Concurrent Maintenance of Data Structures in a Distributed

Environment

F. B. BASTANL* S. S. IYENGARY anD I-LING YEN}

*Department of Computer Science, University of Houston, University Park, Houston, Texas 77004, USA
tDepartment of Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA
1Valid Logic, Inc., 2820 Orchard Parkway, San Jose, CA 95134, USA

We consider a distributed system consisting of a collection of clients and servers in which each server runs on a
processor dedicated to it. Each server can be viewed as an instance of an abstract data-type module that provides a set
of facilities for its clients. In such systems it may be possible to improve the performance of a server by scheduling its
housekeeping activities to occur during periods when the server is waiting for requests from clients or is transmitting a
response to a client. We consider the case where the client requests are handled by a foreground process while the
maintenance tasks are performed by one or more background processes. We illustrate how the code for these processes
can be developed in a stepwise manner, proceeding from coarse-grained concurrency to fine-grained concurrency. This
approach is augmented with the use of rely[guarantee conditions which serve to simplify the proof of non-interference.

The method is illustrated using a search-table abstraction.

Received November 1986, revised July 1987

1. INTRODUCTION

A popular model of a distributed system is to structure it
as a set of clients that request services from one or more
servers. Each server is basically an instance of an abstract
data-type module that provides a collection of functions
that are invoked by the clients. When implementing such
servers, it often happens that the choice of the data
structure permits efficient implementation of a set of
operations at the expense of other operations. For
example, consider a directory server that is implemented
using a perfectly balanced binary search tree. In this case
it is efficient to look up a name in the directory. However,
adding a new name or removing an existing name is
expensive due to the cost of rebalancing the tree after
such operations.

It has been observed that the performance of such
systems may be improved by having one or more
additional processes that are responsible for maintaining
the data structure of the server, i.e. converting it into an
efficient one.!**? These processes are called maintenance
processes and generally run as background (low-priority)
processes. Clients interact with a foreground (high-
priority) process that handles their requests. The fore-
ground process operates on data structures that allow
efficient implementation (up to a certain point!) of all the
operations of the server. For example, the foreground
process for the above directory server may simply mark
an item as ‘deleted”’ in response to a delete request. It is
up to the background processes to transform the data
structure into an efficient one. Thus in our example a
maintenance process tries to rebalance the tree whenever
it is activated.

In this paper we first discuss a class of data structures,
called multilevel data structures, which allows the
maintenance processes to run on separate processors.
Section 2 gives the definition of multilevel data structures
and discusses their limitations and some performance
issues. This definition is then generalised to include data
structures that can be characterised by weak and strong
invariants. Section 3 outlines a method of developing the

code for the foreground and background processes by
combining Dijkstra’s ‘coarse grained concurrency to fine
grained concurrency’ approach® with Jones’ rely/guar-
antee conditions.® Section 4 briefly compares the per-
formance of concurrent maintenance strategy with those
of some other maintenance techniques. Finally, Section 5
summarises the paper and outlines some research
issues.

2. MULTILEVEL DATA STRUCTURES

In this section we first review the use of background
processing for improving the performance of hierarchical
storage systems. Then we discuss multilevel data struc-
tures, namely data structures that consist of two or more
different types of data structures having different
performance characteristics. We also discuss the use of
multiprocessors in implementing these data structures.
Finally, we present a more abstract notion of multilevel
data structures characterised by strong and weak
invariants.

2.1 Concurrent maintenance

Consider the system shown in Fig. 1. It provides a
database containing a set of records stored on secondary
memory. These records can be inspected and possibly
updated by a user. The user interacts with the foreground
process by requesting that a specified operation be
performed on a specified record. This process searches a
directory and, if necessary, fetches the desired record
from secondary memory. However, it does not write
back modified records. Instead, it stores these records in
primary memory, leaving the task of moving them to
secondary memory to a background process. As long as
there is space in the primary memory, the user sees a
faster response time than a system in which updated
records are immediately written back.

THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988 165

2102 ‘2 1udy uo selesAleIqi A1SIBAIUN [euoITeuURIU| BpLIoH T2 /BI0'S[euInolpiojxo |ulluoo//:dny wod) papeojumod

http://comjnl.oxfordjournals.org/

F. B. BASTANI, S. S. IYENGAR, AND I-LING YEN

LIST OF MODIFIED RECORDS

PRIMARY

k ontent dd;
ey conten: address MEMORY

USER &

7/
e
FOREGROUND
PROCESS

A <—B: AREADSB
A ——-»B: A UPDATES B

BACKGROUND
PROCESS
|
|

Y
DATABASE

key | content SECONDARY
MEMORY

DIRECTORY

key —= address

Figure 1. A multilevel storage system.

