
IEEE FRANSACTIONS ON SOFTWARE ENGINEERING. VOL 13. NO. 5. MAY 1988 65 I

A New Method of Image Compression Using
Irreducible Covers of Maximal Rectangles

YING CHENG, S . SITHARAMA IYENGAR, AND RANGASAMI L. KASHYAP, FELLOW, IEEE

Abstract-In recent years there has been a tremendous spurt in re-
search and activity in finding efficient compression techniques for im-
age processing applications. Particularly when an image is structured
over a nonrectangular region, it is always advantageous to define a
method of covering a region by minimal numbers of maximal rectan-
gles. Towards this objective, we analyze the binary image compression
problem using irreducible cover of maximal rectangles. We also give a
bound on the minimum rectangular cover problem for image compres-
sion under certain conditions that previously have not been analyzed.
I t is demonstrated that for a simply connected image, the irreducible
cover proposed here uses less than four times the number of the rect-
angles in a minimum cover. With n pixels in a square, the parallel
algorithm of obtaining the irreducible cover presented in the paper
uses (I I /log n) concurrent-read-exclusive-write (CREW) processors in
O(log) I) time.

Index Terms-Covering algorithms, image compression, maximal
rectangles.

I. INTRODUCTION
FFECTIVE methods of representation of binary dig- E ital images are required in many image processing

tasks. Currently hierarchical representations like quad-
trees and octtrees are very popular [8], [9]. One criterion
of evaluation of different representations is the degree of
information compression achieved by the scheme. The in-
formation contained in any representation can be mea-
sured by the length of the program needed to transmit the
same. For instance, in quadtrees, one needs to transmit
the program corresponding to the quadtree including dec-
larations of the leaf nodes which correspond to the pixels
or groups of pixels having a “one. ’’ It is well known that
the minitnum code length required for transmitting an n X
n binary image is 2 logz n . The image compression effi-
ciency associated with a particular representation can be
measured by the ratio of the length of the program to the
above minimum, namely 2 logz n. Typically, the ratio is
greater than one. The closer the ratio is to one, the greater
will be the degree of image compression achieved.

The quadtree corresponds to dividing an image into

Manuscript received June 30, 1987; revised September 30, 1987.
Y. Cheng was supported in part by a grant from the Louisiana Education
Quality Support Fund. R. L. Kashyap was supported in part by grants from
the National Science Foundation and the Office of Naval Research.

Y . Cheng was with the Department of Mathematics, Louisiana State
University. Baton Rouge, LA 70803. He is now with AT&T Bell Labo-
ratories. Crawfords Corner Road, Holmdel, NJ 07733.

S . S . Iyengar is with the Department of Computer Science, Louisiana
State University. Baton Rouge, LA 70803.

R . L. Kashyap is with the Department of Electrical Engineering, Purdue
University, West Lafayette. I N 47907.

IEEE Log Number 8819886.

nonoverlapping squares by particular tree scanning pro-
cedure. In this paper, we explore the possibility of de-
scribing each connected part of an image by means of ir-
reducible and maximal rectangles which may be
overlapping. A rectangle is described by a quadruple,
namely the sizes of the two sizes and two coordinates of
some specific corner (say northwest). The image will be
described by an unordered set of the quadruples corre-
sponding to the various rectangles. We believe that the
compression achieved by these schemes like this is, in
general, superior to those obtained by quadtrees since 1)
they do not involve any additional algorithms like tree
traversal or ordering, and 2) the basic unit in quadtrees
are squares, not rectangles. These schemes may also be
useful for real-time dynamization, i.e., dynamically al-
tering the representation in real time as the image changes
in real time. However, we do not explore the aspect in
this paper.

Ferrari et al . [3] considered the representation of im-
ages via a partition with (nonoverlapping) maximal rect-
angles. Moitra et al . [6] used maximal irreducible cover
with squares, the squares being possibly overlapping.
However, Masek showed that the constriction of minimal
covers with rectangles is an NP-complete problem. For a
broader treatment on this, see [2] . In this paper, we plan
to describe an image by an irreducible cover made up of
maximal rectangles. We also present an algorithm to find
an irreducible cover. With n pixels in a square, the par-
allel implementation of the algorithm can be executed with
(n /log n) concurrent-read-exclusive-write (CREW) pro-
cessors in O(1og n) time. Hence, the parallel algorithm
is optimal.

