
Algorithms and 
Data Structures The Effect of Data Structures 
John Bruno 
Editor 

of Programs 

FAROKH B. BASTANI and S. SITHARAMA IYENGAR 

ABSTRACT: The logical complexity of a program is a 
measure of the effort required to understand it. We 
hypothesize that the logical co.mplexity of a program 
increases with the increase in the opaqueness of the 
relationship between the physical data structures used in 
the program and their corresponding abstract data types. 
The results of an experiment conducted to investigate 
this hypothesis are reported. Documentation techniques 
for making programs easier to understand using complex 
data structures are discussed. Data structure diagrams, 
data structure invariants, stepwise transformation of data 
structures, and formal specification of the mapping 
between abstract and concrete data structures are 
illustrated using two nontrivial examples. 

1. INTRODUCTION 
Any program intended for use over a period of years 
must be implemented to be comprehensible for 
other programmers to maintain. This can be 
achieved by proper coding and documentation prac- 
tices. To determine whether a program has been 
well designed and adequately documented, we must 
measure its “difficulty,” that is, the amount of time 
required to understand it. Over the past decade sev- 
eral program complexity metrics [5] have been pro- 
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posed. Those that are widely known are software 
science [7], control flow complexity metrics [l, 131, 
program knots [21], and complexities due to data 
flow dependencies [2, 8, 91. Over the last five years a 
number of papers have been published on various 
aspects of program complexity. For overviews of re- 
lated research on software complexity metrics see 
15, 143. 

We investigate the effect of data structures on pro- 
gram complexity. An experimental study of the ef- 
fect of control flow and data structure documenta- 
tion on program comprehensibility is discussed by 
Schneiderman [17]. He concludes that data structure 
information is more helpful than control flow infor- 
mation for understanding programs irrespective of 
whether the information is in textual or graphical 
format. 

Section 2 discusses an experiment that we con- 
ducted to verify our hypothesis that data structures 
are not inherently complex once a certain level of 
knowledge is assumed, although the representation 
of advanced data structures (such as sets) using sim- 
pler data structures (such as arrays) can increase a 
program’s complexity if the mapping between the 
two data structures is obscure. Since it is often 
essential to use primitive data structures for per- 
formance reasons, the relationship between the ab- 
stract and concrete versions of a data structure 
should be well documented. Toward this end, Sec- 
tion 3 discusses documentation techniques for data 
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structures that can aid in program clarification. 
These include both informal and formal approaches, 
such as data structure diagrams, stepwise transfor- 
mation, invariant assertions, and mapping specifica- 
tions. These techniques are illustrated by two de- 
tailed examples in Section 4. Section 5 summarizes 
the article and outlines some research directions. 

2. EXPERIMENT 
Several researchers have studied the effects of com- 
ments, different control structures, mnemonic 
names, textual and graphical documentation, etc., 
on program comprehension [4, 16-191. After analyz- 
ing a number of examples, we conjectured that data 
structures are not inherently complex. That is, we 
cannot, for example, assert that a program that 
manipulates trees is inherently more complex than a 
program that uses arrays. However, if a program us- 
ing trees is transformed into one using arrays, then 
the latter program can be more complex if the corre- 
spondence (i.e., mapping or relationship) between 
the tree and its array representation is obscure. 

This hypothesis is important because it can be 
used to guide the extent to which documentation 
should emphasize data structure. Suitable documen- 
tation methods are discussed in Sections 3 and 4. In 
this section, we discuss an experiment conducted to 
verify this hypothesis. 

Prior to conducting the experiment we selected a 
set of programs and an experimental method for de- 
termining their complexity. To isolate the effect of 
data structures on logical complexity, the programs 
had the same functions and algorithms but used dif- 
ferent data structures. To estimate the complexity of 
the programs, we tested for comprehension by re- 
quiring a set of students to locate errors embedded 
in the programs. This is a reasonable criterion since 
it is usually the first step in program maintenance. 
An alternative approach is to pose some questions at 
the end of the comprehension period. However, this 
would test recollection ability which can be affected 
by the choice of names, degree of documentation, 
etc. [4]. Also, we did not require correction of errors 
since this would test problem solving capability in 
addition to comprehension. 

For each program given to each student, the ob- 
served factors were the number of errors correctly 
located and the time taken to locate those errors. 
One possible metric which combines these factors is 
the rate of detection of errors. This can be criticized 
on the ground that some errors are detected more 
quickly than others. To overcome this obstacle we 
asked the students to try to find two errors in each 
program. Nevertheless, the analysis later in this sec- 
tion considers the two factors separately. 

