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A New Method of Image Compression Using 
Irreducible Covers of Maximal Rectangles 

YING CHENG, S .  SITHARAMA IYENGAR, AND RANGASAMI L. KASHYAP, FELLOW, IEEE 

Abstract-In recent years there has been a tremendous spurt in re- 
search and activity in finding efficient compression techniques for im- 
age processing applications. Particularly when an image is structured 
over a nonrectangular region, it is always advantageous to define a 
method of covering a region by minimal numbers of maximal rectan- 
gles. Towards this objective, we analyze the binary image compression 
problem using irreducible cover of maximal rectangles. We also give a 
bound on the minimum rectangular cover problem for image compres- 
sion under certain conditions that previously have not been analyzed. 
I t  is demonstrated that for a simply connected image, the irreducible 
cover proposed here uses less than four times the number of the rect- 
angles in a minimum cover. With n pixels in a square, the parallel 
algorithm of obtaining the irreducible cover presented in the paper 
uses ( I I  /log n ) concurrent-read-exclusive-write (CREW) processors in 
O( log ) I  ) time. 

Index Terms-Covering algorithms, image compression, maximal 
rectangles. 

I. INTRODUCTION 
FFECTIVE methods of representation of binary dig- E ital images are required in many image processing 

tasks. Currently hierarchical representations like quad- 
trees and octtrees are very popular [8], [9]. One criterion 
of evaluation of different representations is the degree of 
information compression achieved by the scheme. The in- 
formation contained in any representation can be mea- 
sured by the length of the program needed to transmit the 
same. For instance, in quadtrees, one needs to transmit 
the program corresponding to the quadtree including dec- 
larations of the leaf nodes which correspond to the pixels 
or groups of pixels having a “one. ’’ It is well known that 
the minitnum code length required for transmitting an n X 
n binary image is 2 logz n .  The image compression effi- 
ciency associated with a particular representation can be 
measured by the ratio of the length of the program to the 
above minimum, namely 2 logz n.  Typically, the ratio is 
greater than one. The closer the ratio is to one, the greater 
will be the degree of image compression achieved. 

The quadtree corresponds to dividing an image into 
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nonoverlapping squares by particular tree scanning pro- 
cedure. In this paper, we explore the possibility of de- 
scribing each connected part of an image by means of ir- 
reducible and maximal rectangles which may be 
overlapping. A rectangle is described by a quadruple, 
namely the sizes of the two sizes and two coordinates of 
some specific corner (say northwest). The image will be 
described by an unordered set of the quadruples corre- 
sponding to the various rectangles. We believe that the 
compression achieved by these schemes like this is, in 
general, superior to those obtained by quadtrees since 1) 
they do not involve any additional algorithms like tree 
traversal or ordering, and 2) the basic unit in quadtrees 
are squares, not rectangles. These schemes may also be 
useful for real-time dynamization, i.e., dynamically al- 
tering the representation in real time as the image changes 
in real time. However, we do not explore the aspect in 
this paper. 

Ferrari et al .  [3] considered the representation of im- 
ages via a partition with (nonoverlapping) maximal rect- 
angles. Moitra et al .  [6] used maximal irreducible cover 
with squares, the squares being possibly overlapping. 
However, Masek showed that the constriction of minimal 
covers with rectangles is an NP-complete problem. For a 
broader treatment on this, see [ 2 ] .  In this paper, we plan 
to describe an image by an irreducible cover made up of 
maximal rectangles. We also present an algorithm to find 
an irreducible cover. With n pixels in a square, the par- 
allel implementation of the algorithm can be executed with 
( n  /log n ) concurrent-read-exclusive-write (CREW) pro- 
cessors in O(1og n )  time. Hence, the parallel algorithm 
is optimal. 

It is important to point out that the cover generated is 
irreducible, but not minimal. The usefulness of the rep- 
resentation is intimately connected to the question of the 
ratio of the number of rectangles in the irreducible cover 
of this paper to the number of rectangles in a minimal 
cover. The smaller the ratio, the greater will be the use- 
fulness of the representation. We show that for a simply 
connected image, the number of rectangles in the irre- 
ducible cover is less than four times the number of rect- 
angles in a minimal cover. 

