
A ‘RETRACTION’ METHOD FOR TERRAIN MODEL ACQUISITION

Nageswara S. V. Rao N. Stoltzfus S.S. Iyengar
Department of Computer Science

Baton Rouge, LA 70803

Department of Mathematics
Louisiana State University University of Michigan Louisiana State University

Ann Arbor, MI 48105

Department of Computer Science

Baton Rouge, LA 70803

ABSTRACT

We consider the following problem (called the terrain
model acquisition problem): A point robot R is placed in a
finite-sized two-dimensional obstacle terrain populated by a set
0 = {01,02, ,On} of unknown polygonal obstacles. Each
obstacle Oi is a finite-sized polygon with a finite number of
vertices. Initially the number of obstacles in the terrain is unk-
nown to R . And also, the number and the locations of vertices
of each obstacle are unknown to R . The robot is equipped
with sensors that detect all vertices and edges that are visible
from the present location of the robot. The robot is required to
navigate and acquire the complete terrain model in a finite
amount of time. In this paper we propose a solution based on
the retraction method, and this method has the advantage of
keeping the robot as far as possible from the obstacles during
the navigation. We also present a method for terrain model
acquisition by a circular robot R of radius r , (r >O).
Keywords and Phrases:
Voronoi diagram, retraction, terrain model acquisition

1. INTRODUCTION
In recent years, there has been a large amount of research

reported in literature concerning algorithms for robot naviga-
tion. Some of the most pioneering works for navigation plan-
ning in known terrains (i.e. the terrain models are precisely
known) are due to Lozano-perez and Wesley [3], Reif [9],
Schwartz and Sharir [lo], and O’Dunlaing and Yap [SI. These
problems, often referred to as fmd-path problems, deal with
planning a collision-free (possibly optimal) navigational path
for a robot through a terrain cluttered with obstacles of
‘known’ locations and configurations. Of late there has been
growing interest in algorithms for robot navigation in unex-
plored or unknown terrains (i.e. the terrain model is not known
a priori). In such situations the path planning is based on the
sensor information. Lumelsky and Stepanov [4] present a
sound theoretical framework for these algorithms for a point
robot operating amidst simple closeturved obstacles.

In the area of navigation in unexplored terrains, here we
deal with a specific problem wherein a robot is required to
autonomously acquire the complete terrain model. The main
motivation for this problem comes from the fact that once the
terrain model is known, one can apply find-path algorithms for
computing a navigation path (possibly optimal according to a

chosen measure) to any required destination point. Then the
robot can move along the planned path without sensor usage.
Moreover, the sensor-based navigation algorithms occasionally
lead the robot into local detours due to the localized nature of
the sensor information. Such detours could be avoided by
acquiring the terrain model first and employing find-path algor-
tihms for planning paths to the destination points.

We define the terrain model acquisition problem as fol-
lows: A point robot R is placed at a point in a finite-sized two-
dimensional terrain populated by an unknown (but, finite)
number of simple polygonal obstacles. Each obstacle is of
finite size (i.e. there exists a circle of finite radius that encloses
the obstacle) and is formed by an unknown (but finite) number
of vertices. The robot is equipped with a sensor system that
detects all vertices and edges that are visible from the present
location of the robot. The robot is equipped with a naviga-
tional system that moves it along a specified straight line or a
second order curve. It takes a finite amount of time to traverse
a finite amount of distance either along a straight line or along
a second order curve. The robot is required to autonomously
navigate in the terrain and build the complete obstacle terrain
model and return to the starting point in a finite amount of
time.

In the sequel, we use the following notation. We denote
the set of obstacles by 0 = { O l , 0 2 , . . . ,On}, where Oi is a
finite-sized polygon in plane with a finite number of vertices.

VER (Oi) denotes the set of vertices of Oi. N = E I VER (Oi) I

denotes the total number of obstacle vertices. The free-space is
denoted by i2 (9 1Cn02Cn . . * nonC). The convex hull
formed by the vertices of a set of polygons {P ,f 2, . . ,fk } is
denoted by C ({P ,,P 2, . . * ,fk}). The detection of all vertices
and edges seen from a point using the sensors is termed as a
single scan operation.

