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Robot  Navigation  in Unknown Terrains Using Learned 
Visibility Graphs. Part I: The  Disjoint  Convex 

Obstacle Case 
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Abstract-The problem of navigating an autonomous mobile robot 
through unexplored terrain of obstacles is discussed. The case when the 
obstacles are “known” has been extensively studied in literature. 
Completely unexplored obstacle terrain is considered. In this case, the 
process of navigation involves both learning the information about the 
obstacle terrain and path planning. An algorithm is presented to navigate 
a robot in  an unexplored terrain that is  arbitrarily populated with disjoint 
convex polygonal obstacles in the plane. The navigation process is 
constituted by a number of traversals; each traversal is from an arbitrary 
source point to an  arbitrary destination point. The proposed algorithm is 
proven to yield a convergent solution to each path of traversal. Initially, 
the  terrain is explored using a rather primitive sensor, and the paths of 
traversal  made may be suboptimal. The visibility graph that models the 
obstacle terrain is incrementally constructed by integrating the informa- 
tion about the paths traversed so far.  At any stage of learning, the 
partially  learned  terrain model is represented as a learned visibility graph, 
and it is updated after each traversal. It is proven that the learned 
visibility graph converges to the visibility graph with probability one when 
the source and destination points are chosen randomly. Ultimately, the 
availability of the complete visibility graph enables the robot to plan 
globally optimal paths and also obviates the further usage of sensors. 

I. INTRODUCTION 
Robotics is one of the most important  and challenging areas of 

computer science. Robots have been increasingly applied in  carrying 
out tedious and monotonous tasks, such as normal maintenance, 
inspection, etc., in  industries. In hazardous  environments, such as 
nuclear power  plants,  underwater, etc., robots are employed to carry 
out humanlike operations.  However,  as a scientific discipline, the 
area of robotics is fascinating from the  directions of challenge, 
application, and  results.  Perhaps the most interesting aspect of 
robotics is the gamut of underlying  problems that spans from 
extremely abstract mathematical problems to highly pragmatic ones. 

There  are many existing  robots  capable of carrying  out intelligent 
and autonomous operations.  Examples are SHAKEY [18],  the JPL 
robot [21], HILARE [8],  the  Stanford Cart [17], the  CMU terrigator 
and Neptune robots [24], HERMIES [25], etc.  There  are many facets to 
a completely autonomous robot;  among them some of the actively 
pursued fields are knowledge  representation, task planning,  sensor 
interpretation,  terrain  model  acquisition,  dynamics and control, 
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specialized computer  architectures,  algorithms for concurrent com- 
putations, path planning and navigation,  and  coordinated manipula- 
tion. 

Path planning and navigation is one of  the most important aspects 
of autonomous roving  vehicles.  The find-path problem  deals with 
navigating a robot through a completely known terrain of obstacles. 
This problem is extensively studied and solved by many research- 
ers-Brooks and Lozano-Perez  [3],  Gouzenes [9], Lozano-Perez 
[14], Lozano-Perez  and Wesley [15], and Oommen and Reichstein 
[19] are  some of  the  most  important  contributors. Whitesides [26] is 
an excellent reference for various strategies used to solve the find- 
path problem.  Another  problem  deals with navigating a robot through 
an unknown or partially explored  obstacle  terrain. Unlike the find- 
path problem, this problem  has not been subjected to a rigorous 
mathematical treatment,  and  this could be attributed,  at least 
partially, to the inherent nature of this  problem.  However, this 
problem  is also researched by many scientists-Brooks [2], Chatila 
[4], Chattergy [ 5 ] ,  Crowley [6], Giralt et al. 181, Iyengar et al. [lo], 
[l I], Laumond [ 121, Lumelsky and Stepanov [16],  Rao et al. [20], 
Turchen and Wong  [22],  and  Udupa [23] present many important 
results.  As pointed out in  the  literature, the navigation through 
unknown terrain involves activities such  as model acquisition and 
learning,  sensing, etc., which are absent in  the find-path problem. 

In this  correspondence we deal with the problem of navigation 
through an unexplored terrain. A rather  elementary method involves 
sensing the obstacles and avoiding them in a localized manner. In 
more sophisticated methods  the  terrain is explored  as the robot 
navigates. Iyengar et al. [lo], 11 11 propose a technique that “learns” 
the terrain model as the robot navigates. Initially,  the robot uses the 
sensor  information to avoid obstacles, and the  terrain model is 
incrementally learned by integrating the information  extracted from 
the  earlier  traversals. In this method the partially built model is used 
to the maximum extent in path planning,  and the regions where no 
model is available are explored using sensors.  Another important 
aspect is to bound the  obstacles using simple polygons. The free space 
is spanned by convex polygons. These constituent polygons are 
updated as the  learning  proceeds;  as a result,  the polygons that bound 
the obstacle shrink  in size, and the polygons that  span the  free space 
grow in size. Such a strategy provides a way to approximate 
arbitrary-shaped  obstacles by polygons and is also benefited by the 
available computational geometry  and  other related algorithms found 
in [ 11, [7], [13], [26]. However,  there  are limitations on  the technique 
of  Iyengar et al. [lo], [ll]. The proposed algorithm does not yield a 
convergent solution in all cases. 