The remainder of this paper is organized as follows: 
Section I1 describes some basic definitions and the main 
focus of our problem. Section 111 describes the greedy al- 
gorithm and there we develop motivation for the proposed 
method. Section IV describes an overview of the pro- 
posed algorithm with a detailed proof to show that our 
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method produces an irreducible cover for the image. Sec- 
tion V describes a parallel version of the algorithm. Sec- 
tion VI discusses the number of rectangles used in the 
irreducible cover and that of a minimum cover under some 
restricted conditions. Section VI1 concludes the paper. 

11. PRELIMINARIES 
In this paper, we consider a binary image as an array 

PIO * * - m, 0 - m ]  of binary valued pixels, where m 
= & + 1. For convenience, we assume that the image 
is only within P [  1 &, 1 * & I .  The value of a 
pixel is represented as both truelfalse or its synony- 
mous value blacklwhite. In Fig. 1, we give an example 
of an image and an irreducible cover of rectangles for it. 

A rectangle can be represented as rect < row,column, 
sizel ,size2 >, where row and column are the coordi- 
nates of the northwest corner pixel of the rectangle, and 
sizel and size2 are the numbers of rows and columns in 
the rectangle. A black rectangle is maximal if it is not 
contained in any other black rectangle. In this paper, a 
rectangle always means a black rectangle. A collection C? 
of rectangles is called a cover of the image if every black 
pixel is contained in at least one of the rectangles in C?. 
A cover C? is irreducible if no proper subset of C? is a cover 
of the image. A greedy algorithm to obtain an irreducible 
cover from a cover will be given in Section 111. 

Neighborhood Characterization of Black Pixels 
A black pixel P,,J is a top (respectively, bottom, le@, or 

right) pixel if the pixel PI - ( respectively, PI + I ,,, 
PI,,  + I ,  ) is not black. It is easy to show that a rect- 

angle is maximal if and only if it contains top, bottom, 
left, and right pixels. A column of black pixels is called 
a maximal column if it is not contained in any other col- 
umn of black pixels. Hence, a rectangle is a maximal col- 
umn if and only if it contains only one column and it con- 
tains a top pixel and a bottom pixel. For example, in Fig. 
1, the pixels P6,5 and P7,5 form a maximal column and 
pixels P 3 , 2 ,  P4 ,2 ,  P5.2 form another one. Of course, the 
maximal column is uniquely determined by its top pixel. 
If the top pixel is Pi ,J ,  we write the maximal column as 
max-col< i ,  j > . Hence, the two maximal columns in 
Fig. 1 we just mentioned are denoted as max_col<6, 
5 > and max-col< 3, 2 > , respectively. The notation 
max-col < i, j > is defined only when is a top pixel. 
Similarly, we can define maximal rows. A set of black 
pixels is said to be covered by a collection of rectangles 
if every pixel in the set is contained in at least one rect- 
angle of this collection. A sequence of consecutive top 
(respectively, bottom, left, right) pixels is called a top 
(respectively, bottom, lefr, right) edge. Fig. 2 illustrates 
these terms. 

A cover with minimum number of rectangles is called 
a minimum cover. Clearly, every minimum cover is irre- 
ducible. The vice versa is not true, an irreducible cover 
need not be minimal. Also, since every rectangle is con- 
tained in at least one maximal black rectangle, we can 
obtain a minimum cover with maximal rectangles from 

- 

1 maqe 

Fig. I 

Fig. 2.  Cover with maximal rectangles a, b, c ,  d, e,  f ,  g .  

any minimum cover. An ideal way to store binary image 
data is to use a minimum cover. However, it is a difficult 
problem to find a minimum cover for an image. The prob- 
lem that whether an image has a minimum cover with k 
rectangles is known to be NP-complete (Masek’s unpub- 
lished work cited in [2]). Therefore, it is reasonable to 
use irreducible covers instead of minimum covers. In this 
paper, we present an algorithm to find an irreducible 
cover. For a simply connected image, i.e., a connected 
image without holes, we show that the irreducible covers 
use less than four times the number of rectangles in a min- 
imum cover. 

Lemma I :  Every maximal column is contained in a 
unique maximal rectangle. 
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Fig. 3. Illustration for the proof of Lemma 1. 