In this paper we present a solution to this problem based
on the retraction method proposed by O’Dunlaing and Yap [SI.
The robot incrementally constructs a graph, called the naviga-
tional course based on the Voronoi diagram of the terrain from
the sensor information that is acquired time-to-time. The navi-
gational course which is the union of a subset of the Voronoi
diagram and an envelop (to be defined formally) of the terrain.
Since the terrain is unknown, this navigational course is not
available to R to start with. The R locally constructs the edges

n

i=l

1224
CH2555-1/88/oooO/1224$01.00 0 1988 IEEE

Fig.1. E (O) o f t h e t a t P i n o f O ~ , O ~ . n d O ~ .

and vertices of the navigational course from each sensor opera-
tion (scan operation). Then R moves to a computed vertex
along the computed edges. R keeps navigating on the naviga-
tion course (R backtracks at some points) till it acquires the
complete terrain model; at this point it moves back to the start-
ing point. The correctness of the algorithm follows from the
connectedness of the navigational path. We then show that our
method is directly applicable to a circular robot of radius r
(>O).

We then compare the proposed solution with the visibility
graph based methods discussed in Rao et al [6,7]. The former
has the advantage of minimizing the collision probability by
navigating the robot ‘away’ from the obstacles. The storage
complexity of the proposed method is 0 (N) as opposed to
0 (N’) of the latter. Moreover, the present method has a over-
all computational complexity of 0 (N’logN) whereas the latter
has 0 (N3). Both the methods require 0 (N) sensor operations.
Finally the extension of visibility graph method to a finite-
sized (circular) robot calls for significant extensions to the
basic algorithm (as shown in [7]). The proposed method is
directly applicable to a circular robot.

The organization of the paper is as follows: In section 2,
we present the terrain acquisition algorithm and its correctness
is established in section 3. We analyze the performance of the
algorithm in section 4. In section 5 , we present a method for
circular robot of radius r , (r>O). In section 6, we compare our
method with the visibility graph based approaches. In this
paper we present the basic results without proofs (see Rao et al
[8] for details about the proofs).
2. TERRAIN ACQUISITION ALGORITHM

We first present a definition of the navigational course,
and then describe our terrain acquisition algorithm. For any
XEQ, define Neur(x) as the set of points that belong to the
boundaries of obstacles Oi, i=1,2, ...,n and are closest to x .
The Voronoi diagram, Vor(O), of the terrain populated by 0
is the set of points:

{ x E Q I Near (x) contains more than one point)

Fig. 2. e @) of the &rrain 01,02, and 09.
In this case, Vor (0) is a union of 0 (n) straight lines and para-
bolic arcs (see Kirkpatrick [2] for more details on the Voronoi
digrams). Each of this line or parabolic arc is referred to as a
V-edge. The points at which the edges meet are called V-
verrices. Furthermore, Vor (0) can be specified as a combina-
torial graph in which each edge is labeled with two end V-
vertices, and an equation defining it as a curve in the plane.
Each V-vwtex is labeled with its coordinates.

Consider the convex hull C (0) of union of vertices of all

obstacles (i.e. convex hull of uVER (Oi)). Let E (0) denote

the region that is contained within an envelop of clearance of 6
around C(0) as shown in Fig.1. Let us define nuvigationul
course for 0 as {(O)=(Vor (Q)nE (0))udE (0), where
dE (0) is the boundary of the envelop E (0). In fact {(O) pre-
cisely contains the Voronoi diagram of 0 that lies inside E (0)
and the boundary of E (0). See Fig.2. for an example. Note
that the set of vertices of e(0) is the union of V-vertices, ver-
tices of the envelop E (0) and the intersection points of
Vor(0) and aE (0) . Similarly the edges of { (O) is the union
of edges of Vor (0) and E (0). The vertices (edges) of €,(0)
are henceforth referred to as {-vertices (&edges). It is easy to
see { (O) as a planar graph formed by {-vertices and {edges.
The set of all {-vertices that are adjacent to a {-vertex v consti-
tute the set of neighbors of v .

