the obstacles using simple polygons. The free space
is spanned by convex polygons. These constituent polygons are
updated as the learning proceeds; as a result, the polygons that bound
the obstacle shrink in size, and the polygons that span the free space
grow in size. Such a strategy provides a way to approximate
arbitrary-shaped obstacles by polygons and is also benefited by the
available computational geometry and other related algorithms found
in [11, [7], [13], [26]. However, there are limitations on the technique
of Iyengar et al. [lo], [ll]. The proposed algorithm does not yield a
convergent solution in all cases.

We propose a technique for navigation in an unexplored terrain
when the terrain is populated with disjoint convex polygonal
obstacles. In precise terms, the method proposed here is proven for
convergence in terms of planning paths and also in acquiring the
entire terrain model through learning. As an endeavor to include
learning in the navigation process and to formalize the scheme, we
now view the problem in a completely new framework. We assume
that the robot begins the navigation in a completely unexplored
terrain of finite dimensions. The terrain is populated with stationary
obstacles. However, as opposed to the work done earlier, we shall not
crystallize our terrain in terms of a Voronoi diagram. Rather, we
shall compute and maintain a graph termed as the Learned Visibility
Graph (LVG). To obtain the LVG, the robot initially navigates
through the obstacles using a local navigation technique. This
technique, which is a “hill climbing technique,” is shown to
converge in a slightly restricted workspace. In the process of local
navigation, the robot manipulates the LVG. It is shown that the LVG

0882-4967/87/1200-0672$01.00 1987 IEEE

lEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 6 , DECEMBER 1987 673

ultimately converges to the actual visibility graph (VG) of the
obstacle terrain with probability one. The use of the LVG in global
navigation and its acquisition during the local navigation phase is the
essential difference between our technique and the techniques used by
other researchers [2], [4]-[6], [12], [16].

The organization of this correspondence is as follows: Section I1
introduces the definitions and notations used subsequently. The local
navigation technique that incorporates learning and path planning is
presented in Section 111. The convergence of the proposed algorithm
is proven. In Section IV, the power of local navigation algorithm is
enhanced by incorporating backtracking. As a result, the interior
restriction on the obstacle terrain is relaxed. The modified procedure
is also proven for correctness. In Section V, a global navigation
strategy that makes use of the existing terrain model to the maximum
extent is presented. The important result, that the learning eventually
becomes complete, is presented in Section VI. The execution of the
navigation algorithms on a sample obstacle terrain is presented in
Section VII.

11. NOTATIONS AND DEFINITIONS

The robot is initially placed in a completely unexplored terrain, and
it is required to undertake a number of traversals; each traversal is
from an arbitrary source point S to an arbitrary destination point D.
The robot is treated as a point in a plane that is arbitrarily populated
with stationary disjoint and convex polygonal obstacles. Let W =
(wl, w2, . . , wk} be the set of obstacles in the terrain R , where wi is
a convex polygonal obstacle. Furthermore, the obstacles’ polygons
are mutually nonintersecting and nontouching. Let V be the union of
the vertices of all the obstacles and 2 be the set of all edges of the
obstacle polygons.

Of paramount importance to this entire problem is a graph termed
as the visibility graph. The VG is a pair (V, E) where the following
hold.

1) V is the set of vertices of the obstacles.
2) E is the set of edges of the graph. A line joining the vertices ui

and uj forms an edge (v i , u j) E E if and only if it is an edge of an
obstacle or it is not intercepted by any other obstacle. Formally, if
L(uj, vi) is the set of points on the line joining ui and u j , then (vi, u j)
E E iff a) L(uj, u j) E Z or b) L (u i , u j) n Z = 4.

Visibility graphs have been extensively studied in the computa-
tional geometry literature and are used in motion planning by
Lozano-Perez [15] and many other researchers (see the survey paper
of Whitesides [26]). However, in this context it is important to note
that the VG is initially unknown to the robot inasmuch as the
obstacles and their locations are unknown. Although the VG is
completely unknown initially, it is learned during the initial stages of
the navigation process. The partially learned VG is augmented after
each traversal by integrating the information extracted from the local
navigation.

The process of learning is completed when the entire VG of the
obstacle terrain is completely built. Before the robot attains this state,
the VG is only partially built. The robot graduates through various
intermediate stages of learning during which the VG is incrementally
constructed. These intermediate stages of learning are captured in
terms of the learned visibility graph which is defined as follows:
LVG = (V*, E*), where V* E Vand E* E E. The LVG is initially
empty and is incrementally built. Ultimately, the LVG converges to
the exact VG.

We assume throughout this correspondence that the robot is
equipped with a sensor capable of measuring the distance to an
obstacle in any specified direction. The availability of the present-day
range sensors justifies this assumption. Also, we assume that the
robot is equipped with sensors which enable the navigation along the
edges of the obstacles. A sensor system constituted by a set of
primitive proximity sensors can impart such an ability to the robot.
Hence the robot can navigate arbitrarily close to the obstacle edges.
These sensors are assumed to be error-free.

The interior of any polygon 4 is denoted by I N T 3 . The straight
line from the point P to the point Q is denoted by PQ. Further, qpQ

denotes the unit vector along the straight line P T We assume
throughout that the robot is operating in the plane. Thus when we use
the word “terrain,” we use it in a more restricted sense than it is
customarily used in the literature. Undoubtedly, navigating in a
three-dimensional (3-D) terrain is a far more difficult problem, and
we do not claim that the technique we propose is applicable to it.
Indeed, even the concept of visibility graphs is not all too meaningful
in the latter problem because whereas paths along the edges of
polyhedra may not exist, paths along faces of the polyhedra may [26].