2.2 Multilevel data structures

The notion of multilevel data structures is based on a
novel view of what a data organisation is. We view this
generalisation by selecting data structures which have
different performance features. For example, suppose
that we have to implement a directory server or a name
server. Then, one possibility is to select a sorted array for
fast lookup and a queue for fast insertion. Also, a tag is
associated with each item. It takes on the values ‘alive’
and ‘dead’. This is used for achieving efficient deletion.
The background process removes records which are
marked ‘dead’ and, also, moves live records from the
queue to the sorted array. This is shown in Fig. 2(a). In
this case the queue corresponds to primary memory
(short-term storage), while the sorted array corresponds
to secondary memory (long-term storage). It should be
emphasised that both of these data structures can reside
at the same level in the storage hierarchy, i.e. the queue
and the array can both be stored in primary memory.
Another possibility is to select a binary search tree for
short-term storage instead of a queue as shown in Fig.
2(b). The combination in Fig. 2(b) is better than simply
using a binary search tree since the sorted array has an
average lookup cost of log,(n) while the tree has an
average lookup cost of 1.44 xlog,(n).

g 111111 m—— 11

Queue Sorted array
(short-term storage) (long-term storage)

(@)

é::)mmm

Sorted array

Binary search tree
b)

Figure 2. Examples of multilevel data structures.

Let S(D) be some measure of the amount of
information stored in a data structure D. For example, if
D is any of the data structures shown in Fig. 2, then S(D)
could be the number of keys stored in that data structure.

166 THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988

Definition

A multilevel data structure D consists of a sequence of
data structures D,, D,, ..., D,, with the following prop-
erties: (@) S(D,) can be decreased by increasing S(D,,,)
without changing the information contained in D, (b)
decreasing S(D,) by increasing S(D,,,) results in an
improvement in the performance of D, and (c) restruc-
turing of D, does not require restructuring of D, j # i.
For example, in Fig. 2(b) the size of the binary tree can
be decreased by moving some keys from the tree to the
array. This change (a) does not affect the information
contained in the combined data structure, (b) improves
the performance of the combined data structure; more-
over, (¢) the binary tree can be restructured (e.g. balanced)
without having to modify the array, and vice versa.

Multilevel data structures are limited to the imple-
mentation of abstract data types which deal with
aggregation of items such as sets, bags and search tables.
However, this class includes a large number of data-
structure combinations such as queue combined with
binary search tree, sorted array, hash table, balanced
binary tree, B-tree, etc.

An important feature is that it is possible to use
multiprocessors in implementing these data structures.
For example, one processor can remove deleted slots
from the queue, another from the array, while a third
processor moves items from the queue to the array. The
foreground processor can deal with client requests. This
architecture is shown in Fig. 3, where the queue is stored
in memory bank M 1 which is shared by processors F, B1
and B2, and the array is contained in memory bank M2,
which is shared by F, B2 and B3.

Handleclient
requests
M1 Move item M2
—TI111T —~ from queue TIITTTTIT
B2
Remove dead Remove dead
items items

Bl B3
Figure 3. Multiprocessor implementation of multilevel data
structures.

Client processes

In addition to synchronisation problems, care must be
taken in implementing such systems due to performance
considerations. The basic requirement is that the back-
ground processes should not slow down the foreground
process. First, this means that there should not be too
much delay between the time a client request is received
and the time the foreground process starts processing it.
This requires that the indivisible actions of the back-
ground process be as brief (fine-grained) as possible and
that the overhead associated with providing indivisible
actions be relatively small when compared with the time
required for processing a client’s request. (Section 3 gives
examples of coarse-grained and fine-grained indivisible
actions.) However, fine-grained actions often result in
less efficient code for the background process, since it
must make fewer assumptions about the state of the data
structure. Thus the background process may not be able
to clean up the data structure fast enough, so that
gradually the performance of the system deteriorates.

ZT0Z ‘2 |1dy uoseresAeIqlT AusieAlun [euoiieuRIU| BPLOI e /610'S[euINo [pI04x0" |ufwiod//:dny woly pepeojumoq

http://comjnl.oxfordjournals.org/

MAINTENANCE OF DATA STRUCTURES IN A DISTRIBUTED ENVIRONMENT

Even apparently efficient background processes can
entail inefficiencies when disc resident data structures are
considered. In these cases we must avoid hidden
interferences which can arise due to the movements of
the disc arm. For example, consider the case illustrated in
Fig. 4.

repeat
parallel:
background: write back 1,2,3,4,5,6,7,8
foreground: update 9,10,11,12,13,14,15,16

parallel:
background: write back 9,10,11,12,13,14,15,16,
foreground: update 1,2,3,4,5,6,7,8

forever
Figure 4. Interference due to disc resident data structures.

Assume that (1) there are 16 data records distributed
evenly over the two extreme tracks of the disc, (2) there
is space for only 8 records in primary memory, and (3)
the client repeatedly updates the records located at one
extreme followed by those located at the other extreme.
Then the disc arm can oscillate back and forth, greatly
reducing the performance of the system due to excessive
seek time. In this case, the system with just a foreground
process which immediately writes back updated records
has superior performance.

