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ABSTRACT 

We consider the following problem (called the terrain 
model acquisition problem): A point robot R is placed in a 
finite-sized two-dimensional obstacle terrain populated by a set 
0 = {01,02, ,On} of unknown polygonal obstacles. Each 
obstacle Oi is a finite-sized polygon with a finite number of 
vertices. Initially the number of obstacles in the terrain is unk- 
nown to R . And also, the number and the locations of vertices 
of each obstacle are unknown to R .  The robot is equipped 
with sensors that detect all vertices and edges that are visible 
from the present location of the robot. The robot is required to 
navigate and acquire the complete terrain model in a finite 
amount of time. In this paper we propose a solution based on 
the retraction method, and this method has the advantage of 
keeping the robot as far as possible from the obstacles during 
the navigation. We also present a method for terrain model 
acquisition by a circular robot R of radius r , (r >O). 
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1. INTRODUCTION 
In recent years, there has been a large amount of research 

reported in literature concerning algorithms for robot naviga- 
tion. Some of the most pioneering works for navigation plan- 
ning in known terrains (i.e. the terrain models are precisely 
known) are due to Lozano-perez and Wesley [3], Reif [9], 
Schwartz and Sharir [lo], and O’Dunlaing and Yap [SI. These 
problems, often referred to as fmd-path problems, deal with 
planning a collision-free (possibly optimal) navigational path 
for a robot through a terrain cluttered with obstacles of 
‘known’ locations and configurations. Of late there has been 
growing interest in algorithms for robot navigation in unex- 
plored or unknown terrains (i.e. the terrain model is not known 
a priori). In such situations the path planning is based on the 
sensor information. Lumelsky and Stepanov [4] present a 
sound theoretical framework for these algorithms for a point 
robot operating amidst simple closeturved obstacles. 

In the area of navigation in unexplored terrains, here we 
deal with a specific problem wherein a robot is required to 
autonomously acquire the complete terrain model. The main 
motivation for this problem comes from the fact that once the 
terrain model is known, one can apply find-path algorithms for 
computing a navigation path (possibly optimal according to a 

chosen measure) to any required destination point. Then the 
robot can move along the planned path without sensor usage. 
Moreover, the sensor-based navigation algorithms occasionally 
lead the robot into local detours due to the localized nature of 
the sensor information. Such detours could be avoided by 
acquiring the terrain model first and employing find-path algor- 
tihms for planning paths to the destination points. 

We define the terrain model acquisition problem as fol- 
lows: A point robot R is placed at a point in a finite-sized two- 
dimensional terrain populated by an unknown (but, finite) 
number of simple polygonal obstacles. Each obstacle is of 
finite size (i.e. there exists a circle of finite radius that encloses 
the obstacle) and is formed by an unknown (but finite) number 
of vertices. The robot is equipped with a sensor system that 
detects all vertices and edges that are visible from the present 
location of the robot. The robot is equipped with a naviga- 
tional system that moves it along a specified straight line or a 
second order curve. It takes a finite amount of time to traverse 
a finite amount of distance either along a straight line or along 
a second order curve. The robot is required to autonomously 
navigate in the terrain and build the complete obstacle terrain 
model and return to the starting point in a finite amount of 
time. 

In the sequel, we use the following notation. We denote 
the set of obstacles by 0 = { O l , 0 2 , .  . . ,On}, where Oi is a 
finite-sized polygon in plane with a finite number of vertices. 

VER (Oi) denotes the set of vertices of Oi.  N = E  I VER (Oi) I 

denotes the total number of obstacle vertices. The free-space is 
denoted by i2 (9 1Cn02Cn . . * nonC). The convex hull 
formed by the vertices of a set of polygons {P  ,f 2, . . ,fk } is 
denoted by C ({P ,,P 2, . . * ,fk}). The detection of all vertices 
and edges seen from a point using the sensors is termed as a 
single scan operation. 

In this paper we present a solution to this problem based 
on the retraction method proposed by O’Dunlaing and Yap [SI. 
The robot incrementally constructs a graph, called the naviga- 
tional course based on the Voronoi diagram of the terrain from 
the sensor information that is acquired time-to-time. The navi- 
gational course which is the union of a subset of the Voronoi 
diagram and an envelop (to be defined formally) of the terrain. 
Since the terrain is unknown, this navigational course is not 
available to R to start with. The R locally constructs the edges 
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Fig.1. E ( O ) o f t h e t a t P i n o f O ~ , O ~ . n d O ~ .  

and vertices of the navigational course from each sensor opera- 
tion (scan operation). Then R moves to a computed vertex 
along the computed edges. R keeps navigating on the naviga- 
tion course (R backtracks at some points) till it acquires the 
complete terrain model; at this point it moves back to the start- 
ing point. The correctness of the algorithm follows from the 
connectedness of the navigational path. We then show that our 
method is directly applicable to a circular robot of radius r 
(>O). 