Proof: Let max-col< t ,  j > be a maximal column 
with m rows with P,, , as its top pixel and Pb, , as its bottom 
pixel with b = t + m - 1 as in Fig. 3. Now let 1 be the 
smallest integer such that Pkl,kz are black pixels for all t 
5 kl  I b and 1 I k 2  I j .  There exists an integerp such 
that t I p I b and P p + , - l  is not a black pixel. Hence, 
PP./ is a left pixel as in Fig. 3. Let r be the largest integer 
such that Pkl,kz are black pixels for all t 5 kl  I b a n d j  
5 k2 I r .  There exists an integer q such that t I q 5 b 
and Pq,r+ I is not a black pixel. Hence, Pq,. is a right pixel. 
Pixels Pkl,kz, t I k ,  5 b,  1 I k2 I r form the maximal 
rectangle rect < t ,  1, m, r - 1 + 1 > . It contains the max- 
imal column max-col< t ,  j > . Since this is essentially 
the unique way to construct a maximal rectangle which 
contains max-col< t , j  > , the maximal rectangle we ob- 
tained is the unique one containing max-col < t ,  j >. 

Q.E.D. 
The unique maximal rectangle containing max- 

- cole  t ,  j > is denoted by a,,,. We note that different 
maximal columns may be contained in the same maximal 
rectangle. For example, in Fig. 1, CR2,4 = CR2,5  = 
rect<2, 3, 2, 4>. 

Finally, we note that, for sets A and B, we denote the 
set of elements of A which is not in B by A\B. 

111. GREEDY ALGORITHM 
The greedy algorithm can be easily described as fol- 

lows. We begin with a cover of rectangles. When we 
find one rectangle (R which is covered by e\{@}, we 
delete this rectangle from the cover. That is, C + 

\ {  CR}. We do this process until we cannot find any one 
in the updated cover e ,  which satisfies the above condi- 
tion. Each time when we delete one rectangle, we know 
that the updated cover is a true cover. Hence, at the end, 
the set of rectangles left is also a cover. It is an irreducible 
cover because this is the reason that we stop the process. 

Greedy Algorithm: 
input: A cover (3 of rectangles for a binary image. 
output: A subset e ,  of which forms an irreducible 

cover for the image. 

while (there exists M E  e ,  which is covered by e ,  \ { M } )  

end; 

This above algorithm is sequential in nature since we 
can delete one rectangle at a time. In the next section, we 

e ,  + e 

e ,  + C l \  {MI 

shall outline a cover so that we can perform the deletion 
concurrently. 

IV. NEW ALGORITHM 
We sketch an outline of our algorithm for finding an 

Algorithm A: 
irreducible cover for any image. 

input: binary image P i , j ,  1 I i ,  j < m. 
output: an irreducible cover of maximal rectangles 

for the image. 
1) Determine all maximal rectangles which contain 

some maximal columns.This collection of maximal rect- 
angles is denoted by e. Here, for a given maximal col- 
umn, we find the unique maximal rectangle which con- 
tains this column by the method given in the proof of 
Lemma 1. We note that we may get the same rectangle 
from different columns. 

2) Eliminate repetitions of the maximal rectangles ob- 
tained in the previous step. After this elimination, every 
rectangle of e is uniquely determined by one particular 
maximal column, or equivalently, by one particular top 
pixel. 

3) Determine those rectangles CR of e whose corre- 
sponding maximal column are covered by e \ { CR} . This 
collection of maximal rectangles is denoted by 33. 
4) Finally, C\D,  the collection of rectangles in e but 

not in D, is an irreducible cover. 
The rest of this section is devoted to the proof that e \33 

is an irreducible cover. 
Lemma 2: C is a cover of the image. 

Proof: Let Pi, j  be a black pixel. Let t be the smallest 
integer such that Pk,, are black pixels for all t I k I i .  
Since Pr-  ,,, is not black, Pr, j  is a top pixel. Similarly, let 
b be the largest integer such that Pk,j are black pixels for 
all i I k I b. Then P,, is a bottom pixel. Hence, pixels 
Pk,j, t I k I b, form the maximal column maX_COl< t ,  
j > , which contains Pi, ,. By Lemma 1, max-col < t ,  j > 
is contained in the unique maximal rectangle CR,.  E e. 
This proves that is a cover for the image. Q.E.D. 