We propose a technique for navigation in  an unexplored terrain 
when the terrain is populated with disjoint convex polygonal 
obstacles. In precise terms, the method proposed here is proven for 
convergence  in terms of planning paths and also in acquiring the 
entire  terrain model through learning.  As  an  endeavor to include 
learning in the navigation process and to formalize the scheme, we 
now view the  problem  in a completely new framework. We assume 
that the robot begins the navigation in a completely unexplored 
terrain of finite dimensions.  The  terrain is populated with stationary 
obstacles. However,  as opposed to  the work  done earlier,  we shall not 
crystallize our terrain  in  terms  of a Voronoi  diagram.  Rather, we 
shall compute and maintain a graph  termed as the Learned Visibility 
Graph (LVG). To obtain  the LVG, the  robot initially navigates 
through the  obstacles  using a local navigation technique. This 
technique, which is a “hill climbing  technique,” is shown to 
converge in a slightly restricted workspace. In the  process of local 
navigation, the robot manipulates the  LVG. It is shown that the LVG 
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ultimately converges to the  actual visibility graph (VG) of the 
obstacle terrain with probability one.  The  use of  the  LVG  in global 
navigation and its acquisition during  the local navigation phase is  the 
essential difference  between our technique  and  the  techniques  used by 
other  researchers [2],  [4]-[6], [12], [16]. 

The organization of this  correspondence  is  as follows: Section I1 
introduces  the definitions and notations used subsequently. The local 
navigation technique that incorporates  learning and path planning is 
presented in Section 111. The convergence of the proposed algorithm 
is  proven. In Section IV, the  power  of  local navigation algorithm is 
enhanced by incorporating backtracking. As a result, the interior 
restriction on the obstacle  terrain  is relaxed. The modified procedure 
is also proven for correctness. In Section V, a global navigation 
strategy that makes use of the existing  terrain model to the maximum 
extent  is  presented. The important  result, that the  learning eventually 
becomes complete, is presented  in  Section VI. The execution of the 
navigation algorithms on a sample  obstacle  terrain  is presented in 
Section VII. 

11. NOTATIONS AND DEFINITIONS 

The robot  is initially placed in a completely unexplored terrain, and 
it  is  required to undertake a number of traversals;  each  traversal  is 
from an  arbitrary  source  point S to  an arbitrary destination point D. 
The  robot is treated  as a point in a plane that  is  arbitrarily populated 
with stationary disjoint and convex polygonal obstacles. Let W = 
(wl, w2, . . , wk} be  the set of obstacles in the terrain R ,  where wi is 
a convex polygonal obstacle. Furthermore,  the obstacles’ polygons 
are mutually nonintersecting and nontouching. Let V be the union of 
the  vertices  of all the obstacles  and 2 be the set of all edges of the 
obstacle polygons. 

Of  paramount  importance to this entire  problem  is a graph termed 
as  the visibility  graph. The VG  is a pair (V,  E )  where the following 
hold. 

1) V is  the set of vertices  of the obstacles. 
2) E is  the  set of edges  of  the graph. A line  joining  the  vertices ui 

and uj forms an edge ( v i ,  u j )  E E if and only if it  is  an edge of an 
obstacle or it is not  intercepted by any other  obstacle.  Formally, if 
L(uj, vi) is  the set of  points  on  the  line  joining ui and u j ,  then (vi, u j )  
E E iff a) L(uj, u j )  E Z or b) L ( u i ,  u j )  n Z = 4. 

Visibility graphs  have  been extensively studied in the computa- 
tional geometry  literature  and are used in motion planning by 
Lozano-Perez [15] and many other  researchers (see the survey paper 
of Whitesides [26]). However, in this  context  it  is  important to note 
that the  VG is initially unknown to the  robot inasmuch as  the 
obstacles and their locations are unknown. Although the  VG is 
completely unknown initially, it  is  learned  during  the initial stages of 
the navigation process. The partially  learned VG is augmented after 
each traversal by integrating the information  extracted from the local 
navigation. 

The process of learning is  completed when the entire  VG of the 
obstacle  terrain  is completely built.  Before  the  robot attains this  state, 
the VG is only partially built. The robot  graduates  through  various 
intermediate stages of  learning  during which the VG  is incrementally 
constructed. These intermediate stages of  learning are captured in 
terms  of the learned visibility graph which is defined as follows: 
LVG = (V*, E*), where V* E Vand E* E E. The LVG  is initially 
empty and  is incrementally built.  Ultimately,  the  LVG  converges to 
the  exact VG. 

We assume throughout  this  correspondence that the  robot is 
equipped with a sensor  capable of measuring  the  distance to an 
obstacle in any specified direction. The availability of the present-day 
range  sensors  justifies  this  assumption.  Also, we assume that the 
robot is equipped with sensors which enable  the navigation along the 
edges  of  the  obstacles. A sensor system constituted by a set of 
primitive  proximity  sensors  can  impart  such an ability to  the robot. 
Hence the robot can navigate arbitrarily  close to the  obstacle  edges. 
These  sensors are assumed to  be  error-free. 

The interior of any polygon 4 is denoted by I N T 3 .  The straight 
line from the point P to  the point Q is denoted by PQ. Further, qpQ 

denotes the  unit  vector  along  the  straight line P T  We assume 
throughout that the robot is operating  in the plane.  Thus when we use 
the word “terrain,” we use  it  in a more  restricted  sense than it is 
customarily used in  the  literature.  Undoubtedly, navigating in a 
three-dimensional (3-D) terrain  is a far more  difficult  problem,  and 
we do not claim that the  technique we propose  is  applicable to it. 
Indeed, even the  concept of visibility graphs  is  not  all too meaningful 
in the latter  problem because whereas  paths  along the edges of 
polyhedra may not exist, paths along faces of the  polyhedra may [26]. 

111. LOCAL NAVIGATION AND LEARNING 

When the robot navigates in a completely unexplored terrain, its 
path of navigation is completely decided by the sensor  readings. The 
obstacles in the  proximity of the source  point are scanned, and a 
suitable path of navigation is  chosen.  This localized nature of the 
local navigation makes a globally optimal path unattainable in a 
terrain with an arbitrary  distribution of obstacles.  However, local 
navigation is essential during  the initial stages  of  the  navigation. The 
information acquired during the  local  navigation is integrated  into the 
partially built terrain  model. No local navigation is  resorted to in the 
regions where  the existing terrain  model  is sufficient for planning 
globally optimal paths. 