It is important to point out that the cover generated is
irreducible, but not minimal. The usefulness of the rep-
resentation is intimately connected to the question of the
ratio of the number of rectangles in the irreducible cover
of this paper to the number of rectangles in a minimal
cover. The smaller the ratio, the greater will be the use-
fulness of the representation. We show that for a simply
connected image, the number of rectangles in the irre-
ducible cover is less than four times the number of rect-
angles in a minimal cover.

The remainder of this paper is organized as follows:
Section I1 describes some basic definitions and the main
focus of our problem. Section 111 describes the greedy al-
gorithm and there we develop motivation for the proposed
method. Section IV describes an overview of the pro-
posed algorithm with a detailed proof to show that our

0098-5589/88/0500-065 1$01 .OO 0 1988 IEEE

652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 5. MAY 19x8

method produces an irreducible cover for the image. Sec-
tion V describes a parallel version of the algorithm. Sec-
tion VI discusses the number of rectangles used in the
irreducible cover and that of a minimum cover under some
restricted conditions. Section VI1 concludes the paper.

11. PRELIMINARIES
In this paper, we consider a binary image as an array

PIO * * - m, 0 - m] of binary valued pixels, where m
= & + 1. For convenience, we assume that the image
is only within P [1 &, 1 * & I . The value of a
pixel is represented as both truelfalse or its synony-
mous value blacklwhite. In Fig. 1, we give an example
of an image and an irreducible cover of rectangles for it.

A rectangle can be represented as rect < row,column,
sizel ,size2 >, where row and column are the coordi-
nates of the northwest corner pixel of the rectangle, and
sizel and size2 are the numbers of rows and columns in
the rectangle. A black rectangle is maximal if it is not
contained in any other black rectangle. In this paper, a
rectangle always means a black rectangle. A collection C?
of rectangles is called a cover of the image if every black
pixel is contained in at least one of the rectangles in C?.
A cover C? is irreducible if no proper subset of C? is a cover
of the image. A greedy algorithm to obtain an irreducible
cover from a cover will be given in Section 111.

Neighborhood Characterization of Black Pixels
A black pixel P,,J is a top (respectively, bottom, le@, or

right) pixel if the pixel PI - (respectively, PI + I ,,,
PI,, + I ,) is not black. It is easy to show that a rect-

angle is maximal if and only if it contains top, bottom,
left, and right pixels. A column of black pixels is called
a maximal column if it is not contained in any other col-
umn of black pixels. Hence, a rectangle is a maximal col-
umn if and only if it contains only one column and it con-
tains a top pixel and a bottom pixel. For example, in Fig.
1, the pixels P6,5 and P7,5 form a maximal column and
pixels P 3 , 2 , P4 ,2 , P5.2 form another one. Of course, the
maximal column is uniquely determined by its top pixel.
If the top pixel is Pi ,J , we write the maximal column as
max-col< i , j > . Hence, the two maximal columns in
Fig. 1 we just mentioned are denoted as max_col<6,
5 > and max-col< 3, 2 > , respectively. The notation
max-col < i, j > is defined only when is a top pixel.
Similarly, we can define maximal rows. A set of black
pixels is said to be covered by a collection of rectangles
if every pixel in the set is contained in at least one rect-
angle of this collection. A sequence of consecutive top
(respectively, bottom, left, right) pixels is called a top
(respectively, bottom, lefr, right) edge. Fig. 2 illustrates
these terms.

A cover with minimum number of rectangles is called
a minimum cover. Clearly, every minimum cover is irre-
ducible. The vice versa is not true, an irreducible cover
need not be minimal. Also, since every rectangle is con-
tained in at least one maximal black rectangle, we can
obtain a minimum cover with maximal rectangles from

-

1 maqe

Fig. I

Fig. 2. Cover with maximal rectangles a, b, c , d, e, f , g .

any minimum cover. An ideal way to store binary image
data is to use a minimum cover. However, it is a difficult
problem to find a minimum cover for an image. The prob-
lem that whether an image has a minimum cover with k
rectangles is known to be NP-complete (Masek’s unpub-
lished work cited in [2]). Therefore, it is reasonable to
use irreducible covers instead of minimum covers. In this
paper, we present an algorithm to find an irreducible
cover. For a simply connected image, i.e., a connected
image without holes, we show that the irreducible covers
use less than four times the number of rectangles in a min-
imum cover.

Lemma I : Every maximal column is contained in a
unique maximal rectangle.

CHENG er U / . : IMAGE COMPRESSION USING COVERS OF RECTANGLES 653

Fig. 3. Illustration for the proof of Lemma 1.