Another way of improving the performance of con-
current maintenance systems is to let the background
processes update the data structure after a group of
requests have been served and not after every request.
For example, in the ‘ queue/sorted array’ implementation
of search tables, the background process can wait till the
queue reaches a certain size. Then it can sort the queue
and merge it with the array. The use of ‘binary tree/
sorted array’ combination eliminates the need for sorting.
This is shown in Figure 5.

lookup (k)
add (k,e) —
delete (k) ———]

Foreground

-
! i

Tl é (I |41

O

A2| (I A |r
f f

Figure S. Multiprocessor implementation of the maintenance
of a multilevel data structure for the search-table module.

merge

Here we have two binary trees T'1 and T2, and two
sorted arrays 41 and 42. In phase 1 the foreground
process appends new nodes to 72, while a background
process merges A1 and T'1 into 42. At the end of this
phase, 41 and T'1 are empty. Now phase 2 is started, in

which the foreground process appends new items to T'1
while the background process merges 42 and T2 into
A1. At the end of this phase 42 and T2 are empty and
the cycle is repeated by starting phase 1. This can be
implemented using multiprocessors. An outline of the
algorithm is as follows:

repeat
MergeTreeAndArray(T 1, A1, T2, A2)
MergeTreeAndArray(T2, A2, T1, A1)
forever
where MergeTreeAndArray(T,, A,, T,, A,) =
processor T,: output live items in 7, by doing an inorder
traversal of T,
processor A,: output live items in A, by sequentially
scanning 4,
processor A,: merge the outputs of processors 7, and
A, into A4,
foreground processor: search 4,, then 4, and T, then T,

2.3 Generalisation

The performance of the multilevel storage system shown
in Fig. 1 can be improved by maintaining a directory in
primary memory, since this will eliminate searching disc
records. However, condition (c) in the definition given in
Section 2.3 is no longer satisfied, as modification of the
information kept on the disc (e.g. moving a record to
another location) may require changes in the information
kept in primary memory. Thus this structure cannot be
classified as a multilevel data structure even though it has
most of their properties. Hence, to model concurrent
maintenance for a broader class of data structures, we
generalise the definition of multilevel data structures to
include the above type of data structures.

Our approach is based on a more abstract notion of
multilevel data structures characterised by weak and
strong invariants. Each operation on the abstraction can
be implemented efficiently provided that the strong
invariant holds. The processing of an operation may
falsify the strong invariant (though not the weak
invariant). This can impair the performance. Hence, a
maintenance process modifies the data structure so as to
re-establish the strong invariant.

Definition

A general multilevel data structure D has associated with
it a sequence of invariants 1, I, ..., I, with the following
properties: (a) D always satisfies I,, (b) I,~1,_,~ ...~
1,, (¢) if D does not satisfy 7 it can be made to satisfy
I, without changing the information contained in D;
further, this modification will improve the performance
of D. I, is the weak invariant while I, is the strong
invariant. The multilevel data structures considered in
Section 2.2 are covered by this definition since we can
write :

Vol<isn I,=V,1<j<i S(D;)is minimum.

The generalised multilevel data structures can be used in
the implementation of many types of server. However,
they cannot be efficiently implemented using multi-
processor systems since more coordination is required
between the foreground and background processes.

In this section we have defined multilevel data

THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988 167

2702 ‘2 |udy uo selesARIql] A1sBAIUN [eUOITRUBIU| BpLIO|H T /Blo'Seulnolploxo jufwody/:dny woly papeojumod

http://comjnl.oxfordjournals.org/

F. B. BASTANI, S. S. IYENGAR, AND I-LING YEN

structures and discussed some implementation consider-
ations. There are two important issues in studying
programs used in such systems. The first issue is an
approach for systematically developing these programs.
This is addressed in Section 3. The second important
issue is the evaluation of the performance of such
systems. This is briefly discussed in Section 4. Additional
details can be found in Refs. 2, 3 and 14.

3. DEVELOPMENT OF CONCURRENT
MAINTENANCE ALGORITHMS

In this section we discuss a method of systematically
developing programs for foreground and background
processes and illustrate it using a ‘queue/sorted array’
data structure for a search-table abstract data type.

One of the earliest systematic methods is to start with
coarse-grained concurrency and proceed to fine-grained
concurrency.® However, this approach does not simplify
the proof of correctness. Also, the addition of new
operations for the abstract data type requires the proof
of non-interference to be redeveloped even for processes
which have not been modified. The general proof method
is to identify an invariant and show that it is true after
every indivisible action by any process. Manber gives
the algorithms and proofs for maintenance processes for
a special form of binary search trees called external
trees,’® and in Manber and Ladner'® a binary search
structure is considered. In Ellis” a distributed version of
an extendible hash file useful in distributed databases is
developed by using a distributed data structure.

Here we combine the ‘coarse-grained concurrency to
fine-grained concurrency’ method® with the stepwise
development method proposed by Jones.? For the
foreground and background processes we identify rely/
guarantee conditions and goals (pre/post conditions)
[see Ref. 9]. A process can assume that other concurrent
processes will satisfy its rely condition. In turn, it must
ensure that it maintains its guarantee condition, which
must imply the rely condition of other processes.
Further details appear in Ref. 9. The use of rely/
guarantee conditions eliminates the need for extensive
proof of non-interference when new operations are
added to the server.

