
Algorithms and
Data Structures The Effect of Data Structures
John Bruno
Editor

of Programs

FAROKH B. BASTANI and S. SITHARAMA IYENGAR

ABSTRACT: The logical complexity of a program is a
measure of the effort required to understand it. We
hypothesize that the logical co.mplexity of a program
increases with the increase in the opaqueness of the
relationship between the physical data structures used in
the program and their corresponding abstract data types.
The results of an experiment conducted to investigate
this hypothesis are reported. Documentation techniques
for making programs easier to understand using complex
data structures are discussed. Data structure diagrams,
data structure invariants, stepwise transformation of data
structures, and formal specification of the mapping
between abstract and concrete data structures are
illustrated using two nontrivial examples.

1. INTRODUCTION
Any program intended for use over a period of years
must be implemented to be comprehensible for
other programmers to maintain. This can be
achieved by proper coding and documentation prac-
tices. To determine whether a program has been
well designed and adequately documented, we must
measure its “difficulty,” that is, the amount of time
required to understand it. Over the past decade sev-
eral program complexity metrics [5] have been pro-

This work was supported in part by the National Science Foundation under
Grant MCS-83.01745.

A paper describing the experiment reported here was presented at the Sympo-
sium on Empirical Foundations of Information and Software Science, Atlanta,
Ga.. Oct. 1984.

0 1987 ACM OOOl-0782/87/0300-0250 754

posed. Those that are widely known are software
science [7], control flow complexity metrics [l, 131,
program knots [21], and complexities due to data
flow dependencies [2, 8, 91. Over the last five years a
number of papers have been published on various
aspects of program complexity. For overviews of re-
lated research on software complexity metrics see
15, 143.

We investigate the effect of data structures on pro-
gram complexity. An experimental study of the ef-
fect of control flow and data structure documenta-
tion on program comprehensibility is discussed by
Schneiderman [17]. He concludes that data structure
information is more helpful than control flow infor-
mation for understanding programs irrespective of
whether the information is in textual or graphical
format.

Section 2 discusses an experiment that we con-
ducted to verify our hypothesis that data structures
are not inherently complex once a certain level of
knowledge is assumed, although the representation
of advanced data structures (such as sets) using sim-
pler data structures (such as arrays) can increase a
program’s complexity if the mapping between the
two data structures is obscure. Since it is often
essential to use primitive data structures for per-
formance reasons, the relationship between the ab-
stract and concrete versions of a data structure
should be well documented. Toward this end, Sec-
tion 3 discusses documentation techniques for data

250 Communications of the ACM March 1987 Volume 30 Number 3

Research Contributions

structures that can aid in program clarification.
These include both informal and formal approaches,
such as data structure diagrams, stepwise transfor-
mation, invariant assertions, and mapping specifica-
tions. These techniques are illustrated by two de-
tailed examples in Section 4. Section 5 summarizes
the article and outlines some research directions.

2. EXPERIMENT
Several researchers have studied the effects of com-
ments, different control structures, mnemonic
names, textual and graphical documentation, etc.,
on program comprehension [4, 16-191. After analyz-
ing a number of examples, we conjectured that data
structures are not inherently complex. That is, we
cannot, for example, assert that a program that
manipulates trees is inherently more complex than a
program that uses arrays. However, if a program us-
ing trees is transformed into one using arrays, then
the latter program can be more complex if the corre-
spondence (i.e., mapping or relationship) between
the tree and its array representation is obscure.

This hypothesis is important because it can be
used to guide the extent to which documentation
should emphasize data structure. Suitable documen-
tation methods are discussed in Sections 3 and 4. In
this section, we discuss an experiment conducted to
verify this hypothesis.