We now present the terrain model acquisition algorithm.
We mat { (O) as a combinatorial graph made up of {-vertices
and {-edges. Initially the point robot R is located at an arbi-
trary point in 0 at a finite distance from an obstacle. Then R
performs a scan and computes the vertices of {(O). If R lies
outside C (0) (i.e. all obstacles are found to be to one side of a
line through the location of R) then R computes a vertex v o of
E (0) and moves to it. If R lies inside C (0), then R computes
the Voronoi diagram of visible part of the terrain (say using
Kirkpatrick’s [2]) and moves to a V-vertex vg. From yo, the

n

i=l

1225

algorithm VACQUIRE(v);
begin

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

11.
12.
13.
14.
15.
16.
17.
18.
19.

perform scan operation;
construct the {(O) of the visibility region;
update the partially constnicted {(O);
mark all concave comers as visited;
if (v has unvisited neighbors)
then

move to a nearest unvisited neighbor v
VACQUIRE(V~);

else
backtrack (computationally) on the path v from v o
and find vb with unvisited neighbors;
if (such vb exists)
then

find v 2 the nearest unvisited neighbor of vb ;
compute a shortest path to v 2 on the available {(O);
move to v along the computed path;
VACQUIRE(v2);

move to v o along shortest path;
move to the starting point;

else

end;

algorithm VACQUIRE is invoked, which moves R from one
(-vertex to the other. The basic idea of VACQUIRE is as fol-
lows: R navigates entirely on the 1-skeleton {(O); at each 6-
vertex v a scan is performed, the neighbors of v are computed,
and the {(O) is updated. The R keeps visiting the new 5-
vertices till it encounters a {-vertex with all visited neighbors.
At this point R ‘backtracks’. This process is continued till all
the {-vertices are visited. At this point R moves back to v o
and then to the starting point.

The detailed algorithm is given in algorithm VACQUIRE.
At some intermediate stage, let R be located at {-vertex v (ini-
tially v=vo). Now, R performs a scan operation (line 1). If all
detected vertices lie only to one side of a line through v , (R is
outside C (0)) then it computes the adjacent vertex of E (O) .
If not, the Voronoi digram of the visible part is computed
(using, say Kirkpatrick’s [2]) (line 2). The partially built ((0)
is updated by entering the adjacency list of v (line 3). Note
that only the €,-vertices which are adjacent to v are stored in
the partial model of ((0). All {-vertices that correspond to
concave comers of obstacles are marked as visited (line 4).
Then if v has unvisited neighbors then R moves to a nearest of
them (line 5-7), and then VACQUIRE is recursively invoked
(line 8).

If all neighbors of v are visited then the path from v o to v
is accessed. This path is stored on a stack. Whenever a new
{-vertex is visited it is pushed onto the stack i.e. the {-vertices
are pushed onto stack as R visits them. The stack is accessed
when all neighbors of v are visited. At this point, the top ele-
ment of the stack is repeatedly popped till a vertex vb with at

least one unvisited neighbor is found. At this point the stack
contains a path from v o to vb . This process corresponds to line
10. If such vb exists then it’s nearest unvisited neighbor v 2 is
found and a path to v 2 is computed using single source shortest
path algorithm of Frederickson [l] for planar graphs (This
algorithm has a time complexity of O (M m) as opposed
to 0 (M 2) algorithm of Dijkstra for a planar graph of M nodes.
The former exploits the planarity of the graph to lower time
complexity.) (line 14). Note that this path to v 2 is shortest on
the available portion of ((0) and in general not the shortest in
the entire ((0). Then R moves to v2, and VACQUIRE is
recursively invoked from v 2 (lines 15-16). If no such vb exists,
then R moves to v o along the shortest path (line 17-18). Then
R moves back to the starting point (line 19) at which VAC-
QUIRE terminates. we discuss the performance of this algo-
rithm subsequently in this paper.
3. CORRECTNESS OF THE ALGORITHM