The stepwise development proceeds in the following
coarse-grained concurrency to fine-grained concurrency
sequence. (i) In case (A) only the foreground process is
present — this is the sequential version. (ii) Case (B)
extends case (A) to include a background process. Both
the processes are non-interruptible, i.e. the foreground
process completes a client request before yielding the
processor and the background process completes a clean-
up cycle before yielding the processor. (iii) Case (C) is an
extension of case (B) wherein the background process is
interruptible. (iv) In case (D), both the foreground as
well as the background processes are interruptible. Since
we do not wish to slow down the foreground process
unnecessarily, the overheads for ensuring non-inter-
ference are mainly taken care of by the background
process. That is, it is the responsibility of the background
process to ensure that certain assertions are true at the
moment it initiates an indivisible action.

In the following subsections we illustrate this technique
by developing the code for foreground/background
processes for a server which provides operations for

168 THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988

storing and retrieving information associated with names
(or keys), such as a name server or a directory server.
Specifically, it provides the following functions: (i)
‘LookUp(k)’, which returns the information corres-
ponding to key k; if the key does not exist then it returns
an error; (ii) ‘add(k, i)’ for adding k to the database, and
(ii1) ‘delete(k)’ for removing k from the database.

Section 3.1 considers the case where we have no
background process. Section 3.2 considers a background
process which completes a cycle before it can be
interrupted. Section 3.3 permits the background process
to be interrupted even within a cycle. Finally, Section 3.4
allows the foreground process to be interrupted also,
though the non-interference overheads are primarily
managed by the background process.

3.1 Case (A) — no background process

This is a conventional single-process case. We select the
following data structure:

type
node =

record
K: KeyType;
I: info
end;
var
a:array [1..MaxArray) of node;
n:0..MaxArray:=0;

The program should satisfy the specification of the
server. Also, we choose to keep the array sorted in order
to speed-up the LookUp operation. Hence the program
should ensure that the data structure satisfies the
following invariant assertion:

Vii<i<n:di]l.K<adali+1].K

3.2 Case (B) — non-interruptible foreground, non-
interruptible background

As discussed earlier, the response time of the server may

be improved by performing the computations required

for readjusting the array during idle periods. Case (B)

can be developed from case (A) by using the following

steps.

abl. Modify the data structure to allow the foreground
process to indicate clean-up tasks for the background
process,

ab2. Update the strong invariant,

ab3. Specify the weak invariant,

abd. Specify the rely condition for the foreground
process; generally this asserts that the background
process does not change the client-visible portion of
the information contained in the data structure,

abS. Modify the code for the foreground process,

ab6. Develop the code for the background process.
For our example, we have to select data structures for

efficiently implementing the add and delete operations.

delete can be implemented efficiently by introducing a

status field associated with each node. If the value of the

status field is alive then the node is in the data structure,

otherwise it is not in the data structure. add can be

implemented efficiently by using a queue-like data

2702 ‘Z [udy uosfeLesAreIql AISiBAluN [UOITRUBIU|BPLIO|H e /B10'SfeuInopiogxo" julwoo//:dny woly pepeojumoq

http://comjnl.oxfordjournals.org/

MAINTENANCE OF DATA STRUCTURES IN A DISTRIBUTED ENVIRONMENT

structure. If the item is not in the ordered array then it is
added at the end of the queue. The queue impairs the
performance of LookUp since it has to be searched
linearly. This is also true if many items in the array are
marked as deleted. For this reason the background
process removes deleted entries and puts the items in the
queue in their proper position in the array.
The data structure is:

type

node =
record
K: KeyType,
L:info,
S (alive, dead)
end;
nodePtr = ‘'node;
var
a: array [1..MaxArray] of nodePtr;
n:0..MaxArray:=0;
var
q: array [0. . MaxQueue — 1] of nodePtr;
h,t:0..MaxInt:=0;
strong invariant
(1) h = t—the queue is empty.
@ Vil<i<n: alil".K<ad[i+1]".K-the array is
strictly ordered.
3) Vil <i<n:ali]'.S = alive — all the items are
marked as alive.
weak invariant
(1) h <t - the queue may not be empty.
) Vih<j<iut:
not 3i: 1 <i<n:alil".K=gq[j].K-key in the
queue does not occur in the array.
(We use the notation x’ to mean x mod
MaxQueue.)
notdi:h<i<ti#j q[i'l".K=gq[jT.K—-akey
occurs only once in the queue.
() Vil<i<n:alil.K<ali+1].K—the array is
strictly ordered.
(2) and (3) together imply that all the keys in the queue
and the array are distinct.