Prior to conducting the experiment we selected a
set of programs and an experimental method for de-
termining their complexity. To isolate the effect of
data structures on logical complexity, the programs
had the same functions and algorithms but used dif-
ferent data structures. To estimate the complexity of
the programs, we tested for comprehension by re-
quiring a set of students to locate errors embedded
in the programs. This is a reasonable criterion since
it is usually the first step in program maintenance.
An alternative approach is to pose some questions at
the end of the comprehension period. However, this
would test recollection ability which can be affected
by the choice of names, degree of documentation,
etc. [4]. Also, we did not require correction of errors
since this would test problem solving capability in
addition to comprehension.

For each program given to each student, the ob-
served factors were the number of errors correctly
located and the time taken to locate those errors.
One possible metric which combines these factors is
the rate of detection of errors. This can be criticized
on the ground that some errors are detected more
quickly than others. To overcome this obstacle we
asked the students to try to find two errors in each
program. Nevertheless, the analysis later in this sec-
tion considers the two factors separately.

2.1 Subjects
Thirty students in two graduate courses at the Uni-
versity of Houston and nine students in a graduate
course at Louisiana State University served as sub-
jects in the experiment. The language used was
Pascal. The experiment was conducted during regu-
lar class sessions in the middle of the semester
(March 1984).

All of the subjects had knowledge of at least three
programming languages (Pascal, Fortran or PL/l,
other high-level or assembly languages), structured
programming style, fundamental data structures,
and a good background in mathematics.

2.2 Materials
The subjects were given two sets of programs coded
in Pascal-like syntax, with some comments at the
beginning of each program: Set 1 (part A) imple-
ments a stack PUSH operation presented in three
procedures each using a different data structure
(array, linked list, and combination of array and
linked list). The second set of programs (part B) de-
scribes the sift procedure used in heap sort. Set 2a
uses an array data structure and set 2b uses a binary
tree data structure. Each program contained two or
three artificially embedded errors. Additional details
appear in [lo].

2.3 Design
A repeated measures design with one factor was
used in the first experiment (the stack PUSH opera-
tion) at both the test sites. Each subject received
each of the three programs in turn. In the second
experiment (heap sort), the subjects in Group I were
given either the array or the binary sift procedure in
a random order. Those in Group II received both the
procedures in turn.

2.4 Procedure
The experiment was conducted during a regularly
scheduled lecture period. In Group II, the instructor
of the course had described the purpose of the test-
ing in the previous lecture; in Group I this was done
just prior to the experiment. The experiment was
conducted in two parts. In part A (stack PUSH opera-
tion), the subjects were given the array program
first. They were asked to find and mark up to two
embedded errors in the program. They were also
asked to note the time taken (in minutes) to detect
the errors in the program. (The students were not
required to correct those errors.) Then they were
given the second program (employing linked list)
and then the third program (combination of array
and linked list) in turn and were asked to do the
same thing. After completion of part A, the programs

March 1987 Volume 30 Number 3 Communications of the ACM 251

Research Contributions

were collected. In part B, the subjects were required
to repeat the procedure for the heap sort procedure.

2.5 Scoring
Following the experiment, the exercises were scored
to determine how many errors were correctly de-
tected by each student. The criterion was: Would
the location of the error identified by a student de-
scribe the error in the program? For the purpose of
the study the errors were tallied 0, 1, or 2, the num-
ber of correct answers.

2.6 Results and Ikxssions
Tables I and II summarize the results of the experi-
ment. For the number of errors successfully found in
the stack PUSH operation, a significant difference
in Group II was indicated by an F(2, 16) = 3.65,

p = 0.0495, with further analysis by the Duncan
multiple range test (alpha = 0.05) showing signifi-
cantly more errors found for the linked list than for
the array/linked list combination. More errors were
found for the array algorithm also, but the difference
did not reach significance. The differences for the
number of errors in Group I were not significant
(F(2, 56) = 0.83, p = 0.4397), but more errors were
found for both the linked list algorithm and the ar-
ray algorithm than for the combination algorithm.