In the next lemma, we prove that if the maximal rect- 
angle covers a pixel P j , j l ,  which is contained in a 
maximal column max-col< i , ,  j ,  > , then CRi2, jz covers 
the row of containing P i , j , .  Fig. 4 illustrates this 
result. 

Lemma 3: Let = rect< i l ,  I,, r , ,  c I  > and 
(Ri2, j2 = rect< i , ,  l,, r2,  c2 >. Suppose that Pi , j ,  E 
n rnax-cole i l ,  j ,  > . Then r2 I rl  and Pi.k E CRiz,fi for 
all k with 1, I k I lI  + c I  - 1. 

Proof: Suppose that i, < i , .  Then (Ri,,jz contains the 
pixel Pi, This pixel is not black since is a top 
pixel. However, (Ri2. j z  contains black pixels only. Hence, 
i2 1 i l .  Similarly, since - I . j ,  is a bottom pixel, we 
have that i2 + r2 - 1 I i l  + rl  - 1. Hence, r2 I r l .  
Also, Pi2,k E (Riz, j2 for all k with l2 I k 5 l2 + c2 - 1 .  
This implies that l2 4 I ,  and l2 + c2 - 1 1 ZI + c I  - 1. 
Therefore, c ,  I c, and P;,k E CRi2 , j2  for all k with 1, I k 
5 11 + CI - 1. Q.E.D. 

Since the sequential and parallel versions to implement 
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Fig. 4. Illustration for the proof of Lemma 3.  

step 2 of algorithm A are essentially different, we will 
simply assume, in this section, that we choose one partic- 
ular max-col < i, j > in each rectangle 03 of C? and call 
the top pixel Pi , j  an active pixel. Hence, 

= { ai, I pi, is active } 
and if Pil,jl and Pi2,j2 are distinct active pixels, then 
ail,jl # (Ri2 , j2 .  By definition, 

D = { ai, 1 Pi,  is active and max-col< i, j > 
is covered by C? \ {  ai, } ] . (4.1 ) 

Lemma 4: For an active P i , j ,  = rect< i ,  1 ,  r ,  c > 
is covered by C? \ {  ai, } if and only if max-col < i, j > 
is covered by C? \ {  ai, } . 

Proof: Suppose that max-col < i, j > is covered by 
e\{ For fixed i l  with i I il I i + r - 1, P;l,j E 
max-col< i , j  > . Hence, there exists 6iii2,j2 # such 
that Pjl,jl E (Riz, j2.  By Lemma 3, @ i 2 , j z  contains Pil,k for all 
k with I I k I I + c - 1. This proves that a,,, = 
rect < i ,  I ,  r ,  c > is covered by e\{ }. The other 
part of the lemma is trivial. Q.E.D. 

Now we can prove our main result in this section that 
C? \a> is an irreducible cover. 

Theorem 1: C? \D is an irreducible cover of the image. 
Proof: We first prove that C?\D is a cover. So, let 

P i , j  be a black pixel. By Lemma 2, Pi, j  E = 
rect < i l ,  1 1 ,  r l ,  cI > for an active P i l , j l .  Among all these 
possible we choose one with minimum r , .  That is, 
Pi , j  E = rect< i l ,  I,, r l ,  cI > and if Pi, j  E cRi, , j f  = 
rect< i ’ ,  I f ,  r ’ ,  c’ >, then r I r’ .  Now we claim that 

E C?\D. Suppose it is not so. Then cRil,jl E 9 and 
max-col< i , ,  j ,  > is covered by e\{ by (4.1). 

forall 1 I i , j  < m pardo 
if (Pi , j  and not(Pi- then 

begin 

By Lemma 4 ,  cRil,jl is covered by e\{ Since P i , j  
E we have that il I i I i l  + r l  - 1 .  Consider the 
black pixel Pi,jl which is covered by e\{ ol.il,jl}. Say, 
Pi,jl E 61i2,j2 = rect < i2, 12, r2, c2 > , with & i 2 , j 2  # 

By Lemma 3, r2 I r l  and Pi , j  E ai2,j2. By the min- 
imality of ail,jl, r2 = r l .  Now, both and 6ii2,,2 con- 
tain Pi,jl and have the same number of rows. Hence, they 
both contain max-col < i l ,  j ,  > . By Lemma 1, they are 
the same rectangle, a contradiction. This proves that P i , j  
is contained in @til,jl E C? \D. Hence, e \D is a cover. 