Proof: Let max-col< t , j > be a maximal column
with m rows with P,, , as its top pixel and Pb, , as its bottom
pixel with b = t + m - 1 as in Fig. 3. Now let 1 be the
smallest integer such that Pkl,kz are black pixels for all t
5 kl I b and 1 I k 2 I j . There exists an integerp such
that t I p I b and P p + , - l is not a black pixel. Hence,
PP./ is a left pixel as in Fig. 3. Let r be the largest integer
such that Pkl,kz are black pixels for all t 5 kl I b a n d j
5 k2 I r . There exists an integer q such that t I q 5 b
and Pq,r+ I is not a black pixel. Hence, Pq,. is a right pixel.
Pixels Pkl,kz, t I k , 5 b, 1 I k2 I r form the maximal
rectangle rect < t , 1, m, r - 1 + 1 > . It contains the max-
imal column max-col< t , j > . Since this is essentially
the unique way to construct a maximal rectangle which
contains max-col< t , j > , the maximal rectangle we ob-
tained is the unique one containing max-col < t , j >.

Q.E.D.
The unique maximal rectangle containing max-

- cole t , j > is denoted by a,,,. We note that different
maximal columns may be contained in the same maximal
rectangle. For example, in Fig. 1, CR2,4 = CR2,5 =
rect<2, 3, 2, 4>.

Finally, we note that, for sets A and B, we denote the
set of elements of A which is not in B by A\B.

111. GREEDY ALGORITHM
The greedy algorithm can be easily described as fol-

lows. We begin with a cover of rectangles. When we
find one rectangle (R which is covered by e\{@}, we
delete this rectangle from the cover. That is, C +

\ { CR}. We do this process until we cannot find any one
in the updated cover e , which satisfies the above condi-
tion. Each time when we delete one rectangle, we know
that the updated cover is a true cover. Hence, at the end,
the set of rectangles left is also a cover. It is an irreducible
cover because this is the reason that we stop the process.

Greedy Algorithm:
input: A cover (3 of rectangles for a binary image.
output: A subset e , of which forms an irreducible

cover for the image.

while (there exists M E e , which is covered by e , \ { M })

end;

This above algorithm is sequential in nature since we
can delete one rectangle at a time. In the next section, we

e , + e

e , + C l \ {MI

shall outline a cover so that we can perform the deletion
concurrently.

IV. NEW ALGORITHM
We sketch an outline of our algorithm for finding an

Algorithm A:
irreducible cover for any image.

input: binary image P i , j , 1 I i , j < m.
output: an irreducible cover of maximal rectangles

for the image.
1) Determine all maximal rectangles which contain

some maximal columns.This collection of maximal rect-
angles is denoted by e. Here, for a given maximal col-
umn, we find the unique maximal rectangle which con-
tains this column by the method given in the proof of
Lemma 1. We note that we may get the same rectangle
from different columns.

2) Eliminate repetitions of the maximal rectangles ob-
tained in the previous step. After this elimination, every
rectangle of e is uniquely determined by one particular
maximal column, or equivalently, by one particular top
pixel.

3) Determine those rectangles CR of e whose corre-
sponding maximal column are covered by e \ { CR} . This
collection of maximal rectangles is denoted by 33.
4) Finally, C\D, the collection of rectangles in e but

not in D, is an irreducible cover.
The rest of this section is devoted to the proof that e \33

is an irreducible cover.
Lemma 2: C is a cover of the image.

Proof: Let Pi, j be a black pixel. Let t be the smallest
integer such that Pk,, are black pixels for all t I k I i .
Since Pr- ,,, is not black, Pr, j is a top pixel. Similarly, let
b be the largest integer such that Pk,j are black pixels for
all i I k I b. Then P,, is a bottom pixel. Hence, pixels
Pk,j, t I k I b, form the maximal column maX_COl< t ,
j > , which contains Pi, ,. By Lemma 1, max-col < t , j >
is contained in the unique maximal rectangle CR,. E e.
This proves that is a cover for the image. Q.E.D.

In the next lemma, we prove that if the maximal rect-
angle covers a pixel P j , j l , which is contained in a
maximal column max-col< i , , j , > , then CRi2, jz covers
the row of containing P i , j , . Fig. 4 illustrates this
result.