A two-way analysis of variance was performed for
both measures (errors and time) on the data for the
stack PUSH operation, with a mean effect of data
structure (array versus linked list versus array and
linked list) and with “blocki.ng” on individuals. Sig-
nificant differences for the t.ime taken to find the

errors were observed for both groups (F(2, 16) =
44.88, p < 0.000’1 and F(2, 56) = 38.48, p c 0.0001,
respectively). Further analysis using the Duncan
multiple range test (alpha = 0.05) determined that
for Group I, the array and linked list combination
was significantly more difficult than the linked list
procedure. (See the means for time in Table I.) For
Group II, the array and linked list combination was
significantly more difficult than either the array or
the linked list algorithm, but there was no signifi-
cant difference between the latter two.

Some interesting results were obtained despite
possible confounding by a learning effect due to the
manner in which the procedures were assigned for
the stack PUSH operation algorithm (part A). For the
time to find errors, Group I’s results show that the
linked list algorithm was significantly easier than
the array algorithm, but the learning effect con-
founds interpretation. That is, it would not be diffi-
cult to believe that the significant difference hinges
on that alone. However, the combination algorithm
(array and linked list) is the most difficult of all, and
if learning plays a significant part here, it would be
expected that it makes this the easiest algorithm.
Therefore, it appears to be the most difficult to com-
prehend in any case. Similarly, Group II’s results
indicate that the combination algorithm is signifi-
cantly more difficult than the other two algorithms.

For part B (heap sort experiment) a one-way anal-
ysis of variance shows no significant differences be-
tween algorithms for either the number of errors
discovered (F(l, 18) = 1.29, p = 0.2717) or the time to
find the errors (F(l, 18) = 0.01, p = 0.9327). The

TABLE I. Results of the Experiment for the Stack Push Operation

Array 1.310 0.891 3.828 1.311 1.889 0.333 3.664 1.144
Arrays and linked list 1.034 0.865 5.414 2.113 1.333 0.866 16.278 4.711
Linked list 1.103 0.939 2.103 0.860 2.000 0.000 5.500 1.936

TABLE II. Results of the Experiment for the Siff Procedure

Datastnicture

Array 1.200 0.789 20.500 7.778 1,111 0.333 18.556 3.941
Binarv tree sift 0.800 0.789 20.200 7.885 1.444 0.527 13.333 3.640

252 Communications of the ACM March 1987 Volume 30 Number 3

Research Contributions

design in part B was subject to a learning effect in
Group II, unlike the case in Group I where each
subject received either program 2a or 2b but not
both.

2.7 Observations
Although one should be cautious in drawing conclu-
sions from the experiment in part A due to possible
confounding, it seems safe to conclude that the com-
bination of data structures was more difficult to
comprehend than either data structure alone, at
least for this particular program. The safety lies in
the fact that the combination algorithm should have
been the easiest if the confounding were the only
real effect, when in actuality it was the most diffi-
cult. For the experiment in part B it apparently
makes little difference which of the data structures
is chosen for a heap sort algorithm.

How is it possible for programs containing ad-
vanced data structures to be easier to understand
than programs performing identical functions but
using simple data structures such as arrays? One
likely explanation is that the understanding process
in the latter case is similar to reverse compilation,
namely, an attempt to synthesize the higher level
(abstract) version from the lower level one. This
comprehension task can be aided by presenting the
data structures so as to facilitate such synthesis. This
is discussed in the next section.

3. DATA STRUCTURE DOCUMENTATION
METHOD
We will now outline four complementary methods
for documenting data structures. These are illus-
trated using three different ways of implementing
sets using arrays. The next section contains two ex-
amples.

Definition Dl: A data structure diagram for a given
data structure is a pictorial representation of the
data structure which is constructed using a set of
predefined notations, and conveys the primary rela-
tionships between the components of the data struc-
ture.

Such pictorial information greatly enhances the
comprehension of data structures by human beings
[l7]. Brown and Sedgewick [3] propose the dynamic
construction of data structure diagrams to provide
snapshots of the state of the program for improving
program understandability as well as for debugging
purposes. Selecting the set of predefined notations
requires extensive experimentation since data struc-
ture diagrams are intended wholly for conveying in-
formation to human beings. In this article, we use
informal notations, as illustrated in Figure 1, for
three different representations of sets using arrays.