111. LOCAL NAVIGATION AND LEARNING

When the robot navigates in a completely unexplored terrain, its
path of navigation is completely decided by the sensor readings. The
obstacles in the proximity of the source point are scanned, and a
suitable path of navigation is chosen. This localized nature of the
local navigation makes a globally optimal path unattainable in a
terrain with an arbitrary distribution of obstacles. However, local
navigation is essential during the initial stages of the navigation. The
information acquired during the local navigation is integrated into the
partially built terrain model. No local navigation is resorted to in the
regions where the existing terrain model is sufficient for planning
globally optimal paths.

In this section we propose a local navigation technique that enables
the robot to detect and avoid obstacles along the path from an
arbitrary source point S to an arbitrary destination point D. The robot
is equipped with a primitive motion command MOVE@, A , X), where

a) S is the source point, namely, the place where the robot is

b) A is the destination point which may or may not be specified;
c) X is the direction of motion, which is always specified.

If A is specified, then the robot moves from S to A in a straight-
line path. In this case, the d i reaon of motion X is the vector qsA , the
unit-’vector is the direction of SA. If A is not specified, then the robot
moves along the direction X as follows. If the motion is alongside an
edge of gn obstacle, then the robot moves to the end point of the edge
along the direction X. This end point is returned to the calling
procedure as point A as in Fig. l(a). If motion is not alongside an
edge of an obstacle, then the robot traverses along the direction X
until it reaches a point on the edge of an obstacle as shown in Fig.
l(b). This point is returned as the point A to the calling procedure.

In the remainder of this section we describe the local navigation
algorithm. For the treatment in this section we assume that the
obstacles do not touch or intersect the boundaries of the terrain R . In
other words, the obstacles are properly contained in the terrain R .
This is formally represented as

currently located;

k
U I N T (w j) C INT (R) . (1)
i= I

As a consequence of this assumption, a path always exists from a
source point S to a destination point D. However, this restriction is
removed in the next section.

We present the procedure NAVIGATE-LOCAL that uses a hill-
climbing technique to plan and execute a path from an arbitrary
source point S to an arbitrary destination point D-The outline of this
procedure is as follows. The robot moves along SD until it gets to the
nearest obstacle. It then circumnavigates this obstacle using a local
navigation strategy. The technique is then recursively applied to
reach D from the intermediate point. Further, apart from path
planning, the procedure also incorporates the learning phase of
acquiring the VG.

We now concentrate on local navigation strategy. The robot moves
along the direction vsD till it encounters an obstacle at a point A
which is on the obstacle edge joining the two vertices, say, A , and
A2. A t 3 i s p o s the robot has two possible directions of motion:
along AA or AA2 as shown in Fig. 2. We define a local optimization

674 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 6, DECEMBER 1987

A

S

Fig. 2. Robot reached point on obstacle.

(b)
Fig. 1. Value returned by operation MOVE(S,A,X), when A is not

specified. (a) Motion along edge of obstacle. (b) Motion till obstacle is
encountered.

criterion function J as follows:

where X is a unit vector along the d i r e c t i s o f m o s n .
Let XI and X, be the unit vectors along A A and AA2, respectively.

Let X* E { X l , X,} maximize the function J given in (2). The robot
then undertakes an exploratory traversal along the direction -X*
until it reaches the corresponding vertex called the exploratory
vertex. At this exploratory point the terrain is explored using the
procedure UPDATE-VGRAPH. Then the robot retraces dong the locally
optimal direction X* until it reaches the other vertex S*, whence it
again calls UPDATE-VGRAPH. The procedure NAVIGATE-LOCAL is
recursively applied to navigate from S* to D.

The procedure UPDATE-VGRAPH implements the learning compo-
nent of the robot navigation. Whenever the robot reaches a new
vertex ui, this vertex is added to the LVG. From this vertex the robot
beams its sensor in the direction of all the existing vertices of the
LVG. The edge (vi, u) is added to the edge set E*, corresponding to
each vertex v E V* visible from ui. The algorithm is formally
presented as follows:

procedure UPDATE-VGRAPH(U);
input: the vertex u which is newly encountered.
output: the updated LVG = (V*,E*).

Initially, the LVG is set to (4,$).
comment: DIST(U~,U~) indicates the Euclidian distance

between vertices ui and u2, if they are visible
to each other.
This is the auxiliary information stored along with the LVG.

begin
1. v*=v* u { u } ;
2. for all ui E V*- (u] do
3. if (uI is visible f x m v) then
4. D I S T (U , , U) = ~ U ~ U ~ ;
5. E*=E* U { (v l , ~) } ;
6 . else
7. DIST(U~,U)= 03;

endif
endfor;

end.