To prove that C? \D is an irreducible cover, we have to 
prove that C? \( D U { } )  is not a cover for every 
ai,, D with active P i , j .  Suppose that C? \D U { } ) 
is a cover for some ai,j $ D with active P i , j .  Then 
C? \ {  } is also a cover. In particular, max-col < i, 
j > is covered by C? \ {  ai, } . By definition, ai, E 9, 
which is a contradiction. This completes the proof of this 
theorem. Q.E.D. 

V. PARALLEL IMPLEMENTATION OF ALGORITHM A 
The first step in algorithm A is to determine all maximal 

rectangles which contain some maximal columns. Parallel 
algorithms 1 and 2 return maximal rectangles + 

rect < top [ i, j 1, left-bound [ i, j 1, col-size [ i, j 1, row- 
size [ i, j ] >. For an illustration, please see Fig. 5 .  

Algorithm 1: 
input: binary image P i , j ,  1 I i, j < m. 
output: boundaries left [ i, j 1, right [ i, j ] of the max- 

imal row containing black pixel Pi, i .  boundaries top [ i, 
j 1, bottom [ i, j ] of the maximal column containing black 
pixel Pi, j .  

forall 1 I i , j  < m pardo 
if Pi, j  then 

begin 
left[i, j I  +- min({lI < I 5 k 5 j f ‘ i . k } )  

right[i, j I +- max({rl Aj 5 k 5 r < m Pi,k}) 

top[i> j I +- min( {ti A0 < r 5 k 5 i Pk. j 1) 
bottom[i, j I +- max( { b I Ai 5 k 5 b < m Pk. j 1) 
end 

od 
end; 

Algorithm 2: 
input: output of Algorithm 1. 
output: maximal rectangles ai, and maximal col- 

umns max-col < i, j > which contain top pixels P i , j .  

lef-bound[i,j] +- max({left[k,j]~top[i,j] I k I bo t tom[ i , j ] } )  
right-bound[i, j ]  + min( { right[i,k] Itop[i, j ]  I k I bottom[i, j ] } )  
col-size[i,j] +- botrom[i, j]  - t o p [ i , j ]  + 1 
row-size[i, j ]  +- right-bound[i, j ]  - left-bound[i, j ]  + 1 
ai., +- rect < top[i, j ]  ,left-bound[i, j ]  ,col-size[i, j ]  ,row-size[i, j ]  > 
max-col < i, j > +- rect < i, j ,  l;row-size[i, j ]  > 
end 

od 
end; 
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Fig. 5 .  Illustration for Algorithm 1. 

Algorithm 1 can be executed with n 2  concurrent-read- 
write processors in O (  1) time. As suggested in Moitra 
and Moitra [ 6 ] ,  it can also be executed with (n/log n )  
concurrent-read-exclusive-write processors in 0 (log n ) 
time as follows. It can be obtained by allocating one pro- 
cessor to every pixel whose row index is a multiple of log 
n. We describe the method to obtain right [ i ,  j ] only. The 
other three can be obtained similarly. In log n sequential 
steps, each processor links each of the (next log n) pixels 
to the rightmost one which either terminates a horizontal 
sequence of black pixels and/or is log n columns away. 
Then in at most log n parallel steps, all the processors find 
the right end of horizontal strips which are wider than log 
n columns. Finally, in a sequential log n steps, each pro- 
cessor links each of the (next at most log n) pixels which 
belongs to a sequence of black pixels wider than log n 
columns, to the rightmost one which terminates the se- 
quence. 

Similar arguments show that the comparisons in Algo- 
rithm 2 can be executed in log n time with (n l log  n )  
CREW processors. 

The purpose of the next algorithm is to implement the 
second step in Algorithm A.  

Algorithm 3: 
input: output of Algorithm 2. 
output: activities of top pixels P I , J .  (Explained 

There are two methods to achieve the goal. In the first 
below). 

Algorithm 4: 

method, we use array Boolean variables B [ i l ,  j ,  , vI , v2], 
1 I i , j ,  v i ,  v2 I m, and the CREW model. All top pixels 
PI,I concurrently attempt to write B [  i l ,  j l ,  u l r  v2], where 
a,,, = B [ i l , j l ,  v i ,  u 2 ] .  Those assess t o B [ i i , j l ,  v I ,  v 2 ]  
successfully can get A,,J + 1. Otherwise, A,,J + 0. This 
can be done in log n time by using n/log n processors. 