Foreground process. Its goal is to satisfy the speci-
fication and to maintain the weak invariant. It assumes
that each indivisible action of the background process
leaves the set of nodes with status = alive unchanged,
though their position in the array /queue may be changed.
This is the rely condition® of the foreground process.
This can be stated formally as follows:

S(a)start(N+1) v S(q)start(N+1) = S(a)end(N) v S(q)end(N)

where
S(a) =sa:= &,

fori:=1tondo
if a[i]'. S = alive then sa:= sa U {a[i]’};
return sa;
and
S(q) =sq:=J;

for i:=h+1to ¢t do
if g[i']". S = alive then sq:= sq U {q[i]};
return sq;

Also, the notation S,,,,, v, means the value of S at the
start of indivisible action N of the process, while S,,,, »,
means the value of S at the end of indivisible action
N.

The implementation of the foreground process is
similar to a typical one for case (A), except that we have
to search both the queue and the array. An outline of the
search procedure used by the foreground process is:
search the sorted array using binary search;
if the element is found then return it
else sequentially search the queue,

The code for the search procedure used by the foreground
process is shown in Fig. 6
search array and queue (k):

I:=1; u:=n;
while / < u do
begin m:= (/+u) div 2;
if a[m]". K = k then exit
else if a[m]". K < k then [:=m+1
else u:=m—1
end;
if / < u then return a[m)]
else begin i:= h+1;
while i < 7 and then ¢[i']". K+ kdo i:=i+1;
if i < t then return g[i']
else return nil
end;
Figure 6. Search procedure for non-interruptible foreground
process for case (B).

Given that its rely condition holds, it is clear that the
code for the foreground process is correct.

Background process. Its goal is to establish the strong
invariant in a finite time if it is not interrupted by the
foreground process. Also, it must guarantee that the rely
condition of the foreground process is satisfied after
every indivisible action.

An outline of the code for the background process
is

loop forever
<remove all deleted items from the array and the
queue;
if there is an item in the queue then

move it into the array >
Here <...> indicates an indivisible action. Specifically,
for a uniprocessor ‘ <’ may be interpreted as disable
interrupt, while ‘>’ may be interpreted as enable
interrupt. The complete code for the background process
is shown in Fig. 7.

loop forever
< shrink array;
shrink queue,
if A < ¢ then
begin expand array (loc); transfer (loc)
end >

shrink array: i:=0;j:=0;
while j < n do
begin j:=j+1;
if a[jI". S = alive then
begin i:= i+ 1; a[i]: = a[j] end

THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988 169

2702 ‘2 |udy uo selesARIql] A1sBAIUN [eUOITRUBIU| BpLIO|H T /Blo'Seulnolploxo jufwody/:dny woly papeojumod

http://comjnl.oxfordjournals.org/

F. B. BASTANI, S. S. IYENGAR, AND I-LING YEN

end;
n.=1i
shrink queue: while h < t and then
ql(h+1)T.S =dead do h:= h+1;

expand array (loc):
loc:=n+1;
while /oc > 1 and then a[loc—1]".K
> ql(h+1)71.K do
begin afloc]: = a[loc—1]; loc:= loc—1
end
n:=n+1;

transfer (loc): alloc]:= q[(h+1)]; h:=h+1;

Figure 7. Implementation of non-interruptible background
process for case (B).

It is straightforward to show that this code satisfies the
guarantee condition of the background process— (i)
shrink array retains all nodes which are alive, (ii) shrink
queue increases h only if the node at the head of the queue
is dead, (iii) expand array and transfer copy the item at
the head of the queue into its proper place in the array
and advance h, thereby removing it from the queue.
Intermediate assertions can be used to show that the
code meets the goal of the background process using
conventional program proof methods.

Note. Since we have two interfering processes, the
guarantee condition of one is the rely condition of the
other, and vice versa. In this case the background process
does not rely on any conditions other than the weak
invariant. Hence its rely condition is true, so that the
guarantee condition of the foreground process is also
true.

Note. In order to simplify the programs, we assume
that always #-h < MaxQueue and n < MaxArray. Simi-
lar assumptions are made in Refs 4 and 6. Suitable
interlocks can be provided for the general case.

3.3 Case (C) — non-interruptible foreground,
interruptible background

This is the most important case in a multiprocessor

system — the background process is active only when the

processor dedicated to the abstract data-type module has

no request from other processors. The following steps

can be used in order to develop the code for case (C)

from that for case (B).

bcl. The data structure and the strong invariant are
unchanged.

bc2. Select indivisible actions of the background process.

bc3. The weak invariant is modified in order to allow the
background process to be interrupted within its cycle;
the amount of modification required depends on the
coarseness of the indivisible actions selected in (bc2).

bc4. Specify the rely condition of the background process;;
this also depends on (bc2); for example, variables
which are accessed by the background process outside
indivisible actions cannot be modified by the fore-
ground process.

bcS. Develop the code for the background process;
iterate from (bc2) till a desired level of granularity of
indivisible actions is achieved.
For our example, the invariant is almost the same as

170 THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988

before, except that now we must have at least one
duplicate key in the array; since the background process
can be interrupted while it is adjusting (shrinking/
expanding) the array.

strong invariant
Same as for case (B),

weak invariant
Condition 3 is replaced by:

(3.1) there exists at most one i, 1 <i<n, such that
alil’.K = afi+ 1]". K — at most one duplicate occurs in
the array.