Lemma 3: Let = rect< i l , I,, r , , c I > and
(Ri2, j2 = rect< i , , l,, r2, c2 >. Suppose that Pi , j , E
n rnax-cole i l , j , > . Then r2 I rl and Pi.k E CRiz,fi for
all k with 1, I k I lI + c I - 1.

Proof: Suppose that i, < i , . Then (Ri,,jz contains the
pixel Pi, This pixel is not black since is a top
pixel. However, (Ri2. j z contains black pixels only. Hence,
i2 1 i l . Similarly, since - I . j , is a bottom pixel, we
have that i2 + r2 - 1 I i l + rl - 1. Hence, r2 I r l .
Also, Pi2,k E (Riz, j2 for all k with l2 I k 5 l2 + c2 - 1 .
This implies that l2 4 I , and l2 + c2 - 1 1 ZI + c I - 1.
Therefore, c , I c, and P;,k E CRi2 , j2 for all k with 1, I k
5 11 + CI - 1. Q.E.D.

Since the sequential and parallel versions to implement

654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 5 . MAY 198X

r- - - - - - - - p-J---- - - - - - . I
I I

- -i
I
I
I
1
I ---

Fig. 4. Illustration for the proof of Lemma 3.

step 2 of algorithm A are essentially different, we will
simply assume, in this section, that we choose one partic-
ular max-col < i, j > in each rectangle 03 of C? and call
the top pixel Pi , j an active pixel. Hence,

= { ai, I pi, is active }
and if Pil,jl and Pi2,j2 are distinct active pixels, then
ail,jl # (Ri2 , j2 . By definition,

D = { ai, 1 Pi, is active and max-col< i, j >
is covered by C? \ { ai, }] . (4.1)

Lemma 4: For an active P i , j , = rect< i , 1 , r , c >
is covered by C? \ { ai, } if and only if max-col < i, j >
is covered by C? \ { ai, } .

Proof: Suppose that max-col < i, j > is covered by
e\{ For fixed i l with i I il I i + r - 1, P;l,j E
max-col< i , j > . Hence, there exists 6iii2,j2 # such
that Pjl,jl E (Riz, j2. By Lemma 3, @ i 2 , j z contains Pil,k for all
k with I I k I I + c - 1. This proves that a,,, =
rect < i , I , r , c > is covered by e\{ }. The other
part of the lemma is trivial. Q.E.D.

Now we can prove our main result in this section that
C? \a> is an irreducible cover.

Theorem 1: C? \D is an irreducible cover of the image.
Proof: We first prove that C?\D is a cover. So, let

P i , j be a black pixel. By Lemma 2, Pi, j E =
rect < i l , 1 1 , r l , cI > for an active P i l , j l . Among all these
possible we choose one with minimum r , . That is,
Pi , j E = rect< i l , I,, r l , cI > and if Pi, j E cRi, , j f =
rect< i ’ , I f , r ’ , c’ >, then r I r’ . Now we claim that

E C?\D. Suppose it is not so. Then cRil,jl E 9 and
max-col< i , , j , > is covered by e\{ by (4.1).

forall 1 I i , j < m pardo
if (Pi , j and not(Pi- then

begin

By Lemma 4 , cRil,jl is covered by e\{ Since P i , j
E we have that il I i I i l + r l - 1 . Consider the
black pixel Pi,jl which is covered by e\{ ol.il,jl}. Say,
Pi,jl E 61i2,j2 = rect < i2, 12, r2, c2 > , with & i 2 , j 2 #

By Lemma 3, r2 I r l and Pi , j E ai2,j2. By the min-
imality of ail,jl, r2 = r l . Now, both and 6ii2,,2 con-
tain Pi,jl and have the same number of rows. Hence, they
both contain max-col < i l , j , > . By Lemma 1, they are
the same rectangle, a contradiction. This proves that P i , j
is contained in @til,jl E C? \D. Hence, e \D is a cover.

To prove that C? \D is an irreducible cover, we have to
prove that C? \(D U { }) is not a cover for every
ai,, D with active P i , j . Suppose that C? \D U { })
is a cover for some ai,j $ D with active P i , j . Then
C? \ { } is also a cover. In particular, max-col < i,
j > is covered by C? \ { ai, } . By definition, ai, E 9,
which is a contradiction. This completes the proof of this
theorem. Q.E.D.

V. PARALLEL IMPLEMENTATION OF ALGORITHM A
The first step in algorithm A is to determine all maximal

rectangles which contain some maximal columns. Parallel
algorithms 1 and 2 return maximal rectangles +

rect < top [i, j 1, left-bound [i, j 1, col-size [i, j 1, row-
size [i, j] >. For an illustration, please see Fig. 5 .