The second method to achieve the goal in Algorithm 3 
can be described as follows. We first define a linear or- 
dering on the rectangles we obtained in Algorithms 1 and 
2 as follows. Let al., = rectc v,, v2,  r l ,  cI > and 
6i,l,,f.= rectc vi, vi, r ; ,  c; > . Define < 611r,Jr if and 
only if 

(211, U29 rl,  CI, i , j )  ( U ; ,  vi, r ; ,  4, L j ’ )  

in the lexicographical order. Now we can apply the opti- 
mal random sorting algorithm of Reif [ 7 ] ,  which can be 
executed in O (  log n) time using (n/log n ) P-RAM pro- 
cessors, to eliminate repetitions among the rectangles ob- 
tained in Algorithms 1 and 2. That is, among those rect- 
angles with the same r e c t e v , ,  v2, r I r  c l > ,  we 
choose the one with the smallestj. (All i are the same for 
the same rectangles.) For this choice, we say that the pixel 
Pl,J is active. Or say A,,J = 1 if P,,, is active and 0 oth- 
erwise. Therefore, every rectangle obtained in Algo- 
rithms l and 2 is uniquely determined by an active pixel 
P,, We can also apply Leighton’s deterministic method 
[ 5 ] ,  to achieve the goal by using n processors in time log 
n. This apparently uses more processes. 

In Algorithm 4, we assign a sign sign [ i’, j ’ ]  to each 
pixel so that it is 1 if Pl,*J, E ( @ I , J  \max-col < i ,  j > ) for 
some active P,, J .  Now, for every active pixel P,. J ,  we have 
that sign [ i ’ ,  j ‘ ]  = 1 for all P,.,,, E max-col < i, j > if 
and only if max-col c i ,  j > is covered by C \ {  (RI,, }. 
Equivalently, E D. For this P, .J ,  we change its activ- 
ity Al,J from 1 to 0 in Algorithm 5 .  Finally, those PI.J  with 

= 1 form the irreducible cover C \D according to 
Theorem 1. 

input: output of Algorithms 2 and 3. 
output: sign [ i ,  j ] for active The meaning of 

sign [ i ,  j 3 is explained above. 

forall 1 5 i , j  < m pardo 
s ign[ i , j ]  = 0 
od 

if A,, then 

od 
end; 

Algorithm 5: 

forall 1 I i ,  j < m pardo 

sign[i’, j ’ ]  + 1 for all P,.,,, E &,,,\max-col< i ,  j > 

input: output of Algorithms 2, 3, and 4. 
output: change some Al,J from 1 to 0. Those at,, 

with A,,J = 1 form the irreducible cover C\D.  

forall 1 I i , j  < m pardo 
if (A,,J and A{s ign[ i ’ , j ’ ]  I Pll ,J .  E max-col<i, j >}) then 

od 
end; 

’ 1 , J  
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To sketch the sequential algorithm, we first assume that 
all edges of the image are stored. For a fixed top edge and 
a fixed bottom, we find all bottom edges under this top 
edge. Now we fix one of these bottom edges and consider 
the pair of the top edge and the bottom edge. For a pair 
of top edge and bottom edge, we construct a maximal 
rectangle as in Lemma 1. To eliminate repetitions, we 
simply check all maximal rectangles. This can be done in 
O ( k 2 )  time, where k is the number of rectangles. To de- 
termine those rectangles in D, we can also fix one rect- 
angle and check all other rectangles in C. Again, this can 
be done in O ( k 2 )  time. 

VI. GEOMETRY OF BINARY IMAGES 

In this section, we shall state an upper bound on the 
cardinality of e, #e, which is the number of rectangles 
in the cover obtained in Algorithm A. This bound is also 
an upper bound for the cardinality of the irreducible cover 
(3 \D. After presenting a formula for the number of con- 
vex and concave comers of a simply connected binary im- 
age, we shall prove that #C is at most 4 #312 -3 for any 
minimal cover 312. 

In order to obtain those bounds we mentioned above, 
we shall introduce some concepts in the geometry of bi- 
nary images. Although these concepts are pretty much 
well known in the field of geometry, the authors know no 
references for our particular need in the study of binary 
images. 