In this section we propose a local navigation technique that enables 
the robot to detect  and avoid obstacles along the  path from an 
arbitrary  source point S to an  arbitrary destination point D. The robot 
is equipped with a primitive motion command MOVE@, A ,  X), where 

a) S is the source  point,  namely,  the  place  where  the robot is 

b) A is the destination point which may or may not be specified; 
c) X is  the  direction of motion, which is always  specified. 

If A is specified, then the  robot  moves from S to A in a straight- 
line  path. In this  case, the d i reaon  of motion X is the  vector qsA , the 
unit-’vector is  the direction  of SA. If A is not specified, then the robot 
moves along the  direction X as follows.  If the motion is alongside an 
edge of gn obstacle,  then  the  robot  moves to the end point of  the edge 
along the direction X. This end point is  returned to the calling 
procedure as point A as  in Fig.  l(a). If motion is not alongside an 
edge of an  obstacle,  then  the  robot  traverses along the  direction X 
until it  reaches a point on  the  edge of an  obstacle  as  shown  in Fig. 
l(b). This  point  is  returned  as  the point A to the  calling  procedure. 

In the remainder of this  section we describe  the  local navigation 
algorithm. For the  treatment  in  this  section we assume that the 
obstacles do not touch or intersect  the  boundaries of the  terrain R .  In 
other words, the  obstacles are properly contained in the  terrain R .  
This is formally represented as 

currently  located; 

k 
U I N T  ( w j )  C INT ( R ) .  (1) 
i= I 

As a consequence of this  assumption, a path always  exists from a 
source point S to a destination point D. However, this  restriction is 
removed in  the next section. 

We present the procedure NAVIGATE-LOCAL that uses a hill- 
climbing technique to plan  and  execute a path from an  arbitrary 
source point S to an  arbitrary  destination point D-The outline of this 
procedure  is as follows. The robot  moves  along SD until it gets to  the 
nearest obstacle. It then  circumnavigates  this  obstacle  using a local 
navigation strategy. The technique is then recursively applied to 
reach D from  the intermediate  point. Further, apart from path 
planning,  the  procedure  also  incorporates the learning  phase of 
acquiring the VG. 

We now concentrate on local navigation strategy. The robot moves 
along the  direction vsD till it encounters  an  obstacle  at a point A 
which is on the  obstacle edge joining  the two vertices, say, A ,  and 
A2. A t 3 i s   p o s  the robot has two possible  directions  of  motion: 
along AA or AA2 as  shown in  Fig.  2.  We define a local optimization 
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A 

S 

Fig. 2. Robot  reached  point  on  obstacle. 

(b) 
Fig. 1. Value returned by  operation MOVE(S,A,X), when A is not 

specified.  (a) Motion along edge of obstacle. (b) Motion till obstacle is 
encountered. 

criterion function J as follows: 

where X is  a unit vector along the d i r e c t i s o f   m o s n .  
Let XI and X, be the unit vectors along A A  and AA2, respectively. 

Let X* E { X l ,  X,} maximize  the function J given  in (2). The robot 
then undertakes  an  exploratory  traversal along the direction -X*  
until it  reaches  the  corresponding  vertex  called  the exploratory 
vertex. At this  exploratory  point  the  terrain  is  explored  using the 
procedure UPDATE-VGRAPH. Then  the  robot  retraces dong  the locally 
optimal direction X* until it  reaches  the  other  vertex S*, whence  it 
again calls UPDATE-VGRAPH. The procedure NAVIGATE-LOCAL is 
recursively applied to navigate from S* to D. 

The  procedure UPDATE-VGRAPH implements the learning  compo- 
nent of the robot navigation. Whenever the robot  reaches  a new 
vertex ui, this vertex  is added to the  LVG. From this  vertex the robot 
beams its sensor  in  the  direction  of  all  the existing vertices  of  the 
LVG. The  edge (vi, u)  is added to the  edge set E*, corresponding to 
each vertex v E V* visible from ui. The algorithm  is formally 
presented as follows: 

procedure UPDATE-VGRAPH(U); 
input: the  vertex u which is newly encountered. 
output: the updated LVG = (V*,E*). 

Initially,  the  LVG is set to (4,$). 
comment: DIST(U~,U~) indicates the Euclidian distance 

between vertices ui and u2, if they are visible 
to each  other. 
This is the auxiliary  information stored along  with  the LVG. 

begin 
1. v*=v* u { u } ;  
2.  for all ui E V*- ( u ]  do 
3. if (uI is visible f x m  v) then 
4. D I S T ( U , , U ) = ~ U ~ U ~ ;  
5.  E*=E* U { ( v l , ~ ) } ;  
6 .  else 
7. DIST(U~,U)= 03; 

endif 
endfor; 

end. 

The  procedure NAVIGATE-LOCAL uses the motion primitive motion 
command MOVE and the procedure UPDATE-VGRAPH during execu- 
tion.  This  procedure  is  formally described as  follows: 

procedure NAVICATE-LOCAL( S ,  D); 
Input: The  source  point S and the destination  point D. 
Output: A  sequence  of  elementary MOVE commands. 
begin 

1. if ( D  is visible from S )  then 
2. MOVE(S,D,VSD) 
3. else 
4. if (S is on an  obstacle  and the obstacle obstructs its view) then 
5. compute { X I  ,A*}, the  two possible directions of motion; 
6 .  X* = direction maximizing Ai.qsD; 
7. if ( S  is a vertex) then 
8. if ( S #  V*) then UPDATE-VGRAPH(S); 
9. MOVE(S,S*,X*); 
10. else 
11. MOVE( S ,  SI, - X*); {make  exploratory  trip to Si} 
12. if (Si # V*) then UPDATE-VGRAPH(S~); 
13. MOVE(&, S*,h*); {retrace steps to S * )  
14. if(S*# V*) then UPDATE-VGRAPH(S*); 

15. NAVIGATE-LOCAL( S*, D); 
16. else {move to next obstacle) 
17. MOVE(S,S*,vsD); {move to next obstacle along vso} 
18. NAVIGATE-LOCAL(S*, D); 

endif; 

endif; 
endif; 

end. 