We first show that all {-vertices will be visited by R , and
a scan is performed from each {-vertex at the termination of
VACQUIRE.
Lemma 1: The I-skeleton { (O) is topologically connected.
Hence, the combinatorial graph corresponding to { (0) is
(graph) connected, i.e., there exists a path consisting of 6-
edges between any two {-vertices. 0

A close look at the algorithm VACQUIRE reveals that the
execution of VACQUIRE is equivalent to carrying out a ‘con-
ceptual’ depth-first-search on the graph of {(O) assuming it is
available. Hence, we have the following Lemma.
Lemma 2: The order in which new €,-vertices of graph of ((0)
are visited is s a as that of carrying out a depth-first-search
on rhe graph of €,(O). 0

Using a cellular decomposition of Q, we show the follow-
ing lemma [8].
Lemma 3: Every point in QnE(0) is seen during a scan
operation from some 6-verta.

We need to show that the {(0) is constructed correctly
from the scan (visibility) information. Note that from any {-
vertex v , only the {-vertices that are adjacent to v are updated.
Consider the cellular decomposition of the terrain based on 5-
edges as shown in Fig.3. As shown in Fig.3 (a),(b) and (c),
each straight line €,-edge adjacent to v contains two convex
regions (cells) - one to each side -, and this entire region is
seen from v . If {-edge is parabolic then the cell can be decom-
posed into a triangle and a cone (Fig.3(d)), and the entire
region is seen from either of the ends of the given {-edge. It is
clear that if the computed points lie on the boundary dE (0) of
the envelop then the computed vertices exactly correspond to
the actual vertices of the envelop. Consider the case where the
computed vertices contain V-vertices. This part of the Voro-
noi diagram contains the points which are nearest to edges and
vertices seen from v . By the separability notion discussed by
Kirkpatrick [2] this part of the computed diagram corresponds
the actual Voronoi diagram. Thus the navigational c o m e will
be correctly constructed by the algorithm VACQUIRE. We

I226

left cell

Fig.3. Cellular decomposition of R based on edges.
prove the correctness of the algorithm VACQUIRE in the fol-
lowing theorem.
Theorem 1: The algorithm VACQUIRE acquires the complete
obstacle terrain model infinite amount of time.
Proof: In the next section we show that { (O) is a finite graph
and the distance traversed by R is bounded by a finite number
(Lemma 4). From Lemmas 1 and 2 it follows that R visits all
e-vertices, and scans from them in finite amount of time (since
a depth-first-search on a connected graph, with finite number of
node, visits all vertices in finite amount of time). Now from

Lemma 3, all vertices and edges of all obstacles are detected
from some scan operation. The terrain model can be directly
constructed from the information about the obstacle vertices
and edges. Or, the terrain model can be reconstructed from
c(0) by storing the distance information with each 6-edge. 0

In the next section we evaluate the complexities of scan
operations, distance traversed and computations of the algo-
rithm VACQUIRE executed on the robot R .
4. PERFORMANCE

We now present some properties of 6(0). Using a dual of
Vor(O), we estimate the bounds on the number of 6-edges and
6-vertices in the following Lemma (see [8] for details).

Lemma 4:
(i) (n+5)/2g#S-verrices W - n - 2
(ii) 3(n+1)/2< #s-edges W - 3 n - 3 0

We use this lemma in estimating the complexity of sensor
operations of VACQUIRE. We also estimate a bound on the
distance traversed by the robot R executing VACQUIRE.
Theorem 2: (i) The number of scan operations performed by
robot while executing VACQUIRE is at most 4N-n-2, (ii) The
total distance traversed by the robot while executing VAC-
QUIRE is at most twice the total length of the depth-first tree
of 6(0) rooted at vo. 0