We then compare the proposed solution with the visibility 
graph based methods discussed in Rao et al [6,7]. The former 
has the advantage of minimizing the collision probability by 
navigating the robot ‘away’ from the obstacles. The storage 
complexity of the proposed method is 0 ( N )  as opposed to 
0 (N’) of the latter. Moreover, the present method has a over- 
all computational complexity of 0 (N’logN) whereas the latter 
has 0 (N3). Both the methods require 0 (N) sensor operations. 
Finally the extension of visibility graph method to a finite- 
sized (circular) robot calls for significant extensions to the 
basic algorithm (as shown in [7]). The proposed method is 
directly applicable to a circular robot. 

The organization of the paper is as follows: In section 2, 
we present the terrain acquisition algorithm and its correctness 
is established in section 3. We analyze the performance of the 
algorithm in section 4. In section 5 ,  we present a method for 
circular robot of radius r ,  (r>O). In section 6, we compare our 
method with the visibility graph based approaches. In this 
paper we present the basic results without proofs (see Rao et al 
[8] for details about the proofs). 
2. TERRAIN ACQUISITION ALGORITHM 

We first present a definition of the navigational course, 
and then describe our terrain acquisition algorithm. For any 
XEQ, define Neur(x) as the set of points that belong to the 
boundaries of obstacles Oi, i=1,2, ...,n and are closest to x .  
The Voronoi diagram, Vor(O), of the terrain populated by 0 
is the set of points: 

{ x E Q I Near ( x )  contains more than one point ) 

Fig. 2. e @ )  of the &rrain 01,02, and 09. 
In this case, Vor (0 ) is a union of 0 ( n )  straight lines and para- 
bolic arcs ( see Kirkpatrick [2] for more details on the Voronoi 
digrams ). Each of this line or parabolic arc is referred to as a 
V-edge. The points at which the edges meet are called V- 
verrices. Furthermore, Vor (0 ) can be specified as a combina- 
torial graph in which each edge is labeled with two end V- 
vertices, and an equation defining it as a curve in the plane. 
Each V-vwtex is labeled with its coordinates. 

Consider the convex hull C (0 ) of union of vertices of all 

obstacles (i.e. convex hull of uVER (Oi)). Let E (0) denote 

the region that is contained within an envelop of clearance of 6 
around C(0) as shown in Fig.1. Let us define nuvigationul 
course for 0 as {(O )=(Vor (Q)nE (0 ))udE (0 ), where 
dE (0 ) is the boundary of the envelop E (0 ). In fact {(O ) pre- 
cisely contains the Voronoi diagram of 0 that lies inside E (0 ) 
and the boundary of E (0). See Fig.2. for an example. Note 
that the set of vertices of e(0) is the union of V-vertices, ver- 
tices of the envelop E ( 0 )  and the intersection points of 
Vor(0) and aE (0) . Similarly the edges of { ( O )  is the union 
of edges of Vor (0 ) and E (0 ). The vertices (edges) of €,(0 ) 
are henceforth referred to as {-vertices (&edges). It is easy to 
see { ( O )  as a planar graph formed by {-vertices and {edges. 
The set of all {-vertices that are adjacent to a {-vertex v consti- 
tute the set of neighbors of v . 

We now present the terrain model acquisition algorithm. 
We mat { ( O )  as a combinatorial graph made up of {-vertices 
and {-edges. Initially the point robot R is located at an arbi- 
trary point in 0 at a finite distance from an obstacle. Then R 
performs a scan and computes the vertices of {(O). If R lies 
outside C (0) (i.e. all obstacles are found to be to one side of a 
line through the location of R ) then R computes a vertex v o  of 
E (0 ) and moves to it. If R lies inside C (0 ), then R computes 
the Voronoi diagram of visible part of the terrain ( say using 
Kirkpatrick’s [2]) and moves to a V-vertex vg. From yo, the 
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algorithm VACQUIRE(v ); 
begin 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 