(3.2) a[i'.K=a[i+1].K—>nota[i].S=da[i+1]".§ =
alive — at most one of the duplicates is alive.

(B3) Vil<i<n:a[i].K<d[i+1]".K—the array is
ordered.

Foreground process. Its goal and rely conditions are
the same as in case (B). The search procedure used by it
is also almost identical to the earlier one, except that now
we have to consider weak invariants (3.1) and (3.2). Thus
we have:

search the sorted array using binary search;
if the key is not found then sequentially search the queue
else begin check whether either the right or left neighbour

of this index has the same key and is alive;

if yes then return the pointer corresponding to

neighbour,
else return the pointer corresponding to index
end;

The complete code appears in Figure 8.

search array and queue (k):
l:'=1;u:=n:
while / < u do
begin m:= (I+u) div 2;
if a[m]". K = k then exit
else if a[m]". K < k then [:= m+ 1
else u:=m—1
end;
if / < u then
begin if m < n and then (a[m+1]".K = k and
alm+1]". S = alive) then m:= m+ 1
else if m > 1 and then (a[m—1]".K = k and
alm—1]". S = alive) then m:=m—1;
return a[m)
end
else begin i:=h+1;
while i < 7 and then ¢[i'". K+ kdo i:=i+1;
if i < ¢ then return g[/']
else return nil
end;

Figure 8. Search procedure for non-interruptible foreground
process for case (C).

The only additional proof required here is to show that
it satisfies the rely conditions of the background process
(these are given below). Clearly q[i]’. K, h and » are not
changed by it, since the only change it makes to the data
structure (besides changes to the status and info fields) is
to add an item at the tail of the queue.

Background process. Its goal is the same as in case (B).
It relies on the following conditions (which must be
guaranteed by the foreground process):

2702 ‘2 |udy uo selesARIql] A1sBAIUN [eUOITRUBIU| BpLIO|H T /Blo'Seulnolploxo jufwody/:dny woly papeojumod

http://comjnl.oxfordjournals.org/

MAINTENANCE OF DATA STRUCTURES IN A DISTRIBUTED ENVIRONMENT

(1) a[il". K, hand n are not changed by other processes,

ie.

A 1 <i<n, di] ‘Kstart(N+1) = ali] 'Kend(N)7
start (N+1) — heml(N)’

Ngpare(n+1) = Mena vy s

@V, h<i<?, q[i'l".K is not changed by other
processes where ¢” is the value of ¢ last observed
by the background process, i.e.
Vo h<i< Lena(nys q[i’]A'Kstart(N+l) = q[il]A'Kznd(N)'
The outline of the code for the background process is
also similar to that for case (B), except that now the
indivisible actions are much more fine-grained. The code
for the background process is shown in Figure 9.

It exits the repeat ... until loop provided it does not
detect any dead node after a complete scan of the array.
Otherwise it shrinks the array (as far as possible) and
scans the array again. The rest is similar to the earlier
code. The five indivisible actions (enclosed within
<...>) ensure that the weak invariant and the rely
condition of the foreground process are satisfied.
Specifically, these indivisible actions are used to ensure
that only one key in a duplicate is alive whenever it
shrinks or expands the array. Also, it evaluates the status
of an item within an indivisible action before deleting it.
In shrink array and shrink queue it exits the loop if it finds
that the status is alive. However, this cannot be done in
expand array and transfer. In these cases it uses the
assertion that if a[loc]". S is alive then loc must be less
than n+1 and afloc]". K must be equal to a[loc+ 1]". K, so
that afloc+1]".S must be equal to dead. Hence, it
transfers afloc] to a[loc+ 1] prior to changing afloc].

Note. As observed in Ref. 12, it is possible that the
background process will never complete a cycle if requests
repeatedly come for adding and then deleting the same
key.

loop forever
begin repeat
shrink array (DeadFound)
until not DeadFound,
shrink queue;
if A < t then
begin expand array (loc); transfer (loc)
end
end;

shrink array (DeadFound):

i:=n;
while i > 1 and then a[i]".S + dead do i:=i—1;
if i = 0 then DeadFound:= false
else begin DeadFound: = true;

while i < n do

< if a[i]". S = alive then > exit
else begin afi]: = a[i+1];
ali+1]".S:=dead> ; i:=i+1
end;
<if a[n]".S = dead then n:=n—1>
end;

shrink queue:
while 4 < ¢ do
<if g[(h+1)T. S = alive then> exit
else h:=h+1>;

expand array (loc):
loc:=n+1
alloc]". S = dead,
while /oc > 1 and then
alloc—171".K > q[(h+1)7".K do
begin <if afloc]". S = alive then alloc+ 1]: = a[loc];
ifloc=n+1thenn:=n+1,;
alloc]: = a[loc—1];
alloc—11".S:= dead> ;
loc:= loc—1
end;

transfer (loc):
<if a[loc]". S = alive then a[loc + 1]: = a[loc];
ifloc=n+1thenn:=n+1;
alloc]:= q[(h+1)1;
h:=h+1>;
Figure 9. Implementation of interruptible background process
for case (C).