The procedure NAVIGATE-LOCAL uses the motion primitive motion
command MOVE and the procedure UPDATE-VGRAPH during execu-
tion. This procedure is formally described as follows:

procedure NAVICATE-LOCAL(S , D);
Input: The source point S and the destination point D.
Output: A sequence of elementary MOVE commands.
begin

1. if (D is visible from S) then
2. MOVE(S,D,VSD)
3. else
4. if (S is on an obstacle and the obstacle obstructs its view) then
5. compute { X I ,A*}, the two possible directions of motion;
6 . X* = direction maximizing Ai.qsD;
7. if (S is a vertex) then
8. if (S # V*) then UPDATE-VGRAPH(S);
9. MOVE(S,S*,X*);
10. else
11. MOVE(S , SI, - X*); {make exploratory trip to Si}
12. if (Si # V*) then UPDATE-VGRAPH(S~);
13. MOVE(&, S*,h*); {retrace steps to S *)
14. if(S*# V*) then UPDATE-VGRAPH(S*);

15. NAVIGATE-LOCAL(S*, D);
16. else {move to next obstacle)
17. MOVE(S,S*,vsD); {move to next obstacle along vso}
18. NAVIGATE-LOCAL(S*, D);

endif;

endif;
endif;

end.

We shall now prove that the procedure NAVIGATE-LOCAL con-
verges. In a subsequent section we shall show that the LVG updated
using UPDATE-VGRAPH ultimately converges to the exact VG.

Theorem 1: For a noninterlocking workspace, the procedure
NAVIGATE-LOCAL always finds a path from S to D in finite time.

Proof: There is always a path from S to D as per the assumption
in (1). Hence it suffices to prove that the recursion is correctly
applied. We shall prove that this is indeed the case and also that the
MOVE operations minimize the projected distance along qsD. Then the
theorem follows from the fact that total the number of vertices of all
the obstacles is finite.

Case Z-Terminating Step: If D is visible from S, the procedure
terminates as per line 2 in NAVIGATE-LOCAL. In this case, the
projected distance of the path traversed by the robot is reduced from
1 SD I to zero in one step.

Case ZZ-Recursive Steps: This step consists of three mutually
exclusive and collectively exhaustive cases. In each case we shall
show that each execution of MOVE(S,S*, X*) forces the following
strict inequality:

(3) lSDl >S*D . qsD.
+

Case ZZa: The point D is not visible from S , and S is not on the
boundary of the obstructing obstacle. Fig. 3(a) depicts this scenario.
The lines 17 and 18 of NAVIGATE-LOCAL give the corresponding
actions.

I Please see the Appendix for the reason why the workspace should be
restricted for the current version of NAVIGATE-LOCAL. The details of a
workspace being noninterlocking are included in the Appendix.

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 6, DECEMBER 1987 675

S'

(4
Fig. 3. Robot at S is obstructed by obstacle. (a) S is not on edge of obstacle.
(b) S is on edge of obstacle but not at vertex. (c) S is at vertex of obstacle.

In this case, the motion isAong q q a n d every point A along this
vector satisfies the relation 1 A D I . = AD- 7 s ~ . Thus the motion along
qm to A gives the following equality: ISD1 = 1SA I + AD-qso,
whence

--+ + d

1sDI > A D . 7 s ~ .
----f+

(4)

The equation is particularly true for A = S*, and hence the result.
Case ZZb: The point D is not visible from S , and S lies on the edge

of the obstructing obstacle.
Case 1): S does not correspond to a vertex of the LVG as shown

in Fig. 3(b). If Xj-qsD = 0, then the edge is orthogonal to q s ~ . In this
case, either direction does not decrease the projected distance. Note
that this situation can occur at most once for an obstacle encountered
during the navigation and hence cannot persist. However, after the
robot completes the MOVE corresponding to this step, the robot is
located at a vertex. Since this is covered in case 2, we shall only
consider the case when Xi-qsD # 0. Let X* be the direction in which
Xj*qsD > 0. The situation is shown in Fig. 3(b). Hence the included
angle S*SD is less than W 2 , and I S a - lS%.qsD1 = I S q
cos (S*sD) > 0. Hence the execution of MOVE(S, S*,X*) ensures the
inequality given in (3).

In this case the robot temporarily diverges from the locally optimal
path. This trip being purely exploratory does not contribute to the
navigation. Note that this trip takes finite time.

Case 2): The point S is located at a vertex of an obstacle. Fig.
3(c) depicts the situation. In this case the edges of the convex polygon
meet at S . Let the direction X* be the direction that maximizes
X i * q s ~ . Because the obstacle is convex, the angle between the edges
at S is less than I'I. Thus the angle S*SD is less than H/2. Using the
arguments of case 1,we c o n s d e that the execution of the MOVE

operation satisfies I SD I - I S*D*qsD I > 0, and hence the theorem.

Observe that if we had only one polygonal obstacle, we could have
gone around the obstacle in a systematic way, i.e., either in a
clockwise or an anticlockwise direction, until we reached a point
from which D is visible. However, the problem becomes more
difficult when more than one obstacle exists. In this case, the motion
must be made in such a way that a criterion function is minimized.
We have chosen to minimize the projected distance along SD'by
maximizing the function J in (2) . This method may not give rise to a

(b)
Fig. 4. Local navigation strategy need not yield globally optimal solution.

Dark lines with arrows indicate path according to local navigation strategy.
(a) Solution is both globally and locally optimal. (b) Solution is only locally
optimal.

Fig. 5. Computation of intervisibility of vertices {u2, uj, u 4) as result of
local navigation. Dotted lines indicate visibility between vertices.

globally optimal path as shown in Fig. 4. Such counter examples exist
for any localized navigation scheme for the want of global informa-
tion about the obstacles. The modification of NAVIGATE-LOCAL for
interlocking workspaces is shown in the Appendix.