11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 

perform scan operation; 
construct the {(O) of the visibility region; 
update the partially constnicted {(O ); 
mark all concave comers as visited; 
if (v has unvisited neighbors) 
then 

move to a nearest unvisited neighbor v 
VACQUIRE(V~); 

else 
backtrack (computationally) on the path v from v o  
and find vb with unvisited neighbors; 
if (such vb exists) 
then 

find v 2  the nearest unvisited neighbor of vb ; 
compute a shortest path to v 2  on the available {(O ); 
move to v along the computed path; 
VACQUIRE(v2); 

move to v o  along shortest path; 
move to the starting point; 

else 

end; 

algorithm VACQUIRE is invoked, which moves R from one 
(-vertex to the other. The basic idea of VACQUIRE is as fol- 
lows: R navigates entirely on the 1-skeleton {(O); at each 6- 
vertex v a scan is performed, the neighbors of v are computed, 
and the {(O) is updated. The R keeps visiting the new 5- 
vertices till it encounters a {-vertex with all visited neighbors. 
At this point R ‘backtracks’. This process is continued till all 
the {-vertices are visited. At this point R moves back to v o  
and then to the starting point. 

The detailed algorithm is given in algorithm VACQUIRE. 
At some intermediate stage, let R be located at {-vertex v (ini- 
tially v=vo). Now, R performs a scan operation (line 1). If all 
detected vertices lie only to one side of a line through v , (R is 
outside C ( 0 ) )  then it computes the adjacent vertex of E ( O ) .  
If not, the Voronoi digram of the visible part is computed 
(using, say Kirkpatrick’s [2]) (line 2). The partially built ( (0) 
is updated by entering the adjacency list of v (line 3). Note 
that only the €,-vertices which are adjacent to v are stored in 
the partial model of ((0). All {-vertices that correspond to 
concave comers of obstacles are marked as visited (line 4). 
Then if v has unvisited neighbors then R moves to a nearest of 
them (line 5-7), and then VACQUIRE is recursively invoked 
(line 8). 

If all neighbors of v are visited then the path from v o  to v 
is accessed. This path is stored on a stack. Whenever a new 
{-vertex is visited it is pushed onto the stack i.e. the {-vertices 
are pushed onto stack as R visits them. The stack is accessed 
when all neighbors of v are visited. At this point, the top ele- 
ment of the stack is repeatedly popped till a vertex vb with at 

least one unvisited neighbor is found. At this point the stack 
contains a path from v o  to vb . This process corresponds to line 
10. If such vb exists then it’s nearest unvisited neighbor v 2  is 
found and a path to v 2  is computed using single source shortest 
path algorithm of Frederickson [l] for planar graphs (This 
algorithm has a time complexity of O ( M m )  as opposed 
to 0 ( M 2 )  algorithm of Dijkstra for a planar graph of M nodes. 
The former exploits the planarity of the graph to lower time 
complexity.) (line 14). Note that this path to v 2  is shortest on 
the available portion of ((0) and in general not the shortest in 
the entire ((0). Then R moves to v2, and VACQUIRE is 
recursively invoked from v 2  (lines 15-16). If no such vb exists, 
then R moves to v o  along the shortest path (line 17-18). Then 
R moves back to the starting point (line 19) at which VAC- 
QUIRE terminates. we discuss the performance of this algo- 
rithm subsequently in this paper. 
3. CORRECTNESS OF THE ALGORITHM 

We first show that all {-vertices will be visited by R , and 
a scan is performed from each {-vertex at the termination of 
VACQUIRE. 
Lemma 1: The I-skeleton { ( O )  is topologically connected. 
Hence, the combinatorial graph corresponding to { (0)  is 
(graph) connected, i.e., there exists a path consisting of 6- 
edges between any two {-vertices. 0 

A close look at the algorithm VACQUIRE reveals that the 
execution of VACQUIRE is equivalent to carrying out a ‘con- 
ceptual’ depth-first-search on the graph of {(O) assuming it is 
available. Hence, we have the following Lemma. 
Lemma 2: The order in which new €,-vertices of graph of ((0) 
are visited is s a  as that of carrying out a depth-first-search 
on rhe graph of €,(O ). 0 

Using a cellular decomposition of Q, we show the follow- 
ing lemma [8]. 
Lemma 3: Every point in QnE(0) is seen during a scan 
operation from some 6-verta. 