We estimated the parameters such as number of scanning
operations and total distance traversed by R while executing
VACQUIRE. In the following theorem we estimate the com-
plexity of computational activities carried by VACQUIRE. In
our implementation we use the adjacency list representation of
6(0). We store the coordinates of each 6-vertex in the adja-
cency lists. We maintain a table called MAP-TABLE. The
table gives the visited information of a €,-vertex specified by
it’s coordinates. The MAP-TABLE is implemented as an
AX-tree. One can store the information of these tables in the
adjacency list. Then the complexity of finding whether a 6-
node (specified by its coordinates) visited or not is 0 (N). The
cost of this operation is 0 (logN) using the table.
Theorem 3: The computational complexities of various tasks
carried out by VCAUIRE are as follows: (i) the storage com-
plexity is O(N), (ii) cost of construction of 6(0) is
0 (N210gN), (i i i) total cost of path planning is 0 (N 2 W) ,
(iv) the cost of construction of MAP-TABLE is 0 (NlogN), and
the total cost of accesses to MAP-TABLE is 0 (N logN). 0

In the next section we compare the performance of the
proposed terrain acquisition algorithm with vertex-based ones
using the estimates developed in this section.
5. CIRCULAR ROBOT

Now consider a circular robot R of radius r (>O). For
each X E R, we define clearance (x) to be the distance to a
nearest member of Near (x) . We then consider E (0) such that
the celarance &r. We now define a modified navigational
course €,* (0) as follows:

6’ (0)={x E 6(0)Iclearance (x)>r 1

1227

Let R be located at x o (i.e. the center of R is iocated at x o
). For x E n, the clearance strictly increases along the line seg-
ment joining x to Im(x) [SI. Now, Im(x0) will be contained in
a maxi& connected component F of 6’ (0 1. The component
F contains €,-vertices and 6-edges with clearence greater than
or equal to r . Some edges of F could be truncated versions of
corresponding {edges. In such cases we imagine a vertex at
the truncated ends of the edges. Now this F plays the role of
the navigational course for the algorithm VACQUIRE.

Let x be a point reachable by R from xg. Then x can be
‘seen’ by first moving from x o to Im(x0) along a straight line,
and then moving to Im(x) along F. By using the arguments
similar to those in Theorem 1, we can show that R will acquire
all the obstacle vertices and edges that can be ‘seen’ by R (we
use F in place of {(0)). The performance of this algorithm is
upper-bounded by the estimates in Theorem 2 and Theorem 3.
6. COMPARISON WITH VERTEX BASED METHODS

In this section we compare our method with the visibility
graph based methods of Rao et al [6,7]. The main motivation
for our method comes from the implementation stand point. In
general it is very difficult to navigate a robot arbitrarily close
to the obstacle edges as is required by the visibility graph
methods. This is a serious problem if robot works in an open
loop mode based on some type of visibility sensor. This prob-
lem is present in retraction based methods if the terrains are
densely populated, for example, if two obstacles are arbitrarily
close to each other. However this is less problematic in a gen-
eral case if retraction methods are used. The approach
presented here is limited to two-dimensional terrains where as
the method of 161 works for three dimensional terrains also.
An extension to a finite-sized circular robot (of diameter 6) in
terrains with a minimum clearance of 6 around each obstacle
boundary for two-dimensional terrains is presented in [7]. In
such a terrain the clearance around each {-edge will be at least
6, and thus the algorithm presented here can be directly applied
to that case.

In terms of the complexity of scan operations both the
algorithms have the same O (N) complexity. However, the
scan operations are time consuming in a real-life implementa-
tion hence it is instructive to compare them more closely. The
number of scan operations in the visibility graph methods is N
always, where as the retraction method requires at most
4N-n-2 and at least (n+5)/2 scan operations. The former
requires that the robot be,capable of straight line motion, where
as the latter requires that the robot navigate along the second
order curves (which can be implemented with straight line
motion by using some polygonal path approximation to the
second order curve). The distance traversed in the former case
can be shown to be less than twice the total length of the
depth-first tree on the visibility graph rooted at the starting ver-
tex. In the later case the bound is twice the total length of the
depth-first tree on the retract rooted at the starting vertex.