It is easy to conceive of a scheme in which the sensor readings can
give all the visible edges and vertices of the obstacles. In such a case,
there may be a shorter path for navigation. However, we choose to go
along the path dictated by NAVIGATE-LOCAL so that the LVG can be
updated in the process of navigation while the projected distance
along qsD is minimized. The procedure UPDATE-VGRAPH makes sure
that edges to all the visible vertices of LVG are added to E* when a
new vertex is added to V*. Fig. 5 shows the salient features of the
approach. The vertices u2, u2, u3, u4, u1 are presently existing in
LVG, and the edges (ul , uz), (u3, u4) are also present. A globally
optimal path is Su4D. However, we choose the path SS*uZS*v3u4D-
which is only suboptimal. The exploratory traversal to u2 yields the
visibility information about the vertices u1, 03, u4, which is obtained
from the sensor information. It is conceivable that the procedure
NAVIGATE-LOCAL can be modified to avoid exploratory trips along the
explored edges of the obstacles. However, we regard this issue as
rather straightforword and prefer not to elaborate on it.

I v . LIMITATIONS OF LOCAL NAVIGATION AND A SOLUTION

The procedure NAVIGATE-LOCAL introduced in the previous section
always yields a path in a noninterlocking workspace if one exists and
if the obstacles do not touch the terrain boundaries. These precondi-
tions are implicitly satisfied as a consequence of the assumption in
(1). The relaxation of this assumption results in two conditions in
which the procedure NAVIGATE-LOCAL is not guaranteed to halt.

a) There is no path existing between the source point S to the
destination point D. In this case, a single obstacle blocks all the paths
from S to D. Fig. 6 shows some such cases. Note that when the
robot starts moving around the obstacle, its way is blocked in both
possible directions.

676 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 6, DECEMBER 1987

I I
(b)

Fig. 6 . No path from S to D. (a) Case 1. (b) Case 2

S'

Fig. 7. Dead corner S* formed by obstacle and terrain boundary.

I
Fig. 8. Proof of convergence of procedure BACKTRACK.

b) The angle between the obstacle edge and the terrain boundary is
less than W 2 . In this case we assume that a path exists between S and
D, or, stated equivalently, no obstacle blocks all the paths between S
and D. In such a case the robot may be forced to move to the dead
corner formed by the obstacle and terrain boundary. At this point the
robot has no further defined moves. The robot starting at S gets into
the dead corner at S*. This situation is depicted in Fig. 7.

In this section, we relax the condition in (1) and enhance the
capability of NAVIGATE-LOCAL by imparting to it the ability to
backtrack. The robot backtracks (by invoking procedure BACK-
TRACK) whenever it reaches a point from which no further moves are
possible (see Fig. 8). This procedure intelligently guides the robot in
the process of retracing steps. That is, the robot backtracks along the
edges of the obstructing obstacle till an edge (S, SI), that makes an

angle less than n/2 with ~ S D is encountered. The fact that such an
edge exists is guaranteed because of the convexity of the obstacles.
The search for this edge is performed by the while loop of lines 3-6 of
procedure BACKTRACK. As a result, the robot moves to a point from
which the NAVIGATE-LOCAL can take over. If for the same obstacle the
robot has to backtrack twice, then there is no path between S and D.
In other words, if a path from S to D exists, then the robot needs to
backtrack at most once along the edges of any obstacle. These aspects
are further discussed subsequently in this section. The following is
the BACKTRACK algorithm:

procedure BACKTRACK(& D, S*);
Input: The point D is the destination point.

S is a dead corner, Le., a vertex of an obstacle and is also on the
boundary of the terrain. The terrain is noninterlocking.

Output: A sequence of MOVES from S in such a way that if a path exists,
then it can be determined using NAVIGATE-LOCAL. The location
S* is returned to the calling procedure.

begin
1 . & = S ;
2. X* = only permitted direction of motion on the obstacle;
3. while (SD.X*<O) do

d

4. MOVE(S,,S*,X*);
5. S1=S*;
6 . X* =only permitted direction of motion on the obstacle;

endwhile;
end.

The convergence of the procedure BACKTRACK is proved in the
following theorem.

Theorem 2: The procedure BACKTRACK leads to a solution to the
navigation problem in a noninterlocking workspace, if one exists.

Proof: The crux of the theorem is to prove that the procedure
BACKTRACK terminates in all cases. In other words, an edge exists that
makes an angle less than W 2 with 7~0 . Fig: 8 shows the scenario.
Consider the line SQ, a normal to SD at S. Because the obstacle is
convex, the normal line SD at S must intersect the obstacle again, and
a t h i s point the corresponding edge makes angle less than rI/2 with
SD. Thus the required vertex is found just afier this edge because
after this edge the first vertex indeed has a smaller value for the
projected distance along q s ~ . Hence by moving along the boundary in
this direction, the procedure BACKTRACK will take the robot to a place
from which NAVIGATE-MCAL can be applied.

We note that if a path exists, the further execution of NAVIGATE-
LOCAL will not lead to a dead end formed by the same obstacle. That
is because if the procedure BACKTRACK leads the robot to another
dead end on the same obstacle, clearly, the robot cannot navigate
across the obstacle. Hence no path exists between S and D.