2.1 Subjects 
Thirty students in two graduate courses at the Uni- 
versity of Houston and nine students in a graduate 
course at Louisiana State University served as sub- 
jects in the experiment. The language used was 
Pascal. The experiment was conducted during regu- 
lar class sessions in the middle of the semester 
(March 1984). 

All of the subjects had knowledge of at least three 
programming languages (Pascal, Fortran or PL/l, 
other high-level or assembly languages), structured 
programming style, fundamental data structures, 
and a good background in mathematics. 

2.2 Materials 
The subjects were given two sets of programs coded 
in Pascal-like syntax, with some comments at the 
beginning of each program: Set 1 (part A) imple- 
ments a stack PUSH operation presented in three 
procedures each using a different data structure 
(array, linked list, and combination of array and 
linked list). The second set of programs (part B) de- 
scribes the sift procedure used in heap sort. Set 2a 
uses an array data structure and set 2b uses a binary 
tree data structure. Each program contained two or 
three artificially embedded errors. Additional details 
appear in [lo]. 

2.3 Design 
A repeated measures design with one factor was 
used in the first experiment (the stack PUSH opera- 
tion) at both the test sites. Each subject received 
each of the three programs in turn. In the second 
experiment (heap sort), the subjects in Group I were 
given either the array or the binary sift procedure in 
a random order. Those in Group II received both the 
procedures in turn. 

2.4 Procedure 
The experiment was conducted during a regularly 
scheduled lecture period. In Group II, the instructor 
of the course had described the purpose of the test- 
ing in the previous lecture; in Group I this was done 
just prior to the experiment. The experiment was 
conducted in two parts. In part A (stack PUSH opera- 
tion), the subjects were given the array program 
first. They were asked to find and mark up to two 
embedded errors in the program. They were also 
asked to note the time taken (in minutes) to detect 
the errors in the program. (The students were not 
required to correct those errors.) Then they were 
given the second program (employing linked list) 
and then the third program (combination of array 
and linked list) in turn and were asked to do the 
same thing. After completion of part A, the programs 
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were collected. In part B, the subjects were required 
to repeat the procedure for the heap sort procedure. 

2.5 Scoring 
Following the experiment, the exercises were scored 
to determine how many errors were correctly de- 
tected by each student. The criterion was: Would 
the location of the error identified by a student de- 
scribe the error in the program? For the purpose of 
the study the errors were tallied 0, 1, or 2, the num- 
ber of correct answers. 

2.6 Results and Ikxssions 
Tables I and II summarize the results of the experi- 
ment. For the number of errors successfully found in 
the stack PUSH operation, a significant difference 
in Group II was indicated by an F(2, 16) = 3.65, 

p = 0.0495, with further analysis by the Duncan 
multiple range test (alpha = 0.05) showing signifi- 
cantly more errors found for the linked list than for 
the array/linked list combination. More errors were 
found for the array algorithm also, but the difference 
did not reach significance. The differences for the 
number of errors in Group I were not significant 
(F(2, 56) = 0.83, p = 0.4397), but more errors were 
found for both the linked list algorithm and the ar- 
ray algorithm than for the combination algorithm. 

A two-way analysis of variance was performed for 
both measures (errors and time) on the data for the 
stack PUSH operation, with a mean effect of data 
structure (array versus linked list versus array and 
linked list) and with “blocki.ng” on individuals. Sig- 
nificant differences for the t.ime taken to find the 

errors were observed for both groups (F(2, 16) = 
44.88, p < 0.000’1 and F(2, 56) = 38.48, p c 0.0001, 
respectively). Further analysis using the Duncan 
multiple range test (alpha = 0.05) determined that 
for Group I, the array and linked list combination 
was significantly more difficult than the linked list 
procedure. (See the means for time in Table I.) For 
Group II, the array and linked list combination was 
significantly more difficult than either the array or 
the linked list algorithm, but there was no signifi- 
cant difference between the latter two. 

Some interesting results were obtained despite 
possible confounding by a learning effect due to the 
manner in which the procedures were assigned for 
the stack PUSH operation algorithm (part A). For the 
time to find errors, Group I’s results show that the 
linked list algorithm was significantly easier than 
the array algorithm, but the learning effect con- 
founds interpretation. That is, it would not be diffi- 
cult to believe that the significant difference hinges 
on that alone. However, the combination algorithm 
(array and linked list) is the most difficult of all, and 
if learning plays a significant part here, it would be 
expected that it makes this the easiest algorithm. 
Therefore, it appears to be the most difficult to com- 
prehend in any case. Similarly, Group II’s results 
indicate that the combination algorithm is signifi- 
cantly more difficult than the other two algorithms. 