March 1987 Volume 30 Number 3

(See also [IT].) We recommend that such notations
evolve over several years before any standardization
is attempted.

A data structure diagram is an informal represen-
tation of the state of the data structure. This can be
formalized by giving the invariant assertion for the
data structure [ZZ] and it eliminates all ambiguities
which may be present in the data structure diagram.

Definition 02: The invariant assertion for a data
structure is a precise description of the legal states of
the data structure. Comprehension of complex data
structures can be facilitated by giving a sequence of
intermediate representations. For example, the in-
variant assertions for the three array representation
of sets are shown in Figure 1.

Definition D3: The stepwise transformation of a
data structure starts with a high-level abstract ver-
sion and, by successive transformation, ends with a
lower level one. (See also [ZO].)

Stepwise transformation of data structures is simi-
lar to stepwise program decomposition. It informally
shows how the data structure has evolved, making it
easier to understand the detailed version. For exam-
ple, a representation of stacks using an array/linked
list combination can be understood by first under-
standing the representation of stacks using un-
bounded arrays and then the representation of
unbounded arrays using a linked list of fixed-size
arrays. This can be formalized by specifying the
mapping. (See also [15].)

Definition 04: The mapping between two data
structures is a formal specification of the equiva-
lence of the information contained in the two data
structures. For example, for Figure 1 we have:

(a)

(b)

CC)

for all x: exists(s, x)
@there exists i: 1 I i 5 s.card
such that s.table[i] = x;
for all x: exists(s, x)
@there exists i: 1 I i I s.card
such that
(s.table[(i + 1)div 2]div 8(1+')mod2)

mod 8 = x.
for all x: exists(s, x)
ti there exists i: 1 I i I s.card
such that
x = (s.table[l + (3*i - 3) div 8

div 2(3'1-3)mod8) mod 2

+ 2*[(s.table[l i- (3*i - 2)
div 81

div 2(3*I--Z)mod8) mod 2)
+ 4*[(s.table[l + (3*i - 1)

div 81
div 2(3*1-')mod8) mod 2) .

Communications of the ACM 253

Research Contributions

TABLE:

-CARD

MAX MAX

TABLE:

CARD

TABLE:

MAX

64 W

FIGURE 1. Data Structure Diagram for the Array Representation of Sets: (a) 0 I s.card I MAX;
(b) 0 5 s.card I 2’ MAX; (c) 0 5 s.card 5 (8* MAX) div 3

These four documentation techniques (Dl, D2, D3,
and D4) can collectively provide adequate informa-
tion for data structures. Stepwise refinement (D3)
shows the link be.tween the final and initial data
structures. It is formalized by giving the mapping
(D4) between these data structures. Data structure
diagrams (Dl) informally show how the data struc-
ture is used, that is, they show the relationships
between the various components. The data structure
invariant [DZ) formally shows the legal states of the
data structure. Such combinations of informal and
formal specifications are effective over the entire
software life cycle [12].

4. ILLUSTRATKJNS
In this section, we apply the documentation methods
discussed in the previous section to two detailed ex-
amples.

Example: This example d.eals with a data struc-
ture for the symbol table module specified in [6].
The symbol table module considered here is in-
tended for Pascal-like scope rules. A high-level data
structure for this module uses a traversable stack of
search table of key x attributes. Key corresponds to
the search argument, say, identifier names. The data
structure diagram for this h:igh-level data structure
is shown in Figure 2. The definition is:

var a: TraversableStack of SearchTable
of key X attributes;

NumScopes: integer;
initial a: = NewTraversableStack;

NumScopes := 0;

Recall that in Pascal the definition of an identifier
in a particular scope supersedes its definition (if any)
in the enclosing scopes. The new definition holds in