Let the procedure NAVIGATE-LOCAL with the enhanced capability to
backtrack be called procedure NAVIGATE-LOCAL-WITH-BACKTRACK.
This procedure utilizes NAVIGATE-LOCAL to navigate till the robot
encounters a dead end. At this point the procedure BACKTRACK is
invoked, after which the NAVIGATE-LOCAL is used. The navigation is
stopped if no path exists between S and D. The correctness 'of the
proof of procedure NAVIGATE-LOCAL-WITH-BACKTRACK easily follows
from the arguments of this section. Similarly, the formal statement of

those of NAVIGATE-LOCAL and BACKTRACK and is omitted for the sake
of brevity.

procedure NAVIGATE-LOCAL-WITH-BACKTRACK easily fOllOWS from

V. GLOBAL NAVIGATION

The procedures described in the preceding sections enable a robot
to navigate in an unexplored terrain. Such a navigation involves the
usage of sensor equipment and traversing the exploratory trips. The
navigation paths are not necessarily globally optimal from the path
planning point of view. However, the extra work carried out in the
form of learning is inevitable because of the lack of information about

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 6, DECEMBER 1987 677

the obstacles. Furthermore, the LVG is gradually built as a result of
learning.

In the regions where the visibility graph is available, the optimal
path can be found by computing the shortest path from the source
point to the destination point on the graph. The computation can be
carried out in quadratic time in the number of nodes of the graph by
using the Dijkstra's algorithm [l]. Such a trip can be obtained by
using only computations on the LVG and not involving any sensor
operations.

We shall now propose a technique that utilizes the available LVG
to the maximum extent in planning navigation paths. In the regions
where no LVG is available, the procedure NAVIGATE-LOCAL is used
for navigation. In these regions the LVG is updated for future
navigation. The outline of the global navigation strategy as follows:

procedure NAVIGATE-GLOBAL(S, D);
begin

1. Compute-Best-Vertices(S*, D*);

3. Move-On-LVG(S*,D*);
4. NAVIGATE-LOCAL-WITH-BACKTRACK(D*, D);

2. NAVIGATE-LOCAL-WITH-BACKTRACK@, s*);

end.

Given S and D , two nodes S* and D* on the existing LVG are
computed. The robot navigates from S to S* using local navigation.
Then the navigation from S* and D* is along the optimal path
computed using the LVG. Again, from D* to D the local navigation
is used. Computation of S* and D*, corresponding to line 1 of
NAVIGATE-GLOBAL, can be carried out using various criteria. We
suggest three such possible criteria as follows.

Criterion A: S* and D* are the nodes of the LVG closest to S and
D. ,The computation of these nodes involves O(l V* I) distance
computations.

Criterion B: S* is a vertex such $at it is the closest to the line SD.
D* is similarly computed. Again, the complexity of this computation
is O(I I/* I).

Criterion C: S* is a vertex which minimizes the angle S*SD.
Again, the complexity of this computation is O(I I/* I).

The closeness of the paths planned by NAVIGATE-GLOBAL to the
globally optimal path depends on the degree to which the LVG is
built. The paths tend to be globally optimal as the LVG converges to
the VG. We shall now prove that the LVG indeed converges to VG
after a sufficient number of invocations of NAVIGATE-LOCAL.

+

VI. COMPLETE LEARNING

Learning is an integral part of NAVIGATE-LOCAL, primarily because
the robot is initially placed in a completely unexplored obstacle
terrain, and the LVG is incrementally constructed as the' robot
navigates. The central goal of the learning is to eventually construct
the VG of the entire obstacle terrain. Once the VG' is completely
constructed, the globally optimal path from S to D can be. computed
before the robot sets into motion as in [15]. Furthermore, the
availability of the complete VG obviates the further usage of sensors.
Hence the focus of our navigation scheme is to continually augment
the LVG with the information extracted from sensor readings with the
aim of ultimately obtaining the complete VG. In this section we prove
that the learning incorporated in our technique is complete, i.e., the
LVG ultimately converges to VG with probability one if the source
and destination points are randomly selected in the free space.

Theorem 3: If no point in the free space has a zero probability
measure of being a source or destination point or a point on a path of
traversal, then the LVG converges to the VG with a probability one.

Proof: As per the procedure UPDATE-VGRAPH, when a new
vertex is included in V*, all the edges corresponding to the visible
nodes of the present LVG are added to E*. Hence it suffices to prove
that every vertex of the VG is eventually added to the LVG.
Equivalently, it is sufficient to prove that every edge of the obstacle is
eventually explored by the robot.

Fig. 9. Unexplored obstacle terrain.

Let pi be the probability that an edge ei is explored during any
traversal. Since every point in the compact free space has a nonzero
probability measure of being a source point or destination point or
intermediate point, we have pi > 0. Then the probability that ei is not
encountered after k successive independent and randomly chosen
paths is (1 - p i)k . Clearly, this tends to zero as k tends to infinity.
Hence the theorem is proved.

We conclude this section with an interesting result that for the
complete convergence of the LVG to the VG, the number of sensing
operations involved in the procedure UPDATE-VGRAPH is quadratic in
the total number of vertices of the obstacles.

Theorem 4: The number of sensor operations performed within
the procedure UPDATE-VGRAPH to learn the complete VG is o(N2),
where N is the total number of vertices of the obstacles.