For part B (heap sort experiment) a one-way anal- 
ysis of variance shows no significant differences be- 
tween algorithms for either the number of errors 
discovered (F(l, 18) = 1.29, p = 0.2717) or the time to 
find the errors (F(l, 18) = 0.01, p = 0.9327). The 

TABLE I. Results of the Experiment for the Stack Push Operation 

Array 1.310 0.891 3.828 1.311 1.889 0.333 3.664 1.144 
Arrays and linked list 1.034 0.865 5.414 2.113 1.333 0.866 16.278 4.711 
Linked list 1.103 0.939 2.103 0.860 2.000 0.000 5.500 1.936 

TABLE II. Results of the Experiment for the Siff Procedure 

Datastnicture 

Array 1.200 0.789 20.500 7.778 1,111 0.333 18.556 3.941 
Binarv tree sift 0.800 0.789 20.200 7.885 1.444 0.527 13.333 3.640 
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design in part B was subject to a learning effect in 
Group II, unlike the case in Group I where each 
subject received either program 2a or 2b but not 
both. 

2.7 Observations 
Although one should be cautious in drawing conclu- 
sions from the experiment in part A due to possible 
confounding, it seems safe to conclude that the com- 
bination of data structures was more difficult to 
comprehend than either data structure alone, at 
least for this particular program. The safety lies in 
the fact that the combination algorithm should have 
been the easiest if the confounding were the only 
real effect, when in actuality it was the most diffi- 
cult. For the experiment in part B it apparently 
makes little difference which of the data structures 
is chosen for a heap sort algorithm. 

How is it possible for programs containing ad- 
vanced data structures to be easier to understand 
than programs performing identical functions but 
using simple data structures such as arrays? One 
likely explanation is that the understanding process 
in the latter case is similar to reverse compilation, 
namely, an attempt to synthesize the higher level 
(abstract) version from the lower level one. This 
comprehension task can be aided by presenting the 
data structures so as to facilitate such synthesis. This 
is discussed in the next section. 

3. DATA STRUCTURE DOCUMENTATION 
METHOD 
We will now outline four complementary methods 
for documenting data structures. These are illus- 
trated using three different ways of implementing 
sets using arrays. The next section contains two ex- 
amples. 

Definition Dl: A data structure diagram for a given 
data structure is a pictorial representation of the 
data structure which is constructed using a set of 
predefined notations, and conveys the primary rela- 
tionships between the components of the data struc- 
ture. 

Such pictorial information greatly enhances the 
comprehension of data structures by human beings 
[l7]. Brown and Sedgewick [3] propose the dynamic 
construction of data structure diagrams to provide 
snapshots of the state of the program for improving 
program understandability as well as for debugging 
purposes. Selecting the set of predefined notations 
requires extensive experimentation since data struc- 
ture diagrams are intended wholly for conveying in- 
formation to human beings. In this article, we use 
informal notations, as illustrated in Figure 1, for 
three different representations of sets using arrays. 
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(See also [IT].) We recommend that such notations 
evolve over several years before any standardization 
is attempted. 

A data structure diagram is an informal represen- 
tation of the state of the data structure. This can be 
formalized by giving the invariant assertion for the 
data structure [ZZ] and it eliminates all ambiguities 
which may be present in the data structure diagram. 

Definition 02: The invariant assertion for a data 
structure is a precise description of the legal states of 
the data structure. Comprehension of complex data 
structures can be facilitated by giving a sequence of 
intermediate representations. For example, the in- 
variant assertions for the three array representation 
of sets are shown in Figure 1. 

Definition D3: The stepwise transformation of a 
data structure starts with a high-level abstract ver- 
sion and, by successive transformation, ends with a 
lower level one. (See also [ZO].) 

Stepwise transformation of data structures is simi- 
lar to stepwise program decomposition. It informally 
shows how the data structure has evolved, making it 
easier to understand the detailed version. For exam- 
ple, a representation of stacks using an array/linked 
list combination can be understood by first under- 
standing the representation of stacks using un- 
bounded arrays and then the representation of 
unbounded arrays using a linked list of fixed-size 
arrays. This can be formalized by specifying the 
mapping. (See also [15].) 