CARD

FIGURE 2. Data Structure Diagram for the Symbol Table Module

this scope and all enclosed scopes not redefining the
identifier. Thus, an (almost) equivalent data struc-
ture is (see Figure 3):

var b: SearchTable of key X stack
of attributes;

initial b := NewSearchTable;

It is not fully equivalent because for any given key
we cannot determine the scope(s) in which it is de-
clared. Thus, the pop and IsInScope functions [6]
cannot be implemented. This can be rectified by as-

254 Communications of the ACM March 1987 Volume 30 Number 3

FIGURE 3. Data Structure Diagram for “SearchTable of Stack”

sociating a field ScopeNo with each attribute:

var c: SearchTable of key X stack of
(ScopeNo: integer X attributes);

initial c: = NewSearchTable;

The IS I nScope function can now be easily imple-
mented. However, the pop function will require an
examination of all the entries in the search table, a
potentially inefficient operation. This can be reme-
died by using a separate stack to keep the keys in
the order in which they are inserted in the search
table (see Figure 4):

var d: SearchTable of key X stack of
(ScopeNo: integer X attributes);

e: stack of key;
initial d: = NewSearchTable;

e: = NewStack;

.

4 . KEY(1,2)

Research Contributions

Finally, we observe that stack e can be main-
tained by linking the elements in the stacks associ-
ated with each key in the search table in the correct
order, that is, such that the top item has the highest
ScopeNo and the bottom item has the lowest
ScopeNo. This can be achieved by specifying (for
every item) the key of the item which occurs imme-
diately below it in stack e. The key of the item at
the top is specified in a separate variable. The item
at the bottom of stack e can specify any key since
the search table will be empty when it is removed.
Thus:

var f: SearchTable of key X stack
of (PreviousKey: key X
ScopeNo: integer X attributes);

top: key;
initial f: = NewSearchTable;

The final data structure uses an array g for the
abstract data type SearchTable using hashing
with double-hashing for collision resolution. Also,
PreviousKey is replaced by PreviousIndex
which contains the index of the item below this
item. If PreviousIndex = n then there is no item
below it, that is, it is the last item in stack e. The
data structure diagram is shown in Figure 5.

initial NumDistinctKeys: = 0; top: = n;
for all i: 0 I i <n: (g[i].status: =

empty; g[i].ptr: = nil);

)KEY(I,I))

FIGURE 4. Efficient Data Structure for the Symbol Table Module

March 1987 Volume 30 Number 3 Communications of the ACM 255

Research Contributions

The mapping between this data structure and the original one (using a traversable stack) is as follows:

if top = n then assert NumScopes = 0
else assert NumScopes = g[top].ptrl.ScopeNo;
for i: = NumScopes do>wnto 1 do

(for all x such that x exists in top(a) do
assert (there exi.sts j: 0 I j I n - 1 such that

g[j].k := x and g[j].ptr-.ScopeNo = i
and g[j] .ptr^.attr = attributes of x in top(a))

for j: = 0 to n - 1 do
if g[j].ptr # nil and then (g[j].ptr*.ScopeNo = i) do

g[j].ptr: = g[j].ptr^.next
pop(a) I

assert for all. j: 0 5 j < n: g[j].ptr = nil;

The invariant assertions are:

l(a). for all i: g[i] .status = occupiedog[i].ptr # nil;
(b). for all i: (g[i].status = marked) or (g[i].status = empty)wg[i].ptr = nil;

2(a). there exists i: g[i].status = occupied-top in [0 . . n - 11;
(b). there does not exist i: g[i].status = occupied-top = n;

3. NumDistinctKeys = jwthere exists il, i2, ij such that
for all m: 1 5 m 5 j: g[im].status = occupied
and far all i such that there does not exist m (1 I m 5 j: i = im):

(g[i].status = marked) or (g[i].status = empty);
4. for all i: g[i].status = occupiedathere does not exist j: 0 I j < n, j # i:

(g[j].status = occupied) and (g[j].k = g[i].k);
5. for all i: g[i].status = occupied+

j: = hl(g[i].k); c: = h2(g[i] .k);
while j # i do

[assert g[j].status # empty;
j: = (j + c) mod n)

6. for all i: g[i].status = occupied+
P: = g[i] .ptr;
assert p^.ScopeNo I g[top].ptr*.ScopeNo;
while p*. next # nil do

[assert p^.ScopeNo > p^.nextl.ScopeNo;
p: = p.next]

7. var num: integer;
if top in [O . . n - l] then num: = g[top].ptrl.ScopeNo
else num: = 0;
for i: = num downto 1 do

[while (top in [0 _. n - I])

and then (g[top].ptr*.ScopeNo = i) do
[assert g[top].status = occupied;
top, g[top].ptr: = g[top].ptr*.PreviousIndex, g[top].ptrl.next]]

assert top = n;
assert for all i: 0 I i < n: g[i].ptr = nil;

Example: This example deals with the temporary
redirection of pointers for specific purposes. The
idea is due to Deutch, Schorr, and Waite [ll], and
can be applied to several cases. We briefly develop
the data structure used in their efficient algorithm
for garbage collection. Assume that each memory
word (or node) contains a bit m which is used for
marking, a bit a which is set to 1 for atomic nodes
and to 0 for list nodes. Atomic nodes contain some
information and list nodes contain two addresses,

viz., ALink and BLink. Assume that nil is the
address of a node with a = 1.

Step 2: A simple garbage collection algorithm uses a
stack and employs a depth-first marking algorithm
[ll]:

as: stack of node;

Step 2: The stack can be implemented using list
nodes. The data structure diagram is shown in

256 Communications of the ACM March 1987 Volume 30 Number 3

NUMDISTINCTKEYS: O..N
(NUMDISTINCTKEYS = 4)

Research Contributions

-
0 OCCUPIED XRY -- I 5 ATTR(XRYS) ---cIb

I OCCUPIED QUICK .--,R 5 ATTRWlCK 5) R 1 ATTRWICKI) j--Ill-

@TOP 0F”E”STACi) gf

--
I-1 EMPTY _ _ _ _ _ _ - -+

I OCCUPIED SPEED

I+1 MARKED _ _ - - - _ -

R-l MARKED _ _ _ _ _ _ -. -+ @A

R OCCUPIED HEIGHT 0 5 ATTR(HEIGHT5) 1 2 ATTR(HEIGHT2) N\ i IATTR(HEIGHT~) t-+1.

/ * \

PREVIOUSINDEX ; 0. .N

STATUS: (occup’ yBMAR1tED K: KEY PTR:PTRTYPE
EMPTY

FIGURE 5. Final Data Structure for the Symbol Table Module

Figure 6. Let cs (concrete stack) be the pointer to the Step 4: The remarkable observation made by
top of the stack. Deutch, Schorr, and Waite was that this stack can be

Step 3: For this case, we assume that if cs is not
nil then (i) if cs-. a = 1, then cs-. BLink points
to the item at the top of the stack and cs-. ALink
points to the rest of the stack; (ii) if csA. a = 0 then
cs-. BLink points to the rest of the stack while
cs-. ALink is unused. The data structure diagram is
shown in Figure 7.

LIST(MAY NOT
BE MARKED)

LIST (MAY NOT
BE MARKED)

FIGURE 6. Implementation of Stack Using List Nodes FIGURE 7. Implementation of Stack Using Modified List Nodes

March 1987 Volume 30 Number 3 Communications of the ACM 257

Research Contributions

- CURRENT POINTER

------. ORIGINAL POINTER

THE ‘STACK’ CONTAINS THREE ITEMS (TOP-TO.BOTTOM):@ ,@ , AND @

FIGURE 8. Diagram of the List Structure

maintained within the list being marked! The algo-
rithm maintains P and T (corresponding to cs
above). The data structure diagram is shown in Fig-
ure 8. PO is the initial pointer passed to the marking
routine. The mapping is:

whilenot empty(as) do
[whileTl.a = 0 do

(q: = T*.BLink; T*.BLink: = P;
P: = T; T: = q]

assert top(as) = TI.BLink;
PoP(as);
q: = T^.ALink; T^.a: = 0; T-.ALink: = P;
P: = T; T: == q]

while TA.a = 0 do
(q: = TI.BLink; TI.BLink: = P;
P: = T; T: == q]

assert T = nil;
assert state of the heap storage at this

point is the same as its state in the
abstract stack version.