We shall now prove that the  procedure NAVIGATE-LOCAL con- 
verges. In a  subsequent  section we shall  show that the LVG updated 
using UPDATE-VGRAPH ultimately converges to the exact VG. 

Theorem 1: For a noninterlocking workspace,  the  procedure 
NAVIGATE-LOCAL always  finds  a path from S to D in finite time. 

Proof: There  is  always  a path from S to D as per  the assumption 
in (1).  Hence it suffices to prove that the recursion is  correctly 
applied. We shall prove that this is indeed the case and also that the 
MOVE operations minimize the projected  distance along qsD. Then  the 
theorem follows from  the fact that total the number of vertices of all 
the obstacles is  finite. 

Case  Z-Terminating  Step: If D is visible from S, the  procedure 
terminates  as  per  line 2 in NAVIGATE-LOCAL. In this  case,  the 
projected distance of the path traversed by the robot is reduced from 
1 SD I to  zero in  one  step. 

Case ZZ-Recursive Steps: This  step consists of three mutually 
exclusive and collectively exhaustive  cases. In each  case we shall 
show that each execution of MOVE( S,S*, X*) forces the following 
strict inequality: 

(3) lSDl >S*D . qsD. 
+ 

Case ZZa: The point D is not visible from S ,  and S is not on the 
boundary of the obstructing  obstacle.  Fig.  3(a)  depicts this scenario. 
The lines 17 and 18 of NAVIGATE-LOCAL give the corresponding 
actions. 

I Please  see the Appendix for the reason  why the  workspace should be 
restricted for the current version of NAVIGATE-LOCAL. The details  of a 
workspace being noninterlocking are included  in the  Appendix. 
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S' 

(4 
Fig. 3. Robot  at S is obstructed by obstacle. (a) S is not on edge of obstacle. 
(b) S is on edge of obstacle but not at  vertex. (c) S is at vertex of obstacle. 

In  this case,  the motion isAong q q a n d  every point A along  this 
vector satisfies the relation 1 A D  I . = AD- 7 s ~ .  Thus  the motion along 
qm to A gives the  following  equality: ISD1 = 1SA I + AD-qso,  
whence 

--+ + d  

1sDI > A D  . 7 s ~ .  
----f+ 

(4) 

The  equation  is  particularly  true  for A = S*, and  hence  the  result. 
Case ZZb: The point D is not visible from S ,  and S lies  on the  edge 

of the  obstructing  obstacle. 
Case 1): S does not correspond  to  a  vertex of the  LVG  as  shown 

in  Fig. 3(b). If Xj-qsD = 0, then  the  edge  is  orthogonal  to q s ~ .  In this 
case,  either  direction  does not decrease  the  projected  distance. Note 
that  this  situation  can occur at most  once for  an obstacle  encountered 
during the  navigation  and  hence  cannot  persist.  However,  after  the 
robot  completes  the MOVE corresponding  to  this  step,  the  robot  is 
located at a  vertex.  Since this  is  covered in case 2, we shall only 
consider  the  case when Xi-qsD # 0. Let X* be the  direction in which 
Xj*qsD > 0. The  situation is shown in Fig. 3(b).  Hence the  included 
angle S*SD is  less  than W 2 ,  and I S a  - lS%.qsD1 = I S q  
cos (S*sD) > 0. Hence the  execution of MOVE(S, S*,X*) ensures  the 
inequality given in (3). 

In this  case  the  robot  temporarily  diverges  from the locally optimal 
path.  This  trip  being  purely  exploratory  does not contribute  to the 
navigation.  Note  that this trip takes finite  time. 

Case 2): The  point S is  located at a  vertex of an  obstacle.  Fig. 
3(c)  depicts the  situation.  In  this  case  the  edges of the  convex polygon 
meet at S .  Let the direction X* be the  direction that maximizes 
X i * q s ~ .  Because the  obstacle  is  convex,  the angle between  the  edges 
at S is  less than I'I. Thus  the  angle S*SD is  less  than H/2. Using the 
arguments of case 1,we c o n s d e  that the  execution of the MOVE 

operation  satisfies I SD I - I S*D*qsD I > 0, and  hence the theorem. 

Observe  that if we had only one polygonal  obstacle, we could have 
gone  around  the  obstacle in a systematic  way, i.e.,  either in a 
clockwise or an anticlockwise  direction,  until we reached a point 
from  which D is  visible. However,  the  problem  becomes  more 
difficult when more than one obstacle  exists.  In  this case,  the motion 
must be made in such a way that a  criterion function is minimized. 
We have chosen  to  minimize  the  projected  distance  along SD'by 
maximizing the function J in (2) .  This  method may  not give  rise to  a 

(b) 
Fig. 4. Local navigation strategy need  not yield globally optimal solution. 

Dark lines with arrows indicate path according to local navigation strategy. 
(a) Solution is both globally and locally optimal. (b) Solution is only locally 
optimal. 

Fig. 5. Computation of intervisibility of vertices {u2, uj, u 4 )  as result of 
local navigation.  Dotted  lines  indicate visibility between  vertices. 

globally  optimal  path as  shown in Fig. 4. Such  counter  examples  exist 
for any localized  navigation  scheme for  the want of global  informa- 
tion about the  obstacles.  The  modification of NAVIGATE-LOCAL for 
interlocking  workspaces  is  shown in the  Appendix. 