3.4 Case (D) — interruptible foreground, interruptible
background

Though the previous case is satisfactory for most
situations, further flexibility is possible if we allow the
background process to proceed even though the fore-
ground process has not fully completed its operation.
This may occur if one CPU can be dedicated to the
foreground process and another to the background
process. It is also useful for cases where the foreground
process has to wait for some disc I/O operations when
the data structure is disc resident.

This case can be implemented using explicit locks in
addition to the indivisible actions used in the previous
case. These locks exclude the background process from
accessing areas of the data structure which may be
accessed or modified by the foreground process during
the remaining part of its current operation. In order to
allow the foreground process to proceed at full speed,
most of these locking actions are taken care of by the
background process. That is, it is the responsibility of the
background process to ensure that it is safe to access
the data structure before doing so. Generally, the code
for this case is very closely related to that for the pre-
vious case.

For our example, the array and queue data structures
and invariants are as in case (C). Three new variables are
used by the foreground process in order to block access
to selected areas of the data structure: H indicates the
position of the foreground process in the queue; L, U
indicate the position of the foreground process in the
array.

Foreground process. Its goal is to satisfy the specifi-
cation and to maintain the weak invariant. It relies on
three conditions, namely (i) the set of nodes with
status = alive are unchanged by other processes, though
their position in the queue/array may be changed; (ii) no
node is transferred from the array to the queue; and (iii)
there is no maintenance activity on portions of the data
structure which it is searching. These are given by:

(l) S(a)start(N+1) U S(q)start(N+l) = S(a)end(N) U S(q)emi(N)

(i) S(a)start(N+l) 2 S(a)end(N) and
S(q)start(N+1) = S(q)end(N)

THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988 171

2702 ‘Z [udy uosfeLesAreIql AISiBAluN [UOITRUBIU|BPLIO|H e /B10'SfeuInopiogxo" julwoo//:dny woly pepeojumoq

http://comjnl.oxfordjournals.org/

F. B. BASTANI, S. S. IYENGAR, AND I-LING YEN

(ii)) V,, H < i< t, q[i] is not modified, i.e.,
A q[i/]st.art(N+1.) = q[i/]end(N);

V., L <i< U: d[i] is not modified, i.e.,
aliyare 1) = ali],na vy
The code for the search procedure used by the
foreground process appears in Figure 10. Note that after
each LookUp(k), add(k, i), delete(k) operation we have to

add H:=t;L: =U+1

search array and queue (k);
<H:=h>;—locks access to the queue
while H < ¢t and then g[(H+1)].K+ kdo H:= H+1;
if H < ¢ then return g[(H + 1)]
else begin L:=1; <U:=n>;
—locks access to the array
while L < U do
begin m:= (L+ U) div 2;
if a[m]". K = k then exit
else if a[m]". K < k then L:=m+1
else U:=m—1
end;
if L > U then return nil
else begin if m < n and then (¢[m+1]". K=k
and a[m+1]". S = alive) then m:= m+1
else if m > 1 and then (ag[m—1]". K=k
and a[m—1]". S = alive) then m:=m—1;
L:=m; U.=m;
return a[m]
end
end

Figure 10. Search procedure for interruptible foreground
process for case (D)

It is similar to that in Figure 8, except that the queue is
searched first and that values are assigned to H, L and U
to prevent the background process from modifying the
portion of the data structure being accessed by the
foreground process. (The queue is searched first because
the foreground process relies on the condition that a
node cannot be moved from the array to the queue,
though it may be moved from the queue to the array.) Its
correctness follows from that of Fig. 8 and the rely
condition regarding H, L and U. The only new proof is
to show that if mis set m+ 1 or m—1 (as the case may be)
then we still have L<m < U.

Background process. Its goal and rely conditions are
the same as in case (C). The code for the background
process is shown in Fig. 11. We use the primitive:

shrink array (DeadFound):
ii=n;
while / > 1 and then a % dead do i:=i—1;
if i = 0 then DeadFound: = false
else begin DeadFound: = true;
while i < n do
whennot (L<i<Ueor L<i+1<U)do
<if a[i]". S = alive then> exit
else begin a[i]: = a[i+ 1];
ali+1]1".S:=dead> ; i:=i+1
end;
when not L <n< U do
<if a[n]". S = dead then n:=n—1>
end;

172 THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988

shrink queue:
while 2 < ¢ do
when H + h+1 do
<if g[(h+1)]". S = alive then> exit
else h:=h+1>;

expand array (loc):
loc:=n+1;
alloc]. S:= dead;
while /oc > 1 and then qlloc—1]".K > ¢[(h+1)']".K do
begin when not (L <loc—1<Uor L<loc<U
or L<loc+1<U)do
<if alloc]”. S = alive then a[loc+ 1]: = a[loc];
ifloc=n+1thenn:=n+1;
alloc]: = a[loc—1];
aflloc—1]".S:= dead> ;
loc:= loc—1
end;

transfer(loc):
when H =+ h and not (L < loc < U or
L<loc+1<U)do

<if dlloc]". S = alive then a[loc + 1]: = afloc];
if loc=n+1thenn:=n+1;
alloc]:= ¢ql(h+1)];
h:=h+1>;