Proof: A explained in the lines 8, 12, and 14 of procedure
NAVIGATE-LOCAL, no sensing operations are carried out when the
robot encounters an already visited vertex. The sensor operations are
performed only when the robot encounters a new vertex. Suppose the
LVG presently has i - 1 vertices (u I , u2, * * 1, vi- } when a new
vertex ui is encountered. At this time, the robot beams its sensors in
the direction of uj E (u I , u2, * . . , ui- to determine if uj is visible
from vi. Hence the number of sensor operations carried out when the
ith vertex is added to the LVG is i - 1. Therefore, the total number
of sensor operations carried out in the procedure UPDATE-VGRAPH is
given by

N x i- 1 =N(N- 1) /2=0(N2) ,
i= 1

hence the theorem.

The underlying premise of our work has been that we have
assumed that the sensors used and the navigation technology used are
error free. This, of course, is a serious limitation. The question of
operating in an environment prone to errors (with these errors
described either by a bound or by a probability distribution) is a
problem that is far more complex. An initial (but noteworthy) move
in this direction of solving the problem has been made by Brooks [2].
We are currently investigating the formalization of the convergence
properties of a path-plainirig algorithm in the midst of uncertainties
using the principle of adaptive learning. In the next section we
present a practical example for the technique described in this paper.

VII. AN ILLUSTRATIVE EXAMPLE

In this section we describe an illustrative example of our scheme
for a rectangular obstacle terrain shown in Fig. 9. Initially, the terrain
is unexplored and the LVG is empty. A sequence of five paths is
undertaken in succession by the robot. In other words, the robot
moves first to 2 from 1, then to 3 from 2, etc., until it reaches 6. Figs.

678 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 6, DECEMBER 1987

Fig. 11. NAVIGATE-LOCAL from 2 to 3. (a) Obstacle terrain. (b) Present
LVG .

(b)
Fig. 10. NAVIGATE-LOCAL from 1 to 2. (a) Obstacle terrain. (b) Present

LVG, portion of VG.

(b)
Fig. 12. NAVIGATE-LOCAL from 3 to 4. (a) Obstacle terrain. (b) Present

LVG.

(b)
Fig. 13. NAVIGATE-LOCAL from 4 to 5 . (a) Obstacle terrain. (b) Present

LVG .

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 6 , DECEMBER 1987 679

(b)
Fig. 14. NAVIGATE-LOCAL from 5 to 6 . (a) Obstacle terrain. (b) Present

LVG.

(b)
Fig. 15. Navigate from 6 to 7. Note that path actually computed uses

visibility graph and is shortest path on LVG. (a) Obstacle terrain. (b)
Present LVG.

10-14 illustrate the various paths traversed and the corresponding
LVG’s.

Initially, during the motion from 1 to 2, the robot learns four
edges of the VG shown in Fig. lo@). In the next traversal, seven
more edges of the VG are learned. A curve showing the number of
edges learned as a function of the number of traversals is given in
Fig. 16. Note that as many as 31 out of a total of 39 edges of VG are
learned in five traversals.

Suppose that at this point the global navigation strategy is invoked
to navigate to 7 from 6. The S* and D* obtained by using Criterion A
of Section V are shown in Fig. 15. The robot navigates locally from S
to S*, then along the LVG from S* to D*, and, finally, locally from
D* to D. Note that the path from S* to D* does not involve any
sensor operations but only quadratic time computation on the LVG to
find the shortest path. Actual simulation results obtained using
random paths are presented elsewhere [27].

VIII. CONCLUSION

The terrain model acquisition and path-planning problems are very
important aspects of an autonomous robot navigating in an unex-
plored terrain. In the literature this problem has not been subjected to
a rigorous mathematical treatment as far as the model acquisition is
concerned.

In this paper, we propose a technique that enables an autonomous
robot to navigate in a totally unexplored terrain. The robot builds the
terrain model as it navigates and stores the processed sensor
information in terms of a learned visibility graph. The proposed
technique is proven to obtain a path if one exists. Furthermore, the
terrain is guaranteed to become completely learned when the
complete visibility graph of the entire obstacle terrain is built. After
this stage the robot traverses along the optimal paths and no longer
needs the sensor equipment. The significance of this technique is the
characterization of both the path planning and learning in a precise
mathematical framework. The convergence of the path planning and
the learning processes is proven.

APPENDIX

After the paper was accepted for publication, just prior to the
publication of the final manuscript, one of the reviewers noted that
there was an error in the convergence proof of Theorem I. He did this
by presenting a counter example which we will now present.

The robot is to navigate locally from S to D. Observe that in this
case the robot can “cycle” indefinitely as shown in Fig. 17. We refer
to a terrain which possesses such a cycling configuration of obstacles
as a interlocking terrain.

We propose a rather minor modification of the algorithm NAVI-
GATE-LOCAL which considers this. Rather than the robot leave an
obstacle at any arbitrary vertex (or edge), it i s constrained to leave an
obstacle on an edge intersected by the line SD and that only at the
point where the edge intersects the line SD. Clearly, since the
obstacles are nonintersecting and convex, there will be exactly two
such eligible edges. Since the projected distance along the line SD is
always minimized, the robot will leave the obstacle under consider-
ation at the edge which is “closer” to D. For a simple example, Fig.
18 shows the edges traversed using the modification.

Observe that NAVIGATE-LOCAL is now slightly less optimal in
terms of the number of traversals it requires. However, it must be
noted that every extra traversal yields more information about the
VG, and thus the s u e of the LVG will increase in this case. Thus the
learning process will be catalyzed.