Definition 04: The mapping between two data 
structures is a formal specification of the equiva- 
lence of the information contained in the two data 
structures. For example, for Figure 1 we have: 

(a) 

(b) 

CC) 

for all x: exists(s, x) 
@there exists i: 1 I i 5 s.card 
such that s.table[i] = x; 
for all x: exists(s, x) 
@there exists i: 1 I i I s.card 
such that 
(s.table[(i + 1)div 2]div 8(1+')mod2) 

mod 8 = x. 
for all x: exists(s, x) 
ti there exists i: 1 I i I s.card 
such that 
x = (s.table[l + (3*i - 3) div 8 

div 2(3'1-3)mod8) mod 2 

+ 2*[(s.table[l i- (3*i - 2) 
div 81 

div 2(3*I--Z)mod8 ) mod 2) 
+ 4*[(s.table[l + (3*i - 1) 

div 81 
div 2(3*1-')mod8) mod 2) . 
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TABLE: 

-CARD 

MAX MAX 

TABLE: 

CARD 

TABLE: 

MAX 

64 W 

FIGURE 1. Data Structure Diagram for the Array Representation of Sets: (a) 0 I s.card I MAX; 
(b) 0 5 s.card I 2’ MAX; (c) 0 5 s.card 5 (8* MAX) div 3 

These four documentation techniques (Dl, D2, D3, 
and D4) can collectively provide adequate informa- 
tion for data structures. Stepwise refinement (D3) 
shows the link be.tween the final and initial data 
structures. It is formalized by giving the mapping 
(D4) between these data structures. Data structure 
diagrams (Dl) informally show how the data struc- 
ture is used, that is, they show the relationships 
between the various components. The data structure 
invariant [DZ) formally shows the legal states of the 
data structure. Such combinations of informal and 
formal specifications are effective over the entire 
software life cycle [12]. 

4. ILLUSTRATKJNS 
In this section, we apply the documentation methods 
discussed in the previous section to two detailed ex- 
amples. 

Example: This example d.eals with a data struc- 
ture for the symbol table module specified in [6]. 
The symbol table module considered here is in- 
tended for Pascal-like scope rules. A high-level data 
structure for this module uses a traversable stack of 
search table of key x attributes. Key corresponds to 
the search argument, say, identifier names. The data 
structure diagram for this h:igh-level data structure 
is shown in Figure 2. The definition is: 

var a: TraversableStack of SearchTable 
of key X attributes; 

NumScopes: integer; 
initial a: = NewTraversableStack; 

NumScopes := 0; 

Recall that in Pascal the definition of an identifier 
in a particular scope supersedes its definition (if any) 
in the enclosing scopes. The new definition holds in 

CARD 

FIGURE 2. Data Structure Diagram for the Symbol Table Module 

this scope and all enclosed scopes not redefining the 
identifier. Thus, an (almost) equivalent data struc- 
ture is (see Figure 3): 

var b: SearchTable of key X stack 
of attributes; 

initial b := NewSearchTable; 

It is not fully equivalent because for any given key 
we cannot determine the scope(s) in which it is de- 
clared. Thus, the pop and IsInScope functions [6] 
cannot be implemented. This can be rectified by as- 
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FIGURE 3. Data Structure Diagram for “SearchTable of Stack” 

sociating a field ScopeNo with each attribute: 

var c: SearchTable of key X stack of 
(ScopeNo: integer X attributes); 

initial c: = NewSearchTable; 

The IS I nScope function can now be easily imple- 
mented. However, the pop function will require an 
examination of all the entries in the search table, a 
potentially inefficient operation. This can be reme- 
died by using a separate stack to keep the keys in 
the order in which they are inserted in the search 
table (see Figure 4): 

var d: SearchTable of key X stack of 
(ScopeNo: integer X attributes); 

e: stack of key; 
initial d: = NewSearchTable; 

e: = NewStack; 

. 