It  is easy to  conceive of a  scheme  in  which  the  sensor  readings can 
give all the  visible  edges  and  vertices of the obstacles.  In such a  case, 
there may  be a  shorter path for navigation. However, we choose  to  go 
along  the path dictated by NAVIGATE-LOCAL so that  the LVG can  be 
updated in the  process of navigation while the projected  distance 
along qsD is  minimized.  The  procedure UPDATE-VGRAPH makes sure 
that  edges  to all the visible  vertices of LVG are  added  to E* when a 
new vertex is added  to V*. Fig. 5 shows  the  salient  features of the 
approach.  The  vertices u2, u2, u3, u4, u1 are presently  existing in 
LVG,  and the  edges (ul ,  uz), (u3, u4) are  also  present.  A globally 
optimal  path  is Su4D. However, we choose  the path SS*uZS*v3u4D- 
which is only suboptimal. The  exploratory  traversal  to u2 yields the 
visibility  information  about  the  vertices u1, 03, u4, which  is  obtained 
from  the  sensor  information.  It  is  conceivable that the procedure 
NAVIGATE-LOCAL can be modified to avoid exploratory  trips  along  the 
explored  edges of the  obstacles. However, we regard  this  issue  as 
rather  straightforword  and prefer not to elaborate  on  it. 

I v .  LIMITATIONS OF LOCAL NAVIGATION AND A SOLUTION 

The  procedure NAVIGATE-LOCAL introduced in the  previous  section 
always  yields a path in a  noninterlocking  workspace if one  exists  and 
if the  obstacles do not touch  the  terrain  boundaries.  These  precondi- 
tions are implicitly  satisfied as a  consequence of the  assumption in 
(1). The  relaxation of this  assumption  results in two  conditions in 
which the procedure NAVIGATE-LOCAL is not guaranteed  to  halt. 

a) There is  no path existing  between the  source  point S to  the 
destination point D. In this case,  a single  obstacle  blocks  all  the  paths 
from S to D. Fig. 6 shows  some such cases.  Note that when the 
robot starts  moving  around the  obstacle,  its way is blocked in  both 
possible directions. 
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I I 
(b) 

Fig. 6 .  No path from S to D. (a) Case 1. (b)  Case 2 

S' 

Fig. 7. Dead corner S* formed by obstacle  and  terrain  boundary. 

I 
Fig. 8. Proof of convergence of procedure BACKTRACK. 

b) The angle between the  obstacle  edge and the terrain  boundary  is 
less than W 2 .  In this case  we assume that a path exists between S and 
D,  or, stated equivalently,  no  obstacle  blocks  all the paths  between S 
and D. In such a case  the  robot may be forced to move to the  dead 
corner formed by the  obstacle  and  terrain  boundary. At this point the 
robot has no further defined moves. The robot starting  at S gets into 
the dead corner  at S*. This situation is depicted in Fig. 7. 

In this  section, we relax the condition in (1) and enhance  the 
capability of NAVIGATE-LOCAL by imparting to it the ability to 
backtrack. The robot  backtracks (by invoking procedure BACK- 
TRACK) whenever it  reaches a point from which no further moves are 
possible (see Fig. 8). This procedure intelligently guides the robot  in 
the  process of retracing steps. That is,  the robot  backtracks along the 
edges of the  obstructing  obstacle till an  edge (S, SI), that makes an 

angle less than n/2 with ~ S D  is  encountered.  The fact that such an 
edge exists is guaranteed  because of the convexity of the obstacles. 
The search for this edge is  performed by the while loop of lines 3-6 of 
procedure BACKTRACK. As a result, the robot moves to a point from 
which the NAVIGATE-LOCAL can  take over. If for the same obstacle the 
robot has to backtrack  twice, then there  is no path between S and D. 
In other words, if a path from S to D exists, then the robot needs to 
backtrack at most once along the  edges of any obstacle. These aspects 
are further discussed subsequently in this section. The following is 
the BACKTRACK algorithm: 

procedure BACKTRACK(& D, S*); 
Input: The  point D is the  destination  point. 

S is a dead corner,  Le.,  a  vertex of an obstacle and is also on the 
boundary of the  terrain.  The  terrain is noninterlocking. 

Output: A sequence of MOVES from S in  such  a way that if a path exists, 
then it can be  determined  using NAVIGATE-LOCAL. The location 
S* is returned to the  calling  procedure. 

begin 
1 .  & = S ;  
2. X* = only permitted  direction of motion on the obstacle; 
3. while (SD.X*<O) do 

d 

4. MOVE(S,,S*,X*); 
5. S1=S*; 
6 .  X* =only permitted  direction of motion on the  obstacle; 

endwhile; 
end. 

The  convergence of the  procedure BACKTRACK is proved in  the 
following theorem. 

Theorem 2: The procedure BACKTRACK leads to a solution to the 
navigation problem  in a noninterlocking workspace, if one exists. 

Proof: The  crux of the  theorem is to prove that the procedure 
BACKTRACK terminates  in all cases. In other  words, an edge exists that 
makes an angle  less than W 2  with 7~0 .  Fig: 8 shows the  scenario. 
Consider the line SQ, a normal to SD at S. Because the  obstacle  is 
convex, the normal  line SD at S must  intersect  the obstacle again, and 
a t h i s  point the  corresponding edge makes angle  less than rI/2 with 
SD. Thus  the  required  vertex  is found just afier this edge because 
after  this  edge the first  vertex indeed has a smaller value for the 
projected distance along q s ~ .  Hence by moving along the boundary in 
this  direction,  the  procedure BACKTRACK will take  the robot to a place 
from which NAVIGATE-MCAL can  be applied. 