ACKNOWLEDGMENT

We would like to thank Prof. T. Lazano-Perez of the Massachu-
setts Institute of Technology for carefully reading the manuscript and
for his helpful and critical comments. He also suggested various

680 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 6, DECEMBER 1987

35

3:

3(

25

20

15

10

5

1 2 3 4 5

f : Number of paths traversed using NAVIGATE-LOCAL. -----F

Fig. 16. Graph showing number of edges in LVG as function of number of paths traversed using NAVIGATE-LOCAL. Out of total of
39, robot learns 31 edges in five traversals.

Fig. 17

D /
Fig. 18.

avenues for further work. We are also grateful to the anonymous
referees who gave us both critical and extremely encouraging
feedback, which later led to the Appendix.

REFERENCES
[l] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of

Computer Algorithms. Reading, MA: Addison-Wesley, 1974.

R. A. Brooks, “Visual map making for a mobile robot,” in Proc. 1985
IEEE Int. Conf. Robotics and Automation, 1985, pp. 824-829.
R. A. Books and T. Lozano-Perez, “A subdivision algorithm in
configuration space for path with rotation,” IEEE Trans. Syst., Man,
Cybern., vol. SMC-15, no. 2, pp. 224-233, Mar./Apr. 1985.
R. Chatila, “Path planning and environment learning in a mobile robot
system,” in Proc. European Conf. Artificial Intelligence, Torsey,
France, 1982.
R. Chattergy, “Some heuristics for the navigation of a robot,” Int. J.
Robotics Res., vol. 4, no. 1, pp. 59-66, Spring 1985.
J. L. Crowley, “Navigation of an intelligent mobile robot,” IEEE J.
Robotics Automat., vol. RA-1, no. 2, pp. 31-41, Mar. 1985.
N. Deo, Graph Theory with Applications to Engineering and
Computer Science. Englewood Cliffs, NJ: Prentice-Hall, 1974.
G. Giralt, R. Sobek, and R. Chatila, “A multilevel planning and
navigation system for a mobile robot,” in Proc. 6th Int. Joint Conf.
Artgicial Intelligence, Aug. 1979, Tokyo, Japan, pp. 335-338.
L. Gouzenes, “Strategies for solving collison-free trajectories prob-
lems for mobile and manipulator robots,” Int. J. Robotics Res., vol.
3, no. 4, pp. 51-65, Winter 1984.
S . S. Iyengar, C. C. Jorgensen, S . V. N. Rao, and C. R. Weisbin,
“Robot navigation algorithms using learned spatial graphs,” Ro-
botica, vol. 4, pp. 93-100, Jan. 1986.
-, “Learned navigation paths for a robot in unexplored terrain,” in
Proc. 2nd Conf. Artificial Intelligence Applications and Engineer-
ing ofKnowledge Based Systems, Miami Beach, FL, Dec. 1985.
J. Laumond, ‘‘Model structuring and concept recognition: Two aspects
of learning for a mobile robot,” in Proc. 8th Conf. ArtSficial
Intelligence, Aug. 1983, Karlsruhe, W. Germany, p. 839.
D. T. Lee and F. P. Preparata, “Computational geometry-A survey,”
IEEE Trans. Comput., vol. C-33, pp. 1072-1101, Dec. 1984.
T. Lozano-Perez, “Spatial planning: A configuration space approach,”
IEEE Trans. Comput., vol. C-32, pp. 108-120, Feb. 1983.
T. Lozano-Perez and M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Commun. ACM,

V. J. Lumelsky and A. A. Stepanov, “Effect of uncertainty on
continuous path planning for an autonomous vehicle,” in Proc. 23rd
IEEE Conf. Decision and Control, 1984, pp. 1616-1621.

V O ~ . 22, pp. 560-570, Oct. 1979.

IOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 6, DECEMBER 1987 68 1

H. P. Moravec, “The CMU rover,” in Proc. Nut. Conf. Artificial
Intelligence, Aug. 1982, pp. 377-380.
N. J. Nilsson, “Mobile automation: An application of artificial
intelligence techniques,” in Proc. 1st Int. Joint Conf. Artificial
Intelligence, May 1969, pp. 509-520.
J. B. Oommen and I. Reichstein, “On the problem of translating an
elliptic object through a workspace of elliptic obstacles,” Robotica,

N. S. V. Rao, S. S. Iyengar, C. C. Jorgensen, and C. R. Weisbin, “On
the robot navigation in an unexplored terrain,” J. Robotic Syst., vol.

A. M . Thompson, “The navigation system of the JPL robot,” in Proc.
5th Int. Joint Conf. Artificial Intelligence, Aug. 1977, Cambridge,

M. P. Turchen and A. K. C. Wong, “Low level learning for a mobile
robot: Environmental model acquisition,” in Proc. 2nd Int. Conf.
Artificial Intelligence and Its Applications, Dec. 1985, pp. 156-161.
S. M. Udupa, “Collision detection and avoidance in computer
controlled maninulators,” in Proc. 5th Int. Conf. Artificial Intelli-
gence, Mass. inst. Technol., Cambridge, Aug. 1977, pp. 737-748.
R. Wallace et al., “First results in robot road following,” in Proc. 9th
Int. Conf. Artificial Intelligence, Aug. 1985, Los Angeles, CA, pp.