Algorithm 1:
input: binary image P i , j , 1 I i, j < m.
output: boundaries left [i, j 1, right [i, j] of the max-

imal row containing black pixel Pi, i . boundaries top [i,
j 1, bottom [i, j] of the maximal column containing black
pixel Pi, j .

forall 1 I i , j < m pardo
if Pi, j then

begin
left[i, j I +- min({lI < I 5 k 5 j f ‘ i . k })

right[i, j I +- max({rl Aj 5 k 5 r < m Pi,k})

top[i> j I +- min({ti A0 < r 5 k 5 i Pk. j 1)
bottom[i, j I +- max({ b I Ai 5 k 5 b < m Pk. j 1)
end

od
end;

Algorithm 2:
input: output of Algorithm 1.
output: maximal rectangles ai, and maximal col-

umns max-col < i, j > which contain top pixels P i , j .

lef-bound[i,j] +- max({left[k,j]~top[i,j] I k I bo t tom[i , j] })
right-bound[i, j] + min({ right[i,k] Itop[i, j] I k I bottom[i, j] })
col-size[i,j] +- botrom[i, j] - t o p [i , j] + 1
row-size[i, j] +- right-bound[i, j] - left-bound[i, j] + 1
ai., +- rect < top[i, j] ,left-bound[i, j] ,col-size[i, j] ,row-size[i, j] >
max-col < i, j > +- rect < i, j , l;row-size[i, j] >
end

od
end;

CHENG er al . : IMAGE COMPRESSION USING COVERS OF RECTANGLES 655

Fig. 5 . Illustration for Algorithm 1.

Algorithm 1 can be executed with n 2 concurrent-read-
write processors in O (1) time. As suggested in Moitra
and Moitra [6] , it can also be executed with (n/log n)
concurrent-read-exclusive-write processors in 0 (log n)
time as follows. It can be obtained by allocating one pro-
cessor to every pixel whose row index is a multiple of log
n. We describe the method to obtain right [i , j] only. The
other three can be obtained similarly. In log n sequential
steps, each processor links each of the (next log n) pixels
to the rightmost one which either terminates a horizontal
sequence of black pixels and/or is log n columns away.
Then in at most log n parallel steps, all the processors find
the right end of horizontal strips which are wider than log
n columns. Finally, in a sequential log n steps, each pro-
cessor links each of the (next at most log n) pixels which
belongs to a sequence of black pixels wider than log n
columns, to the rightmost one which terminates the se-
quence.

Similar arguments show that the comparisons in Algo-
rithm 2 can be executed in log n time with (n l log n)
CREW processors.

The purpose of the next algorithm is to implement the
second step in Algorithm A.

Algorithm 3:
input: output of Algorithm 2.
output: activities of top pixels P I , J . (Explained

There are two methods to achieve the goal. In the first
below).

Algorithm 4:

method, we use array Boolean variables B [i l , j , , vI , v2],
1 I i , j , v i , v2 I m, and the CREW model. All top pixels
PI,I concurrently attempt to write B [i l , j l , u l r v2], where
a,,, = B [i l , j l , v i , u 2] . Those assess t o B [i i , j l , v I , v 2]
successfully can get A,,J + 1. Otherwise, A,,J + 0. This
can be done in log n time by using n/log n processors.

The second method to achieve the goal in Algorithm 3
can be described as follows. We first define a linear or-
dering on the rectangles we obtained in Algorithms 1 and
2 as follows. Let al., = rectc v,, v2, r l , cI > and
6i,l,,f.= rectc vi, vi, r ; , c; > . Define < 611r,Jr if and
only if

(211, U29 rl, CI, i , j) (U ; , vi, r ; , 4, L j ’)

in the lexicographical order. Now we can apply the opti-
mal random sorting algorithm of Reif [7] , which can be
executed in O (log n) time using (n/log n) P-RAM pro-
cessors, to eliminate repetitions among the rectangles ob-
tained in Algorithms 1 and 2. That is, among those rect-
angles with the same r e c t e v , , v2, r I r c l > , we
choose the one with the smallestj. (All i are the same for
the same rectangles.) For this choice, we say that the pixel
Pl,J is active. Or say A,,J = 1 if P,,, is active and 0 oth-
erwise. Therefore, every rectangle obtained in Algo-
rithms l and 2 is uniquely determined by an active pixel
P,, We can also apply Leighton’s deterministic method
[5] , to achieve the goal by using n processors in time log
n. This apparently uses more processes.