We note that if a path  exists,  the  further execution of NAVIGATE- 
LOCAL will not lead to a dead  end  formed by the same obstacle. That 
is because if the procedure BACKTRACK leads the robot to another 
dead end on the  same  obstacle, clearly,  the robot cannot navigate 
across the obstacle.  Hence  no path exists between S and D. 

Let  the  procedure NAVIGATE-LOCAL with the enhanced capability to 
backtrack be called procedure NAVIGATE-LOCAL-WITH-BACKTRACK. 
This  procedure utilizes NAVIGATE-LOCAL to navigate till the robot 
encounters a dead end. At this point the  procedure BACKTRACK is 
invoked,  after which the NAVIGATE-LOCAL is used. The navigation is 
stopped if no path exists between S and D. The  correctness 'of the 
proof of procedure NAVIGATE-LOCAL-WITH-BACKTRACK easily follows 
from the arguments of this section. Similarly,  the  formal statement of 

those of NAVIGATE-LOCAL and BACKTRACK and  is  omitted for the  sake 
of brevity. 

procedure NAVIGATE-LOCAL-WITH-BACKTRACK easily fOllOWS from 

V. GLOBAL NAVIGATION 

The  procedures  described  in the preceding sections enable a robot 
to navigate in an unexplored terrain. Such a navigation involves the 
usage of sensor  equipment  and  traversing the exploratory  trips.  The 
navigation paths are not necessarily globally optimal from the path 
planning point of view. However, the extra work  carried  out  in  the 
form of learning  is  inevitable because of the lack of information  about 
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the obstacles. Furthermore, the  LVG  is gradually built as a result of 
learning. 

In the regions where the visibility graph  is  available,  the  optimal 
path can be found by computing the shortest path from  the source 
point to the  destination  point on the  graph. The computation can be 
carried out in  quadratic time in  the  number of nodes of the graph by 
using the  Dijkstra's  algorithm [l]. Such a trip can be obtained by 
using only computations on the  LVG  and not involving any sensor 
operations. 

We shall now propose a technique that utilizes the available LVG 
to  the maximum  extent in planning navigation paths. In  the regions 
where  no LVG is  available,  the  procedure NAVIGATE-LOCAL is used 
for navigation. In these  regions the LVG is updated for future 
navigation. The outline of the global navigation strategy as follows: 

procedure NAVIGATE-GLOBAL(S, D); 
begin 

1. Compute-Best-Vertices(S*, D*); 

3. Move-On-LVG(S*,D*); 
4. NAVIGATE-LOCAL-WITH-BACKTRACK(D*, D); 

2. NAVIGATE-LOCAL-WITH-BACKTRACK@, s*); 

end. 

Given S and D ,  two nodes S* and D* on the existing LVG are 
computed. The robot navigates from S to S* using local navigation. 
Then  the navigation from S* and D* is along the optimal path 
computed using  the LVG. Again, from D* to D the local navigation 
is used. Computation of S* and D*, corresponding to  line 1 of 
NAVIGATE-GLOBAL, can be carried out using various  criteria. We 
suggest three such possible  criteria  as follows. 

Criterion A: S* and D* are the nodes of the  LVG closest to S and 
D. ,The computation of these nodes involves O(l V* I) distance 
computations. 

Criterion B: S* is a vertex  such $at it is  the closest to  the line SD. 
D* is  similarly  computed.  Again, the complexity of this computation 
is O( I I/* I). 

Criterion C: S* is a vertex which minimizes the angle S*SD. 
Again, the complexity of  this  computation  is O( I I/* I). 

The closeness of the paths planned by NAVIGATE-GLOBAL to the 
globally optimal path depends on the  degree  to which the LVG  is 
built. The paths tend to  be globally optimal as  the  LVG  converges to 
the VG.  We shall now prove that the LVG indeed converges to VG 
after a sufficient number  of invocations of NAVIGATE-LOCAL. 

+ 

VI. COMPLETE LEARNING 

Learning  is  an  integral  part of NAVIGATE-LOCAL, primarily because 
the robot is initially placed in a completely unexplored obstacle 
terrain, and  the LVG is  incrementally  constructed  as the' robot 
navigates. The central  goal of the learning  is to eventually construct 
the  VG  of the entire  obstacle  terrain.  Once the VG' is completely 
constructed,  the globally optimal path from S to D can be. computed 
before the  robot sets into motion as in [15]. Furthermore,  the 
availability of the complete  VG obviates the  further  usage of sensors. 
Hence the focus of our navigation scheme  is to continually augment 
the LVG with the  information  extracted from sensor readings with the 
aim of ultimately obtaining the complete VG.  In this  section we prove 
that the learning  incorporated  in our technique is complete, i.e., the 
LVG ultimately converges to  VG with probability one if the source 
and destination points are randomly selected in  the free space. 

Theorem 3: If  no  point  in  the free space has a zero probability 
measure of being a source  or destination  point or a point on a path of 
traversal, then the  LVG  converges to the  VG with a probability one. 

Proof: As  per  the procedure UPDATE-VGRAPH, when a new 
vertex is included in V*, all  the  edges  corresponding to the visible 
nodes of the present  LVG are added to E*. Hence  it suffices to  prove 
that every  vertex of the VG  is eventually added to the  LVG. 
Equivalently, it is sufficient to  prove that  every edge of  the obstacle is 
eventually explored by the robot. 

Fig. 9.  Unexplored  obstacle terrain. 

Let pi  be the probability that an  edge ei is explored  during any 
traversal.  Since  every  point  in  the  compact free space  has a nonzero 
probability measure of being a source  point or destination point or 
intermediate point, we have pi > 0. Then  the probability that ei is not 
encountered after k successive independent and  randomly  chosen 
paths is (1 - p i )k .  Clearly,  this  tends to  zero  as k tends to infinity. 
Hence the theorem  is proved. 