The invariant assertion is:

while T # nil do
(assert S(Tl.m) = 1;

-- S(y) = current state of y
assert SO(T-.m) = 0;

-- SO(y) 81 initial state of y
assert SO(T*.a) = 0;
if S(T-.a) = 0 then

[assert S(T^.ALink) = SO(T*.ALink);
assert SO(T^.BLink) = P;
marked(S(TI.ALink)); -- see below
P: = T; T: = TI.BLink]

else [assert S(T^.BL,ink) =SO(T*.BLink);
assert SO(T^.ALink) = P;
P: = T; T: = T^.ALink]]

where

marked(q) =
[assert ql.m = 1;

if q^.a = 0 then (marked(q-.ALink);
marked(q^.BLink)]]

For the details of the final program, refer to [ll]. The
above development shows that a data structure can be
understood without full details of the underlying algo-
rithm.

Observation: On the basis of the examples discussed
here, we conjecture that the complexity of a data struc-
ture can be measured by estimating the complexity
(e.g., size) of the mapping specification and invariant
assertion. These capture the amount of knowledge re-
quired to understand programs using the given data
structure.

5. SUMMARY
We have hypothesized that data structures are not
inherently complex once a certain level of knowl-
edge is assumed. For example, there are cases where
it is easier to understand a program using abstract
set operations rather than array operations. The
complexity of a program increases with the increase
in the opaqueness of the mapping between the rep-
resentation and abstract data types. We have dis-
cussed the results of an experiment conducted to
validate this hypothesis.

On the basis of our observation, we have discussed
documentation techniques for data structures that
make it easier to understand a program. These in-
clude both informal and formal methods. These
were illustrated with the data structures used in the

Communications of the ACM March 1987 Volume 30 Number 3

Research Contributions

Deutch-Schorr-Waite algorithm and a symbol table
for Pascal-like scope rules.

Some related research issues are (i) the experi-
mental verification of the efficacy of the proposed
documentation techniques, (ii) the development and
formalization of a set of notations for constructing
data structure diagrams, and (iii) relating the map-
ping and invariant assertions to the axiomatic speci-
fication of the data structure.

Acknowledgments. The authors wish to thank John
Fuller for helping with the analysis of the results of
the experiment, and Ben Schneiderman, Harry
Dunsmore, and four anonymous referees whose de-
tailed comments and suggestions helped to enhance
the clarity of this article.

REFERENCES
1. Baker, A.L., and Zweben, S.H. A comparison of measures of control

flow complexity. IEEE Tracts. Softw. Eng. SE-6, 6 (Nov. 1980). 506-
512.

2. Bastani. F.B. An approach to measuring program complexity. In Pro-
ceedings of COMPSAC ‘83. (Chicago, Ill., Nov. 1983), l-8.

3. Brown, M.H., and Sedgewick, R., Techniques for algorithm anima-
tion. IEEE Sojtw. 2, 1 (Jan. 1985). 28-39.

4. Curtis, B. et al. Measuring the psychological complexity of software
maintenance tasks with the Halstead and McCabe metrics. ZEEE
Trans. Softtw. Eng. SE-5 2 (Mar. 1979). 96-104.