In Algorithm 4, we assign a sign sign [i’, j ’] to each
pixel so that it is 1 if Pl,*J, E (@ I , J \max-col < i , j >) for
some active P,, J . Now, for every active pixel P,. J , we have
that sign [i ’ , j ‘] = 1 for all P,.,,, E max-col < i, j > if
and only if max-col c i , j > is covered by C \ { (RI,, }.
Equivalently, E D. For this P, .J , we change its activ-
ity Al,J from 1 to 0 in Algorithm 5 . Finally, those PI.J with

= 1 form the irreducible cover C \D according to
Theorem 1.

input: output of Algorithms 2 and 3.
output: sign [i , j] for active The meaning of

sign [i , j 3 is explained above.

forall 1 5 i , j < m pardo
s ign[i , j] = 0
od

if A,, then

od
end;

Algorithm 5:

forall 1 I i , j < m pardo

sign[i’, j ’] + 1 for all P,.,,, E &,,,\max-col< i , j >

input: output of Algorithms 2, 3, and 4.
output: change some Al,J from 1 to 0. Those at,,

with A,,J = 1 form the irreducible cover C\D.

forall 1 I i , j < m pardo
if (A,,J and A{s ign[i ’ , j ’] I Pll ,J . E max-col<i, j >}) then

od
end;

’ 1 , J

656 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 5. MAY 1988

To sketch the sequential algorithm, we first assume that
all edges of the image are stored. For a fixed top edge and
a fixed bottom, we find all bottom edges under this top
edge. Now we fix one of these bottom edges and consider
the pair of the top edge and the bottom edge. For a pair
of top edge and bottom edge, we construct a maximal
rectangle as in Lemma 1. To eliminate repetitions, we
simply check all maximal rectangles. This can be done in
O (k 2) time, where k is the number of rectangles. To de-
termine those rectangles in D, we can also fix one rect-
angle and check all other rectangles in C. Again, this can
be done in O (k 2) time.

VI. GEOMETRY OF BINARY IMAGES

In this section, we shall state an upper bound on the
cardinality of e, #e, which is the number of rectangles
in the cover obtained in Algorithm A. This bound is also
an upper bound for the cardinality of the irreducible cover
(3 \D. After presenting a formula for the number of con-
vex and concave comers of a simply connected binary im-
age, we shall prove that #C is at most 4 #312 -3 for any
minimal cover 312.

In order to obtain those bounds we mentioned above,
we shall introduce some concepts in the geometry of bi-
nary images. Although these concepts are pretty much
well known in the field of geometry, the authors know no
references for our particular need in the study of binary
images.

We first define convex and concave comers. Each pixel
has four comers. Each comer of a black pixel PI, , has
three neighbor pixels. The two neighbor pixels which
share common edges with are called edge neighbors
of the comer and the other one the vertex neighbor of the
comer. Fig. 6 illustrates the definitions.

A comer of a black pixel PI, , is called a convex corner
if both its edge neighbors are white pixels. It is called a
concave corner if both its edge neighbors are black pixels
and its vertex neighbor is a white pixel. Fig. 7 illustrates
the definitions.

Let

p I I . J I , ' 1 2 . J 2 7 * ' * 3 ' I r , J r (6.1)

be a sequence of black pixels. It is a path if Pll,Jk and
PI,+ ,, ,, + , share a common edge, for all 1 I k I t - 1. A
path (6.1) is simple if all the black pixels are distinct. The
path is a cycle if PI, , , , = PI,,,,. It is a simple cycle if the
black pixels in (6.1) are distinct, except for P, , , , , = P,,,Jr,
which are identical pixels. We can use a simple cycle to
partition the whole set of pixels into three parts: the cycle
itself, and pixels inside the cycle and pixels outside the
cycle, called the inner and outer part, respectively. An
example to illustrate the concept is given in Fig. 8.

An image is said to be connected if there is a path con-
necting any two black pixels. A connected component is
a subset of black pixels which is connected, and is max-
imal subject to the connected condition. Clearly, an im-
age can be partitioned into connected components. An im-
age is connected if and only if it has exactly one connected

Fig. 6. E , and E2 are edge neighbors of comer 1 in Pixel P,.,. VI is the
vertex neighbor of comer 1 in Pixel P,, , .

Fig. 7. The image has ten convex corners, labeled 1, and two concave
corners, labeled 2.