4 . KEY(1,2) 

Research Contributions 

Finally, we observe that stack e can be main- 
tained by linking the elements in the stacks associ- 
ated with each key in the search table in the correct 
order, that is, such that the top item has the highest 
ScopeNo and the bottom item has the lowest 
ScopeNo. This can be achieved by specifying (for 
every item) the key of the item which occurs imme- 
diately below it in stack e. The key of the item at 
the top is specified in a separate variable. The item 
at the bottom of stack e can specify any key since 
the search table will be empty when it is removed. 
Thus: 

var f: SearchTable of key X stack 
of (PreviousKey: key X 
ScopeNo: integer X attributes); 

top: key; 
initial f: = NewSearchTable; 

The final data structure uses an array g for the 
abstract data type SearchTable using hashing 
with double-hashing for collision resolution. Also, 
PreviousKey is replaced by PreviousIndex 
which contains the index of the item below this 
item. If PreviousIndex = n then there is no item 
below it, that is, it is the last item in stack e. The 
data structure diagram is shown in Figure 5. 

initial NumDistinctKeys: = 0; top: = n; 
for all i: 0 I i <n: (g[i].status: = 

empty; g[i].ptr: = nil); 

)KEY(I,I) ) 

FIGURE 4. Efficient Data Structure for the Symbol Table Module 
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The mapping between this data structure and the original one (using a traversable stack) is as follows: 

if top = n then assert NumScopes = 0 
else assert NumScopes = g[top].ptrl.ScopeNo; 
for i: = NumScopes do>wnto 1 do 

(for all x such that x exists in top(a) do 
assert (there exi.sts j: 0 I j I n - 1 such that 

g[j].k := x and g[j].ptr-.ScopeNo = i 
and g[j] .ptr^.attr = attributes of x in top(a)) 

for j: = 0 to n - 1 do 
if g[j].ptr # nil and then (g[j].ptr*.ScopeNo = i) do 

g[j].ptr: = g[j].ptr^.next 
pop(a) I 

assert for all. j: 0 5 j < n: g[j].ptr = nil; 

The invariant assertions are: 

l(a). for all i: g[i] .status = occupiedog[i].ptr # nil; 
(b). for all i: (g[i].status = marked) or (g[i].status = empty)wg[i].ptr = nil; 

2(a). there exists i: g[i].status = occupied-top in [0 . . n - 11; 
(b). there does not exist i: g[i].status = occupied-top = n; 

3. NumDistinctKeys = jwthere exists il, i2, . . . . ij such that 
for all m: 1 5 m 5 j: g[im].status = occupied 
and far all i such that there does not exist m (1 I m 5 j: i = im): 

(g[i].status = marked) or (g[i].status = empty); 
4. for all i: g[i].status = occupiedathere does not exist j: 0 I j < n, j # i: 

(g[j].status = occupied) and (g[j].k = g[i].k); 
5. for all i: g[i].status = occupied+ 

j: = hl(g[i].k); c: = h2(g[i] .k); 
while j # i do 

[assert g[j].status # empty; 
j: = (j + c) mod n) 

6. for all i: g[i].status = occupied+ 
P: = g[i] .ptr; 
assert p^.ScopeNo I g[top].ptr*.ScopeNo; 
while p*. next # nil do 

[assert p^.ScopeNo > p^.nextl.ScopeNo; 
p: = p.next] 

7. var num: integer; 
if top in [O . . n - l] then num: = g[top].ptrl.ScopeNo 
else num: = 0; 
for i: = num downto 1 do 

[while (top in [0 _. n - I]) 

and then (g[top].ptr*.ScopeNo = i) do 
[assert g[top].status = occupied; 
top, g[top].ptr: = g[top].ptr*.PreviousIndex, g[top].ptrl.next]] 

assert top = n; 
assert for all i: 0 I i < n: g[i].ptr = nil; 

Example: This example deals with the temporary 
redirection of pointers for specific purposes. The 
idea is due to Deutch, Schorr, and Waite [ll], and 
can be applied to several cases. We briefly develop 
the data structure used in their efficient algorithm 
for garbage collection. Assume that each memory 
word (or node) contains a bit m which is used for 
marking, a bit a which is set to 1 for atomic nodes 
and to 0 for list nodes. Atomic nodes contain some 
information and list nodes contain two addresses, 

viz., ALink and BLink. Assume that nil is the 
address of a node with a = 1. 

Step 2: A simple garbage collection algorithm uses a 
stack and employs a depth-first marking algorithm 
[ll]: 

as: stack of node; 

Step 2: The stack can be implemented using list 
nodes. The data structure diagram is shown in 
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(NUMDISTINCTKEYS = 4) 
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- 
0 OCCUPIED XRY -- I 5 ATTR(XRYS) ---cIb 

I OCCUPIED QUICK .--,R 5 ATTRWlCK 5) R 1 ATTRWICKI) j--Ill- 

@TOP 0F”E”STACi) gf 

-- 
I-1 EMPTY _ _ _ _ _ _ - -+ 

I OCCUPIED SPEED 

I+1 MARKED _ _ - - - _ - 

R-l MARKED _ _ _ _ _ _ -. -+ @A 

R OCCUPIED HEIGHT 0 5 ATTR(HEIGHT5) 1 2 ATTR(HEIGHT2) N\ i IATTR(HEIGHT~) t-+1. 