We need to show that the {(0) is constructed correctly 
from the scan (visibility) information. Note that from any {- 
vertex v , only the {-vertices that are adjacent to v are updated. 
Consider the cellular decomposition of the terrain based on 5- 
edges as shown in Fig.3. As shown in Fig.3 (a),(b) and (c), 
each straight line €,-edge adjacent to v contains two convex 
regions (cells) - one to each side -, and this entire region is 
seen from v . If {-edge is parabolic then the cell can be decom- 
posed into a triangle and a cone (Fig.3(d)), and the entire 
region is seen from either of the ends of the given {-edge. It is 
clear that if the computed points lie on the boundary dE (0 ) of 
the envelop then the computed vertices exactly correspond to 
the actual vertices of the envelop. Consider the case where the 
computed vertices contain V-vertices. This part of the Voro- 
noi diagram contains the points which are nearest to edges and 
vertices seen from v . By the separability notion discussed by 
Kirkpatrick [2] this part of the computed diagram corresponds 
the actual Voronoi diagram. Thus the navigational c o m e  will 
be correctly constructed by the algorithm VACQUIRE. We 
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left cell 

Fig.3. Cellular decomposition of R based on edges. 
prove the correctness of the algorithm VACQUIRE in the fol- 
lowing theorem. 
Theorem 1: The algorithm VACQUIRE acquires the complete 
obstacle terrain model infinite amount of time. 
Proof: In the next section we show that { ( O )  is a finite graph 
and the distance traversed by R is bounded by a finite number 
(Lemma 4). From Lemmas 1 and 2 it follows that R visits all 
e-vertices, and scans from them in finite amount of time (since 
a depth-first-search on a connected graph, with finite number of 
node, visits all vertices in finite amount of time). Now from 

Lemma 3, all vertices and edges of all obstacles are detected 
from some scan operation. The terrain model can be directly 
constructed from the information about the obstacle vertices 
and edges. Or, the terrain model can be reconstructed from 
c(0) by storing the distance information with each 6-edge. 0 

In the next section we evaluate the complexities of scan 
operations, distance traversed and computations of the algo- 
rithm VACQUIRE executed on the robot R . 
4. PERFORMANCE 

We now present some properties of 6(0). Using a dual of 
Vor(O),  we estimate the bounds on the number of 6-edges and 
6-vertices in the following Lemma (see [8] for details). 

Lemma 4: 
(i) (n+5)/2g#S-verrices W - n - 2  
(ii) 3(n+1)/2< #s-edges W - 3 n - 3  0 

We use this lemma in estimating the complexity of sensor 
operations of VACQUIRE. We also estimate a bound on the 
distance traversed by the robot R executing VACQUIRE. 
Theorem 2: (i)  The number of scan operations performed by 
robot while executing VACQUIRE is at most 4N-n-2, (ii) The 
total distance traversed by the robot while executing VAC- 
QUIRE is at most twice the total length of the depth-first tree 
of 6(0 ) rooted at vo. 0 

We estimated the parameters such as number of scanning 
operations and total distance traversed by R while executing 
VACQUIRE. In the following theorem we estimate the com- 
plexity of computational activities carried by VACQUIRE. In 
our implementation we use the adjacency list representation of 
6(0). We store the coordinates of each 6-vertex in the adja- 
cency lists. We maintain a table called MAP-TABLE. The 
table gives the visited information of a €,-vertex specified by 
it’s coordinates. The MAP-TABLE is implemented as an 
AX-tree. One can store the information of these tables in the 
adjacency list. Then the complexity of finding whether a 6- 
node (specified by its coordinates) visited or not is 0 (N ). The 
cost of this operation is 0 (logN) using the table. 
Theorem 3: The computational complexities of various tasks 
carried out by VCAUIRE are as follows: (i)  the storage com- 
plexity is O(N), (ii) cost of construction of 6(0) is 
0 (N210gN), ( i i i )  total cost of path planning is 0 ( N 2 W ) ,  
(iv) the cost of construction of MAP-TABLE is 0 (NlogN), and 
the total cost of accesses to MAP-TABLE is 0 (N logN). 0 

In the next section we compare the performance of the 
proposed terrain acquisition algorithm with vertex-based ones 
using the estimates developed in this section. 
5. CIRCULAR ROBOT 

Now consider a circular robot R of radius r (>O). For 
each X E  R, we define clearance (x ) to be the distance to a 
nearest member of Near ( x ) .  We then consider E (0) such that 
the celarance &r. We now define a modified navigational 
course €,* (0 ) as follows: 