Fig. 8. Inner and outer parts of a cycle.

component. A connected image is said to be simply con-
nected if the inner parts of all simple cycles consist of no
white pixels.

For the remainder of this section, we let a (P) be the
number of convex comers of the image P , f l (P) the num-
ber of concave comers, and y (P) be the number of con-
nected components. We also denote C (P) as the cover
of P obtained in Algorithm A.

Theorem 2: If all connected components of an image P
are simply connected, then a (P) = 0 (P) + 4y (P).

Proof: Let r be the collection of images such that all
their connected components are simply connected. We use
induction on #P, the number of black pixels in P , to prove
the statement that

= P (P > + 4 Y (P) (6.2)
for P E I?. If #P = 1, then P consists. of a single black
pixel. In this case, (6.2) is certainly true.

Now we assume that P E I', and #P # 0. Consider a
maximal left edge 3 of P . Then 3 is a maximal column in
P . By Lemma 1, 3 is contained in a unique maximal rect-
angle CR. Let 32 be the right edge of the rectangle CR. 32
contains a right pixel. Let 32' be the unique maximal col-

CHENG er U / . : IMAGE COMPRESSION USING COVERS OF RECTANGLES 657

Fig. 9. Illustration for the proof of Theorem 2

umn containing 32. For an illustration of these terms,
please see Fig. 9.

If 37. = X ’ , then we have three possible situations as
shown in Fig. 10(a)-(c). We note that we omit the situa-
tion which is a reflection of (c). If 32 # 32’, then we have
two possible situations as shown in Fig. 10(d) and (e).
We note that we omit the situation which is a reflection
of (d). In each of these situations, we delete a black rect-
angle, as shown in Fig. lO(a)-(e). It is easy to check that
the resulting image P’ is also in I’. Since #P’ < #P, (6.2)
holds for P’ by induction hypothesis. By using those in-
formation we obtained in Fig. 10, we can easily check
that (6.2) holds for P. This completes the proof of Theo-
rem 2. Q.E.D.

The proof of the next result is similar to the proof of
Theorem 2 and involving more cases.

Theorem 3: If all connected components of an image P
are simply connected, then #e (P) 5 /3 (P) + y (P).

Proofi Let r be the collection of images such that all
their connected components are simply connected. We use
induction on #P, the number of black pixels in P , to prove
the statement that

e (p) 5 P (P) + ?(PI (6.3)
for P E r . If #P = 1, then P consists of a single black
pixel. In this case, (6.3) is certainly true.

Now we assume that P E r, and #P # 0. As we did in
the proof of Theorem 2, we consider a maximal left edge
3 of P. Then 3 is a maximal column in P. By Lemma 1,
3 is contained in a unique maximal rectangle (R. Let 32
be the right edge of the rectangle a. 32 contains a right
pixel. Let 32’ be the unique maximal column containing
32. For an illustration of these terms, please see Fig. 9.

If 32 = 37. ’ , then we have seven possible situations as
shown in Fig. 1 l(a)-(g). We note that we omit situations
which are reflections of (c), (d), and (f). We also note
that these seven situations come from the consideration of
the northeast and southeast corners of the rectangle a.
The comers can be convex, concave comers, or can be
none of the above two types. We assume that there are t
right edges of P in 32.

If 32 # 32’, then we have two possible situations as
shown in Fig. l l (h) and (i). We note that we omit the
situation which is a reflection of (h). In each of these sit-
uations, we delete a black rectangle, as shown in Fig.

(e) Q (P ’) = a (~) - z , P (P ’) = P (P) - ~ , Y (P ’) = 7 (P)

Fig. 10. Illustration for the proof of Theorem 2.

ll(a)-(i). It is easy to check that the resulting image P’
is also in I’. Since #P’ < #P, (6.3) holds for P’ by in-
duction hypothesis. By using those information we ob-
tained in Fig. 11, we can easily check that (6.3) holds for
P. This completes the proof of Theorem 3. Q.E.D.

658 I t C t

(b) #C(P‘) = +C(P) - 1, ‘ q (P) = ‘j(P) - 21.

y(P’) = y (P) + f.

y (P ’) = y (P) + f . (i) #C(P) = #C(P) - 1. O(P’) = J (P) - 2,

Y(P’) = Y(P1.
Fig. I I . Illustration for the proof of Theorem 3

Corollary 1: If all connected components of an image
P are simply connected, then #e (P) I CY (P) - 3y (P).