We first define convex and concave comers. Each pixel 
has four comers. Each comer of a black pixel PI, ,  has 
three neighbor pixels. The two neighbor pixels which 
share common edges with are called edge neighbors 
of the comer and the other one the vertex neighbor of the 
comer. Fig. 6 illustrates the definitions. 

A comer of a black pixel PI,  , is called a convex corner 
if both its edge neighbors are white pixels. It is called a 
concave corner if both its edge neighbors are black pixels 
and its vertex neighbor is a white pixel. Fig. 7 illustrates 
the definitions. 

Let 

p I I . J I ,  ' 1 2 . J 2 7  * ' * 3 ' I r ,  J r  (6.1) 

be a sequence of black pixels. It is a path if Pll,Jk and 
PI,+ ,, ,, + , share a common edge, for all 1 I k I t - 1. A 
path (6.1) is simple if all the black pixels are distinct. The 
path is a cycle if PI, , , ,  = PI,,,,. It is a simple cycle if the 
black pixels in (6.1) are distinct, except for P, , , , ,  = P,,,Jr, 
which are identical pixels. We can use a simple cycle to 
partition the whole set of pixels into three parts: the cycle 
itself, and pixels inside the cycle and pixels outside the 
cycle, called the inner and outer part, respectively. An 
example to illustrate the concept is given in Fig. 8. 

An image is said to be connected if there is a path con- 
necting any two black pixels. A connected component is 
a subset of black pixels which is connected, and is max- 
imal subject to the connected condition. Clearly, an im- 
age can be partitioned into connected components. An im- 
age is connected if and only if it has exactly one connected 

Fig. 6.  E ,  and E2 are edge neighbors of comer 1 in Pixel P,.,.  VI is the 
vertex neighbor of comer 1 in Pixel P,, , .  

Fig. 7.  The image has ten convex corners, labeled 1, and two concave 
corners, labeled 2. 

Fig. 8. Inner and outer parts of a cycle. 

component. A connected image is said to be simply con- 
nected if the inner parts of all simple cycles consist of no 
white pixels. 

For the remainder of this section, we let a ( P  ) be the 
number of convex comers of the image P ,  f l  ( P  ) the num- 
ber of concave comers, and y ( P  ) be the number of con- 
nected components. We also denote C ( P  ) as the cover 
of P obtained in Algorithm A. 

Theorem 2: If all connected components of an image P 
are simply connected, then a ( P  ) = 0 ( P  ) + 4y ( P  ). 

Proof: Let r be the collection of images such that all 
their connected components are simply connected. We use 
induction on #P, the number of black pixels in P ,  to prove 
the statement that 

= P ( P >  + 4 Y ( P )  (6.2) 
for P E I?. If #P = 1, then P consists. of a single black 
pixel. In this case, (6.2) is certainly true. 

Now we assume that P E I', and #P # 0. Consider a 
maximal left edge 3 of P .  Then 3 is a maximal column in 
P .  By Lemma 1, 3 is contained in a unique maximal rect- 
angle CR. Let 32 be the right edge of the rectangle CR. 32 
contains a right pixel. Let 32' be the unique maximal col- 
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Fig. 9. Illustration for the proof of Theorem 2 

umn containing 32. For an illustration of these terms, 
please see Fig. 9. 

If 37. = X ’ ,  then we have three possible situations as 
shown in Fig. 10(a)-(c). We note that we omit the situa- 
tion which is a reflection of (c). If 32 # 32’, then we have 
two possible situations as shown in Fig. 10(d) and (e). 
We note that we omit the situation which is a reflection 
of (d). In each of these situations, we delete a black rect- 
angle, as shown in Fig. lO(a)-(e). It is easy to check that 
the resulting image P’ is also in I’. Since #P’ < #P, (6.2) 
holds for P’ by induction hypothesis. By using those in- 
formation we obtained in Fig. 10, we can easily check 
that (6.2) holds for P. This completes the proof of Theo- 
rem 2. Q.E.D. 

The proof of the next result is similar to the proof of 
Theorem 2 and involving more cases. 

Theorem 3: If all connected components of an image P 
are simply connected, then #e ( P  ) 5 /3 ( P  ) + y ( P  ). 