We conclude this section with an interesting  result  that for  the 
complete  convergence of the LVG to  the VG, the number  of  sensing 
operations involved in  the  procedure UPDATE-VGRAPH is quadratic in 
the total number  of  vertices  of the obstacles. 

Theorem 4: The number of sensor  operations  performed within 
the procedure UPDATE-VGRAPH to learn the complete  VG is o(N2), 
where N is the total number  of  vertices of the  obstacles. 

Proof: A explained in the lines 8, 12, and 14 of procedure 
NAVIGATE-LOCAL, no sensing operations are carried out when the 
robot encounters an already visited vertex.  The sensor  operations are 
performed only when  the  robot  encounters a new vertex.  Suppose the 
LVG presently has i - 1 vertices ( u I ,  u2, * * 1,  vi- } when a new 
vertex ui is  encountered. At this  time, the robot  beams  its  sensors  in 
the  direction  of uj E ( u I ,  u2, * . . , ui- to determine if uj is visible 
from vi. Hence  the  number of sensor  operations  carried  out when the 
ith vertex is  added to the LVG is i - 1. Therefore,  the total number 
of  sensor  operations carried out in the  procedure UPDATE-VGRAPH is 
given by 

N x i- 1 =N(N- 1) /2=0(N2) ,  
i= 1 

hence the theorem. 

The  underlying  premise of our  work has been that we have 
assumed that the sensors  used  and the navigation technology used are 
error free. This, of course,  is a serious  limitation. The question of 
operating in  an environment prone  to  errors (with these errors 
described either by  a bound or  by a probability distribution) is a 
problem  that  is far  more complex. An initial (but noteworthy)  move 
in this direction  of solving the problem  has  been  made by Brooks [2]. 
We  are currently investigating the formalization  of the convergence 
properties of a path-plainirig  algorithm  in  the midst of uncertainties 
using the principle of adaptive  learning. In the next section we 
present a practical  example for the technique  described in this  paper. 

VII. AN ILLUSTRATIVE EXAMPLE 

In this  section we describe  an  illustrative  example of our scheme 
for a rectangular  obstacle terrain shown  in Fig. 9. Initially, the terrain 
is  unexplored and the LVG  is empty. A sequence of five paths is 
undertaken in succession by the  robot. In other words, the  robot 
moves first to 2 from 1, then to 3 from 2, etc., until it  reaches 6. Figs. 
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Fig. 11. NAVIGATE-LOCAL from 2 to 3. (a) Obstacle  terrain.  (b)  Present 
LVG . 

(b) 
Fig. 10. NAVIGATE-LOCAL from 1 to 2. (a)  Obstacle  terrain. (b) Present 

LVG,  portion of VG. 

(b) 
Fig. 12. NAVIGATE-LOCAL from 3 to 4. (a) Obstacle  terrain. (b) Present 

LVG. 

(b) 
Fig. 13. NAVIGATE-LOCAL from 4 to 5 .  (a) Obstacle  terrain. (b) Present 

LVG . 
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(b) 
Fig. 14. NAVIGATE-LOCAL from 5 to 6 .  (a) Obstacle terrain. (b) Present 

LVG. 

(b) 
Fig. 15. Navigate  from 6 to 7. Note that path actually computed uses 

visibility  graph and is  shortest  path on LVG.  (a)  Obstacle terrain. (b) 
Present  LVG. 

10-14 illustrate  the  various paths traversed and the  corresponding 
LVG’s. 

Initially,  during  the motion from 1 to 2,  the robot learns  four 
edges  of the VG shown  in Fig. lo@). In the next traversal, seven 
more  edges  of the VG are learned. A curve showing the number of 
edges  learned  as a function of the  number of traversals is given  in 
Fig. 16. Note that as many as  31  out of a total of 39 edges of VG are 
learned in five traversals. 

Suppose that at  this point the global navigation strategy is invoked 
to navigate to 7 from  6.  The S* and D* obtained by using Criterion A 
of Section V are shown in Fig. 15. The  robot navigates locally from S 
to S*, then along the LVG from S* to D*, and, finally, locally from 
D* to D. Note that the  path from S* to D* does not involve any 
sensor  operations but only quadratic time computation on the LVG  to 
find the  shortest path. Actual simulation results obtained using 
random paths are presented  elsewhere [27]. 

VIII. CONCLUSION 

The  terrain model acquisition and path-planning problems are very 
important aspects of an autonomous  robot navigating in  an unex- 
plored terrain. In the  literature  this  problem  has not been subjected to 
a rigorous mathematical treatment as  far as the model acquisition is 
concerned. 

In this paper, we propose a technique that enables  an autonomous 
robot to navigate in a totally unexplored  terrain. The robot builds the 
terrain model as it navigates and  stores  the  processed  sensor 
information  in terms of a learned visibility graph.  The proposed 
technique is proven to obtain a path if one  exists. Furthermore, the 
terrain is guaranteed to become completely learned when the 
complete visibility graph  of  the entire obstacle  terrain is built. After 
this  stage  the  robot  traverses along the optimal paths and no  longer 
needs the sensor  equipment. The significance of this  technique is the 
characterization of both the path planning and  learning  in a precise 
mathematical framework. The convergence of the  path planning and 
the learning  processes  is  proven. 

APPENDIX 

After the  paper  was accepted for publication, just  prior  to the 
publication of the  final  manuscript, one of the  reviewers noted that 
there was an error in  the  convergence  proof of Theorem I.  He did this 
by presenting a counter  example which we will  now  present. 