Proofi This result follows from Theorems 2 and 3 .
Q.E.D.

Corollary 2: If an image P is simply connected, then
C (P) I a (P) - 3 . In particular, # C (P) I 4
#32 (P) - 3 , for every minimum cover 32.

Proofi The first part follows from Corollary 1 di-
rectly. To prove the second part, we fix a minimum cover
32. Clearly, every convex comer of P is covered by at
least one rectangle in 32. Also, every rectangle contains
at most four convex comers of P . Therefore, CY (P) I 4
* #32. This proves the corollary. Q.E.D.

This corollary also implies the following result.
Theorem 4: Suppose that an image P is simply con-

nected and C \D is the irreducible cover obtained in Al-
gorithm A. Then #(e\%) 5 4 . #32 - 3, for every
minimum cover 32.

VII. CONCLUSIONS
The search for an optimal covering for a binary image

is fundamental to many image processing applications. In
this paper, we propose an efficient way of compressing

IKAN>ACI IUN> U N >UP1 WAKt CNCIINCCKINCI. V O L . 14, NU. 3 . MAT I Y a O

digital image using irreducible covers of maximal rect-
angles. The principal results are the following.

1) If all connected components of an image P are sim-
ply connected, then the number of convex comers =
number of concave comers +4 the number of connected
components of the image.

2) For a simply connected image, the cover C pro-
posed in this paper uses less than four times the number
of rectangles in a minimum cover. This bound is also an
upper bound for the number of rectangles used in the ir-
reducible cover e \D.

3) The parallel algorithm of finding the irreducible
cover e \D uses (n/log n) concurrent-read-exclusive-
write (CREW) processors in O (log n) time.

4) The geometry of binary images described in this pa-
per is very unique in characterizing the mathematical cor-
respondence of the minimum cover problem.

REFERENCES
[I] S. Chaiken, D. J . Kleitman, M. Saks, and J. Shearer, “Covering re-

gions by rectangles,” SIAM J. Algebraic Discrete Methods, vol. 2,
pp. 394-410, Dec. 1981.

[2] H. E. Conn and J. O’Rourke, “Some restricted rectangle covering
problems,” Dep. Comput. Sci., Johns Hopkins Univ., Tech. Rep.
JHU-87/13, June 1987.

131 L. Ferrari, P. V. Sankar, and J . Sklansky, “Minimal rectanglar par-
titions of digitized blobs,” Computer Vision, Graphics, Image Pro-
cessing, vol. 28, pp. 58-71, Oct. 1981.

[4] D. S. Franzblau and D. J . Kleitman, “An algorithm for constructing
regions with rectangles: Independence and minimum generating sets
for collections of intervals,” in Proc. 16th Annu. A C M Symp. Theory
Comput., 1984. pp. 167-174.

[5] T. Leighton, “Tight bounds on the complexity of parallel sorting,” in
Proc. 16th Annu. A C M Symp. Theory Comput., 1984, pp. 71-80.

[6] D. Moitra and A. Moitra, “Irreducible cover for binary images using
maximal squares,” Aug. 1987, unpublished manuscript.

[7] 1. H. Reif, “An optimal parallel algorithm for integer sorting,” in
IEEE Symp. Foundations Comput. Sci.. 1985. pp. 496-503.

[8] H. Samet, “The quadtrees and related hierarchical data structure,”
A C M Comput. Surveys, vol. 16, June 1984.

[9] D. S. Scott and S. S. lyengar, “TID-A translation invariant data
structure for storing images,” Cornmun. A C M , vol. 29, pp. 418-429,
May 1986.

Ying Cheng received the B.Sc. degree in mathe-
matics from National Taiwan University, Taipei,
Taiwan, in 1976, and the M.S., M.Ph., and Ph.D.
degrees in mathematics from Yale University,
New Haven, CT. in 1979, 1980, and 1981. re-
spectively.

He was a Dickson Instructor of Mathematics at
the University of Chicago from 1981 to 1983. In
August 1983 he joined the faculty of the Depart-
ment of Mathematics, Louisiana State University.
Baton Rouge. He is currently with AT&T Bell

Laboratories, Holmdel, NJ. His research interests include communication
networks, coding theory, data compression, graph theory, combinatorics.
algebra, and applications of algebraic methods.

S. Sitharama Iyengar, for a photograph and biography, see this issue, p.
610.

Rangasarni L. Kashyap (M’70-SM’77-F’80), for a photograph and bi-
ography, see this issue, p. 610.