5. Gilh. J. Software Metrics. Winthrop, Cambridge, Mass.. 1977.
6. Guttag. J.V.. Horowitz. E.. and Musser, D.R. Abstract data types and

software validation. Commun. ACM 21. 12 (Dec. 1978). 1048-1064.
7. Halstead. M.H. Elemenfs of Sojfware Science. Elsevier North-Holland,

New York. 1977.
8. Henry, S.. and Kafura. D. Software structure metrics based on infor-

mation flow. IEEE Trans. Softw. Eng. SE-7. 5 (Sept. 1981), 510-518.
9. lyengar. S.S., Parameswaran. N.. and Fuller. J. A measure of logical

complexity of programs. Compuf. Lang. 7, 4 (Dec. 1982). 147-160.
10. Iyengar, S.S., Bastani, F.B., and Fuller, J.W. An experimental study

of Ihe complexity of data structures. Symp. Emp. Found. Info. and
Softw. SC.. Atlanta. Ga.. Oct. 1984.

11. Knuth. D.E. The Art of Computer Programming, Vol. I: Fundamental
Algorithms, 2d ed. Addison-Wesley. Reading, Mass., 1973.

12. Matsumoto, Y. Management of industrial software production. IEEE
Computer 17, 2 (Feb. 1984). 59-72.

13. McCabe. T.J. A complexity measure. IEEE Trans. Soffw. Eng. SE-2.4
(Dec. 1976). 308-320.

14. Oviedo. E. Control flow, data flow and program complexity. In Pro-
ceedings of CCJMPSAC ‘80. (Chicago, Ill., Oct. 1980), 146-152.

15. Robinson, L.. and Levitt, K.N. Proof techniques for hierarchically
structured programs. Commun. ACM 20.4 (Apr. 1977). 271-283.

16. Schneiderman. B. Measuring computer program quality and com-
prehension. Ink 1. Man-Mach. Stud. 9 (1977). 465-478.

17. Schneiderman. B. Control flow and data structure documentation:
Two experiments. Commun. ACM 25, 1 (Jan. 1982), 55-63.

18. Weissman, L. A methodology for studying the psychological com-
plexity of computer programs. Tech. Rep. CSRG-37, Dept. of Com-
puter Science, Univ. of Toronto. 1974.

19. Weissman. L. Psychological complexity of computer programs:
An experimental methodology. ACM SIGPLAN Not. 9, 6 (Jun. 19741,
25-36.

20. Wile, D.S. Type transformations. IEEE Trans. Soflw. Eng. SE-7. 1 (Jan.
19811, 32-39.

21. Woodward, M.R.. Hennel. M.A.. and Hedley. D. A measure of con-
trol flow complexity in program text. IEEE Trans. Softw. Eng. SE-5, 1
(Jan. 1979). 45-50.

22. Wolf, W.A. London. R.L.. and Shaw. M. An introduction to the
construction and verification of ALPHARD programs. IEEE Trans.
Sofrw. Eng. SE-2,4 (Dec. 1976), 353-365.

CR Categories and Subject Descriptors: D.2.8 [Software Engineer-
ing]: Metrics-complexity measures: E.l [Data]: Data Structures

General Terms: Experimentation
Additional Key Words and Phrases: abstract and concrete data struc-

tures. abstract data types, data structures. data structure diagrams, data
structure invariants. logical complexity

Received 6/84; revised 11/86; accepted 11/86

Authors’ Present Addresses: Farokh B. Bastani, Department of Compu-
ter Science, University of Houston. Houston, Tex. 77004. S. Sitharama
Iyengar. Department of Computer Science, Louisiana State University,
Baton Rouge. La. 70803-4020.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish. requires a fee and/or specific permission.

In response to membership requests . . .

CURRICULA RECOMMENDATIONS FOR COMPUTING

Volume I: Curricula Recommendations for Computer Science
Volume II: Curricula Recommendations for Information Systems

Volume III: Curricula Recommendations for Related Computer Science Programs in Vocational-
Technical Schools, Community and Junior Colleges and Health Computing

Information available from Deborah Cotton-Single Copy Sales (212) 869-7440 ext. 309

March 1987 Volume 30 Number 3 Communications of the ACM 259