6’ (0 )={x E 6(0 )Iclearance (x )>r 1 
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Let R be located at x o  (i.e. the center of R is iocated at x o  
). For x E n, the clearance strictly increases along the line seg- 
ment joining x to Im(x)  [SI. Now, Im(x0) will be contained in 
a maxi& connected component F of 6’ (0 1. The component 
F contains €,-vertices and 6-edges with clearence greater than 
or equal to r .  Some edges of F could be truncated versions of 
corresponding {edges. In such cases we imagine a vertex at 
the truncated ends of the edges. Now this F plays the role of 
the navigational course for the algorithm VACQUIRE. 

Let x be a point reachable by R from xg. Then x can be 
‘seen’ by first moving from x o  to Im(x0) along a straight line, 
and then moving to Im(x) along F. By using the arguments 
similar to those in Theorem 1, we can show that R will acquire 
all the obstacle vertices and edges that can be ‘seen’ by R (we 
use F in place of {(0)). The performance of this algorithm is 
upper-bounded by the estimates in Theorem 2 and Theorem 3. 
6. COMPARISON WITH VERTEX BASED METHODS 

In this section we compare our method with the visibility 
graph based methods of Rao et al [6,7]. The main motivation 
for our method comes from the implementation stand point. In 
general it is very difficult to navigate a robot arbitrarily close 
to the obstacle edges as is required by the visibility graph 
methods. This is a serious problem if robot works in an open 
loop mode based on some type of visibility sensor. This prob- 
lem is present in retraction based methods if the terrains are 
densely populated, for example, if two obstacles are arbitrarily 
close to each other. However this is less problematic in a gen- 
eral case if retraction methods are used. The approach 
presented here is limited to two-dimensional terrains where as 
the method of 161 works for three dimensional terrains also. 
An extension to a finite-sized circular robot (of diameter 6 ) in 
terrains with a minimum clearance of 6 around each obstacle 
boundary for two-dimensional terrains is presented in [7]. In 
such a terrain the clearance around each {-edge will be at least 
6, and thus the algorithm presented here can be directly applied 
to that case. 

In terms of the complexity of scan operations both the 
algorithms have the same O ( N )  complexity. However, the 
scan operations are time consuming in a real-life implementa- 
tion hence it is instructive to compare them more closely. The 
number of scan operations in the visibility graph methods is N 
always, where as the retraction method requires at most 
4N-n-2 and at least (n+5)/2 scan operations. The former 
requires that the robot be,capable of straight line motion, where 
as the latter requires that the robot navigate along the second 
order curves (which can be implemented with straight line 
motion by using some polygonal path approximation to the 
second order curve). The distance traversed in the former case 
can be shown to be less than twice the total length of the 
depth-first tree on the visibility graph rooted at the starting ver- 
tex. In the later case the bound is twice the total length of the 
depth-first tree on the retract rooted at the starting vertex. 

Table 1: Comparison of two methods 

visibility graph retraction 
for comparison method method 
Storage 
construction 

We now look at the computational aspects. The visibility 
graph can have 0 (N’) edges and hence the storage complexity 
in this method is o(N’). The complexity of the retraction 
based method is 0 (N) as a result of the planarity of {(0 ). The 
complexity of the path planning in the former is o ( N ~ )  as 
opposed to 0 ( N ’ W )  in the latter. The cost of construction 
of the visibility graph is O(N2)  where as that of the retract is 
O(N’IO~N). The construction cost of the MAP-TABLE is 
same in both, where as the access cost in the former is 
o (N’IO~N) as opposed to o (NIO~N) in the latter.  his com- 
parison is summarized in Table. 1 

7. CONCLUSIONS 
In this paper, we have presented an algorithm that enables 

a point robot to acquire the complete model of a finite-sized 
two-dimensional obstacle terrain populated by an unknown 
(but finite) number of simple polygonal obstacles. We have 
shown that the terrain model will be completely built in a finite 
amount of time. We analyzed the algorithm for complexities 
of various operations. We then compared the performance of 
this algorithm with the existing algorithms based on visibility 
graph approaches. Future extension of this work deals with a 
finite-sized robot. Then the orientation problem becomes very 
significant. For a circular robot with a diameter 6, we can 
show (using the connectivity of the retract and the depth-first 
nature of the algorithm) that terrain model of all regions that 
are theoretically accessible to the robot will be acquired by the 
robot. 
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