The robot is to navigate locally from S to D. Observe that in  this 
case the robot can “cycle” indefinitely as  shown  in Fig. 17. We refer 
to a terrain which possesses such a cycling  configuration  of  obstacles 
as a interlocking terrain. 

We propose a rather  minor modification of the algorithm NAVI- 
GATE-LOCAL which considers  this.  Rather  than the robot  leave an 
obstacle at any arbitrary  vertex  (or edge), it i s  constrained to leave  an 
obstacle on  an  edge intersected by the line SD and that only at  the 
point where  the edge intersects  the line SD. Clearly,  since  the 
obstacles are nonintersecting and  convex, there will be exactly two 
such eligible edges.  Since  the  projected  distance along the line SD is 
always minimized, the robot will leave the obstacle  under  consider- 
ation at the edge which is “closer”  to D. For a simple  example, Fig. 
18 shows the edges traversed  using the modification. 

Observe  that NAVIGATE-LOCAL is now slightly less optimal in 
terms of the  number  of  traversals  it  requires. However,  it must be 
noted that every  extra  traversal  yields more information about the 
VG, and  thus the s u e  of the  LVG will  increase  in  this  case.  Thus the 
learning  process will be catalyzed. 
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Adaptive Friction Compensation in DC-Motor Drives 

c. CANUDAS, K. J.  ASTROM, FELLOW, IEEE, AND K. BRAUN 

Abstract-A control scheme is proposed whew the nonlinear effects  of 
friction are compensated adaptively. When the friction is compensated, 
the motor drive can approximately be described by a constant coefficient 
linear model. Standard methods can be applied to design a regulator for 
such a model. This results in a control law  which is a combinatjon of a 
fixed linear controller and an adaptive part which compensates for 
nonlinear friction effects. Experiments have clearly shown that both static 
and dynamic friction have nonsymmetric characteristics. They depend on 
the direction of  motion.  This  is considered in the design of the adaptive 
friction compensation. The proposes scheme has been implemented and 
tested on a laboratory prototype with good results. The control law is 
implemented on  an IBM PC. The ideas, algorithm, and experimental 
results  are described. The results are relevant for many precision drives, 
such as those found in industrial robots. 

I. INTRODUCTION 
Adaptive  control has predominantly dealt with generic models 

where  all  parameters are unknown.  Such  an  approach  has the 
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advantage that  it  is  general but also has the  disadvantage that many 
parameters have to  be estimated. Much of the  work  on  adaptive 
control  has  also been confined to linear  systems. In practice, many 
adaptive problems  exist  where the system  can be described as 
partially known in the  sense that part  of the system dynamics is 
known and another  part  unknown. In this  communication we consider 
a problem of this  type,  namely, a servo with nonlinear friction. 
Friction, which is  always  present to some degree, causes difficulties 
and gives rise to poor  performance  in precision servos  in  robots and 
other applications. 

Velocity control of a servo motor with friction  is  considered. It is 
assumed that static  and viscous frictions  can be described  as nonlinear ~ 

functions of the angular velocity. The  friction  characteristics depend 
on  the  direction  of the motion. The model can thus be split into two 
parts, depending on the direction of motion. The model isolates the 
friction  torque  effects  and  cancels them by feedback  compensation. 

Adaptive friction  compensation has been considered  before [17]. It 
was treated with model reference techniques in [7] and  more recently 
in [15] and [lo]. This work differs  in  the  friction model and in  the 
adaptive control law used. 

The  adaptive  scheme  introduced here attempts to use  the a  priori 
information available, i.e., the  structure  of the nonlinearity.and  the 
knowledge of some of the  parameters. It seems  natural to  use adaptive 
schemes with explicit identification which utilizes  this a  priori 
information. Only those parameters which are not known apriori are 
estimated.The estimates are used to compensate for the friction- 
torque  effects,  and a linear  control  design  is  used to control the 
approximately linear  system that is obtained when the friction  effects 
are compensated. The final control  structure can be viewed as a 
combination of a fixed linear  controller  and a feedback  adaptive 
compensation. 

The  communication is organized as follows.  Friction models 
proposed in the literature are discussed in  Section 11. A model where 
the friction torque is a piecewise-linear function of motor  speed is 
established. This model  captures  static  and  dynamic  friction  effects. 
A strategy for friction compensation is presented in Section 111. 
Section IV  briefly  describes the control  laws for the  linear system 
obtained when the  friction  effects are compensated. The design is a 
standard pole placement control. Section V proposes  an  adaptive 
version of the fixed friction  compensation and proposes a possible 
design approach. The proposed ideas  have  been  implemented on a 
laboratory  prototype. The digital  control  laws  were implemented 
using an IBM personal computer.  The results  of  some  experiments 
are shown in  Section VI. Some  conclusions are given in Section VU. 

11. MATHEMATICAL MODELS 
A dc motor with a permanent magnet was used in our experiments. 

Such motors are commonly used in  robots and precision servos. The 
motor  is provided with an  electronic  amplifier with current  feedback. 
If all inertias are reflected to the motor  axis, the  motor  can be 
described by the following model: 

dw 
dt 

J ---=Kl(t) - Tf( t )  + Tl(t). (1) 

Here J is the total moment of inertia reflected to the motor  axis, K 
is  the  current  constant, I is the  motor  current, Tf is  the  friction 
torque, and TI is load disturbance  torque. For  the purpose  of the 
investigation of the friction  compensation, phenomena like compli- 
ance and torque  ripple are not included  in  the model (1). 

Friction Models 
Friction models have been extensively discussed  in  the  literature 

[5 ] ,  [15], [7]. In spite of this, there  is considerable  disagreement on 
the proper model structure. It is  well established that  the  friction 
torque  is a function of the angular  velocity. There  is, however, 
disagreement  concerning  the  character  of the function. In the classical 
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