Proofi Let r be the collection of images such that all 
their connected components are simply connected. We use 
induction on #P, the number of black pixels in P ,  to prove 
the statement that 

# e ( p )  5 P ( P )  + ?(PI (6.3) 
for P E r .  If #P = 1, then P consists of a single black 
pixel. In this case, (6.3) is certainly true. 

Now we assume that P E r, and #P # 0. As we did in 
the proof of Theorem 2, we consider a maximal left edge 
3 of P. Then 3 is a maximal column in P. By Lemma 1, 
3 is contained in a unique maximal rectangle (R. Let 32 
be the right edge of the rectangle a. 32 contains a right 
pixel. Let 32’ be the unique maximal column containing 
32. For an illustration of these terms, please see Fig. 9. 

If 32 = 37. ’ , then we have seven possible situations as 
shown in Fig. 1 l(a)-(g). We note that we omit situations 
which are reflections of (c), (d), and (f). We also note 
that these seven situations come from the consideration of 
the northeast and southeast corners of the rectangle a. 
The comers can be convex, concave comers, or can be 
none of the above two types. We assume that there are t 
right edges of P in 32. 

If 32 # 32’,  then we have two possible situations as 
shown in Fig. l l (h)  and (i). We note that we omit the 
situation which is a reflection of (h). In each of these sit- 
uations, we delete a black rectangle, as shown in Fig. 

(e) Q ( P ’ )  = a ( ~ )  - z , P ( P ’ )  = P ( P )  - ~ , Y ( P ’ )  = 7 ( P )  

Fig. 10. Illustration for the proof of Theorem 2. 

ll(a)-(i). It is easy to check that the resulting image P’ 
is also in I’. Since #P’ < #P, (6.3) holds for P’ by in- 
duction hypothesis. By using those information we ob- 
tained in Fig. 11, we can easily check that (6.3) holds for 
P. This completes the proof of Theorem 3. Q.E.D. 
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(b) #C(P‘) = +C(P) - 1, ‘ q ( P )  = ‘j(P) - 21. 

y(P’)  = y ( P )  + f. 

y ( P ’ )  = y ( P )  + f .  ( i )  #C(P) = #C(P) - 1. O(P’) = J ( P )  - 2, 

Y(P’) = Y(P1. 
Fig. I I .  Illustration for the proof of Theorem 3 

Corollary 1: If all connected components of an image 
P are simply connected, then #e ( P  ) I CY ( P  ) - 3y ( P  ). 

Proofi This result follows from Theorems 2 and 3 .  
Q.E.D. 

Corollary 2: If an image P is simply connected, then 
# C ( P )  I a ( P )  - 3 .  In particular, # C ( P )  I 4 
#32 ( P  ) - 3 ,  for every minimum cover 32. 

Proofi The first part follows from Corollary 1 di- 
rectly. To prove the second part, we fix a minimum cover 
32. Clearly, every convex comer of P is covered by at 
least one rectangle in 32. Also, every rectangle contains 
at most four convex comers of P .  Therefore, CY ( P  ) I 4 
* #32. This proves the corollary. Q.E.D. 

This corollary also implies the following result. 
Theorem 4: Suppose that an image P is simply con- 

nected and C \D is the irreducible cover obtained in Al- 
gorithm A. Then #(e\%) 5 4 . #32 - 3, for every 
minimum cover 32. 

VII. CONCLUSIONS 
The search for an optimal covering for a binary image 

is fundamental to many image processing applications. In 
this paper, we propose an efficient way of compressing 
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digital image using irreducible covers of maximal rect- 
angles. The principal results are the following. 

1) If all connected components of an image P are sim- 
ply connected, then the number of convex comers = 
number of concave comers +4 the number of connected 
components of the image. 

2) For a simply connected image, the cover C pro- 
posed in this paper uses less than four times the number 
of rectangles in a minimum cover. This bound is also an 
upper bound for the number of rectangles used in the ir- 
reducible cover e \D. 

3) The parallel algorithm of finding the irreducible 
cover e \D uses (n/log n )  concurrent-read-exclusive- 
write (CREW) processors in O (  log n )  time. 

4) The geometry of binary images described in this pa- 
per is very unique in characterizing the mathematical cor- 
respondence of the minimum cover problem. 
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