/ * \ 

PREVIOUSINDEX ; 0. .N 

STATUS: (occup’ yBMAR1tED K: KEY PTR:PTRTYPE 
EMPTY 

FIGURE 5. Final Data Structure for the Symbol Table Module 

Figure 6. Let cs (concrete stack) be the pointer to the Step 4: The remarkable observation made by 
top of the stack. Deutch, Schorr, and Waite was that this stack can be 

Step 3: For this case, we assume that if cs is not 
nil then (i) if cs-. a = 1, then cs-. BLink points 
to the item at the top of the stack and cs-. ALink 
points to the rest of the stack; (ii) if csA. a = 0 then 
cs-. BLink points to the rest of the stack while 
cs-. ALink is unused. The data structure diagram is 
shown in Figure 7. 

LIST(MAY NOT 
BE MARKED) 

LIST (MAY NOT 
BE MARKED) 

FIGURE 6. Implementation of Stack Using List Nodes FIGURE 7. Implementation of Stack Using Modified List Nodes 
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- CURRENT POINTER 

------. ORIGINAL POINTER 

THE ‘STACK’ CONTAINS THREE ITEMS (TOP-TO.BOTTOM):@ ,@ , AND @ 

FIGURE 8. Diagram of the List Structure 

maintained within the list being marked! The algo- 
rithm maintains P and T (corresponding to cs 
above). The data structure diagram is shown in Fig- 
ure 8. PO is the initial pointer passed to the marking 
routine. The mapping is: 

whilenot empty(as) do 
[whileTl.a = 0 do 

(q: = T*.BLink; T*.BLink: = P; 
P: = T; T: = q] 

assert top(as) = TI.BLink; 
PoP(as); 
q: = T^.ALink; T^.a: = 0; T-.ALink: = P; 
P: = T; T: == q] 

while TA.a = 0 do 
(q: = TI.BLink; TI.BLink: = P; 
P: = T; T: == q] 

assert T = nil; 
assert state of the heap storage at this 

point is the same as its state in the 
abstract stack version. 

The invariant assertion is: 

while T # nil do 
(assert S(Tl.m) = 1; 

-- S(y) = current state of y 
assert SO(T-.m) = 0; 

-- SO(y) 81 initial state of y 
assert SO(T*.a) = 0; 
if S(T-.a) = 0 then 

[assert S(T^.ALink) = SO(T*.ALink); 
assert SO(T^.BLink) = P; 
marked(S(TI.ALink)); -- see below 
P: = T; T: = TI.BLink] 

else [assert S(T^.BL,ink) =SO(T*.BLink); 
assert SO(T^.ALink) = P; 
P: = T; T: = T^.ALink]] 

where 

marked(q) = 
[assert ql.m = 1; 

if q^.a = 0 then (marked(q-.ALink); 
marked(q^.BLink)]] 

For the details of the final program, refer to [ll]. The 
above development shows that a data structure can be 
understood without full details of the underlying algo- 
rithm. 

Observation: On the basis of the examples discussed 
here, we conjecture that the complexity of a data struc- 
ture can be measured by estimating the complexity 
(e.g., size) of the mapping specification and invariant 
assertion. These capture the amount of knowledge re- 
quired to understand programs using the given data 
structure. 

5. SUMMARY 
We have hypothesized that data structures are not 
inherently complex once a certain level of knowl- 
edge is assumed. For example, there are cases where 
it is easier to understand a program using abstract 
set operations rather than array operations. The 
complexity of a program increases with the increase 
in the opaqueness of the mapping between the rep- 
resentation and abstract data types. We have dis- 
cussed the results of an experiment conducted to 
validate this hypothesis. 

On the basis of our observation, we have discussed 
documentation techniques for data structures that 
make it easier to understand a program. These in- 
clude both informal and formal methods. These 
were illustrated with the data structures used in the 
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Deutch-Schorr-Waite algorithm and a symbol table 
for Pascal-like scope rules. 

Some related research issues are (i) the experi- 
mental verification of the efficacy of the proposed 
documentation techniques, (ii) the development and 
formalization of a set of notations for constructing 
data structure diagrams, and (iii) relating the map- 
ping and invariant assertions to the axiomatic speci- 
fication of the data structure. 
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