C. R. Weisbin et al., “Machine intelligence for robotics applications,”
in Proc. 1985 Conf. Intelligent Systems and Machines, Apr. 1985.
S. Whitesides, “Computational geometry and motion planning,” in
Computational Geometry, G. Toussaint, Ed. New York: North
Holland, 1985.
N. Andrade, M.C.S. thesis, School of Computer Science, Carlton
Univ., Ottawa, ON, Canada, in preparation.

VOI. 5, pp. 187-196, 1987.

3, pp. 389-407, 1986.

MA, pp. 749-757.

1089-1095.

Adaptive Friction Compensation in DC-Motor Drives

c. CANUDAS, K. J. ASTROM, FELLOW, IEEE, AND K. BRAUN

Abstract-A control scheme is proposed whew the nonlinear effects of
friction are compensated adaptively. When the friction is compensated,
the motor drive can approximately be described by a constant coefficient
linear model. Standard methods can be applied to design a regulator for
such a model. This results in a control law which is a combinatjon of a
fixed linear controller and an adaptive part which compensates for
nonlinear friction effects. Experiments have clearly shown that both static
and dynamic friction have nonsymmetric characteristics. They depend on
the direction of motion. This is considered in the design of the adaptive
friction compensation. The proposes scheme has been implemented and
tested on a laboratory prototype with good results. The control law is
implemented on an IBM PC. The ideas, algorithm, and experimental
results are described. The results are relevant for many precision drives,
such as those found in industrial robots.

I. INTRODUCTION
Adaptive control has predominantly dealt with generic models

where all parameters are unknown. Such an approach has the

Manuscript received May 21, 1986; revised January 11, 1987. This work
was supported in part by the Swedish Board of Technical Development under
Grant 85-3225. This communication was presented in part at the IEEE
Conference on Robotics and Automation, San Francisco, CA, April 1986.

C. Canudas is with the Laboratoire d’Automatique de Grenoble, B.P. 46,
38402, Saint-Martin-d’Hi?res, France.
K. J. Astrom is with the Department of Automatic Control, Lund Institute

of Technology, Box 118, S-22100, Lund, Sweden.
K. Braun was with the Fachgmppe fur Automatik, ETH-Zentrum, CH-

8092 Zurich, Switzerland.
IEEE Log Number 8716969.

advantage that it is general but also has the disadvantage that many
parameters have to be estimated. Much of the work on adaptive
control has also been confined to linear systems. In practice, many
adaptive problems exist where the system can be described as
partially known in the sense that part of the system dynamics is
known and another part unknown. In this communication we consider
a problem of this type, namely, a servo with nonlinear friction.
Friction, which is always present to some degree, causes difficulties
and gives rise to poor performance in precision servos in robots and
other applications.

Velocity control of a servo motor with friction is considered. It is
assumed that static and viscous frictions can be described as nonlinear ~

functions of the angular velocity. The friction characteristics depend
on the direction of the motion. The model can thus be split into two
parts, depending on the direction of motion. The model isolates the
friction torque effects and cancels them by feedback compensation.

Adaptive friction compensation has been considered before [17]. It
was treated with model reference techniques in [7] and more recently
in [15] and [lo]. This work differs in the friction model and in the
adaptive control law used.

The adaptive scheme introduced here attempts to use the a priori
information available, i.e., the structure of the nonlinearity.and the
knowledge of some of the parameters. It seems natural to use adaptive
schemes with explicit identification which utilizes this a priori
information. Only those parameters which are not known apriori are
estimated.The estimates are used to compensate for the friction-
torque effects, and a linear control design is used to control the
approximately linear system that is obtained when the friction effects
are compensated. The final control structure can be viewed as a
combination of a fixed linear controller and a feedback adaptive
compensation.

The communication is organized as follows. Friction models
proposed in the literature are discussed in Section 11. A model where
the friction torque is a piecewise-linear function of motor speed is
established. This model captures static and dynamic friction effects.
A strategy for friction compensation is presented in Section 111.
Section IV briefly describes the control laws for the linear system
obtained when the friction effects are compensated. The design is a
standard pole placement control. Section V proposes an adaptive
version of the fixed friction compensation and proposes a possible
design approach. The proposed ideas have been implemented on a
laboratory prototype. The digital control laws were implemented
using an IBM personal computer. The results of some experiments
are shown in Section VI. Some conclusions are given in Section VU.

11. MATHEMATICAL MODELS
A dc motor with a permanent magnet was used in our experiments.

Such motors are commonly used in robots and precision servos. The
motor is provided with an electronic amplifier with current feedback.
If all inertias are reflected to the motor axis, the motor can be
described by the following model:

dw
dt

J ---=Kl(t) - Tf(t) + Tl(t). (1)

Here J is the total moment of inertia reflected to the motor axis, K
is the current constant, I is the motor current, Tf is the friction
torque, and TI is load disturbance torque. For the purpose of the
investigation of the friction compensation, phenomena like compli-
ance and torque ripple are not included in the model (1).

Friction Models
Friction models have been extensively discussed in the literature

[5] , [15], [7]. In spite of this, there is considerable disagreement on
the proper model structure. It is well established that the friction
torque is a function of the angular velocity. There is, however,
disagreement concerning the character of the function. In the classical

0882-4967/87/1200-0681$01.00 0 1987 IEEE