Table 1: Comparison of two methods

visibility graph retraction
for comparison method method
Storage
construction

We now look at the computational aspects. The visibility
graph can have 0 (N’) edges and hence the storage complexity
in this method is o(N’). The complexity of the retraction
based method is 0 (N) as a result of the planarity of {(0). The
complexity of the path planning in the former is o (N ~) as
opposed to 0 (N ’ W) in the latter. The cost of construction
of the visibility graph is O(N2) where as that of the retract is
O(N’IO~N). The construction cost of the MAP-TABLE is
same in both, where as the access cost in the former is
o (N’IO~N) as opposed to o (NIO~N) in the latter. his com-
parison is summarized in Table. 1

7. CONCLUSIONS
In this paper, we have presented an algorithm that enables

a point robot to acquire the complete model of a finite-sized
two-dimensional obstacle terrain populated by an unknown
(but finite) number of simple polygonal obstacles. We have
shown that the terrain model will be completely built in a finite
amount of time. We analyzed the algorithm for complexities
of various operations. We then compared the performance of
this algorithm with the existing algorithms based on visibility
graph approaches. Future extension of this work deals with a
finite-sized robot. Then the orientation problem becomes very
significant. For a circular robot with a diameter 6, we can
show (using the connectivity of the retract and the depth-first
nature of the algorithm) that terrain model of all regions that
are theoretically accessible to the robot will be acquired by the
robot.
REFERENCES
[l] FREDERICKSON, G.N., Shortest path problems in planar

graphs, Roc. 24th Ann. Symp. on Found. of Comput. Sci.,

KIRKPATFUCK, D.G., Efficient computation of continuous
skeletons, P m . 20th Ann Symp. on Found. of Comput. Sci..

[3] LOZANO-PEREZ. T. and M. WESLEY, An algorithm for
planning collision-free paths among polyhedral obstacles,
Commun. ACM, vol. 22, 1979, pp. 560-570.
LUMELSKY, V.J. and A.A. STEPANOV, Dynamic path plan-
ning for a mobile automation with limited information on the
environment, IEEE Trans. on Automatic Control, vol. AC-31,
no.1, 1986, 1058-1063.

1983, pp. 242-247.
[2]

1979, pp. 18-27.

[4]

1228

0 ' D U " G . C. and C.K. YAP, A "Fetraction" method for
planning the motion of a disc, J. algorithm, vo1.6, 1985, pp.
104-111.
RAO, N.S.V., S.S. IYENGAR, J.B. OOMMEN and R.L.
KASHYAP, Terrain acquisition by a point robot amidst
polyhedral obstacles, Proc. 3rd IEEE Conf. on AI Appl.,
Orlando, H., Feb. 1987, pp. 170-175 (a refined version to
appear in IEEE J. Robotics and Automation).

RAO, N.S.V.. S.S. IYENGAR, C.C. JORGENSEN and C.R.
WEISBIN. On terrain acquisition bya finitesized mobile robot
in plane, Proc. 1987 IEEE Int. Conf. Robotics and Automation,
Raleigh, NC.,1987, pp. 1314-1319.
RAO, N.S.V., N. SrOLTzFUS and S.S. IYENGAR, The ter-
rain acquisition by mobile robots: IV. A 'retraction' method.
Tech. Rep. t87-015, Dep. Computer Sci., Louisiana State
University, 1987.
REF, J., Complexity of mover's problems and generalizations,
Pnx. 20th AM. Sympo. Found. Comput. Sci., 1979, pp.421-
427.

[lo] SCHWARTZ, J.T. and M. SHARIR, On the piano-movers
problem: I. The case of two dimensional rigid body moving
amidst polygonal barriers, C o r n . Pure Appl. Math., vo1.36,
1983, pp. 345-398.

1229