Figure 11. Implementation of interruptible background process

for case (D).

when Bdo <4>

to mean that indivisible action <A4> is executed only
when B becomes true. We can implement this by using
busy-waiting:

label: <if not B then> goto label else A>

Busy-waiting is acceptable for the two scenarios we have
considered, namely, a dedicated processor for the
foreground process or when the foreground process is
waiting for some events to occur. The correctness of the
program then follows from that shown in Figure 9.

3.5 Comments

To recapitulate, the code for the foreground and back-
ground processes may be developed by systematically
proceeding from coarse-grained concurrency to fine-
grained concurrency. In addition, rely/guarantee con-
ditions are used to simplify the proof of non-interference
at each stage. To ensure that the semantics of the
abstraction are satisfied, the maintenance process must
guarantee that the ‘rely’ conditions of the foreground
process are not violated. Similarly, every indivisible
action of the foreground process must satisfy the ‘rely’
condition of the maintenance process.

We have used this approach for developing concurrent
maintenance algorithms for strings,'® equivalence rela-
tions, linear lists,’® hash tables,’® and a multiway tree
data structure for a directory server.®

4. PERFORMANCE EVALUATION

In this section we briefly discuss the performance of
various methods of maintaining data structures. Ad-
ditional details appear in Refs. 2, 3 and 14.

2702 ‘2 |udy uo selesARIql] A1sBAIUN [eUOITRUBIU| BpLIO|H T /Blo'Seulnolploxo jufwody/:dny woly papeojumod

http://comjnl.oxfordjournals.org/

MAINTENANCE OF DATA STRUCTURES IN A DISTRIBUTED ENVIRONMENT

As evident from the example in the previous section,
the algorithms for cases (C) and (D) are significantly
more complicated than those for cases (A) and (B).
Hence they should be considered only if there is clear
evidence that the use of such algorithms will improve the
performance of the system. The average waiting time for
a client request to be processed by the server is an
important performance measure, which can be used to
evaluate different data-structure maintenance policies.

Clearly, it is not appropriate to compare the perform-
ance of the algorithms for maintaining an ordered array
(such as those developed in the previous section) with,
say, the concurrent maintenance of a hash table or a tree.
We assume that a particular data structure has been
selected for implementing a server based on certain
design considerations. The important performance ques-
tion is what maintenance approach is suitable for that
data structure.

In our study we have considered the following
maintenance techniques.

(1) Case A1: no background process along with the
use of a standard form of the data structure; the
foreground process performs all the maintenance tasks
required by a client request before sending any response
to the client,

(2) Case A2: no background process, but perhaps a
self-reorganising form of the data structure is used; this
includes case A1,

(3) Case BI1: separate maintenance process that is
invoked after the completion of every foreground opera-
tion; all the maintenance tasks required by a client
request are completed before processing a new request,

(4) Case B3: separate maintenance process that is
invoked after the completion of every M(M > 1) fore-
ground operation; this includes case B1,

(5) Case C: concurrent maintenance process; the
maintenance process runs whenever the foreground
process is idle,

We have compared cases Al, Bl and C, both
analytically and experimentally, for a single-client system
such as the implementation of a distributed program
using remote procedure calls. The results are as follows.

Case B1 is always better than case A1,

Case C is better than cases B1 and A 1 when the load
is below a certain value; the cross-over point increases as
the proportion of look-up requests increases relative to
update requests.

For multiple-client systems, such as a general network
server, we have the following results:

If we assume that the foreground process has a higher
priority than the background process, then case C is

REFERENCES

1. F. B. Bastani, Performance improvement of abstractions
through context dependent transformations. /EEE Trans.
Softw. Eng. SE-10 (1), 100-116 (1984).

2. F. B. Bastani, I.L.Yen, A.Moitra and S.S. Iyengar,
Impact of parallel processing on software quality. Proc. st
Intl. Conf. SuperComp. Sys., St Petersburg, FL (1985).

3. F. B. Bastani, W. Hilal and I. R. Chen, Performance anal-
ysis of concurrent maintenance policies for servers in a
distributed environment. Proc. FJCC 86, Dallas, TX
(1986).

4. M. Ben-Ari, Algorithms for on-the-fly garbage collection.
ACM Trans. Prog. Langs. and Sys. 6 (3), 333-344
(1984).

basically unstable, i.e. with probability 1 the system will
eventually reach a state in which the response time is
infinite; hence we only consider case C with scheduling
policies which dynamically adjust the relative priorities
of the foreground and maintenance processes,

Case B2 has the smallest average response time (M
must be found experimentally),

Case C has the smallest variance and the smallest
worst-case performance.

From these observations we conclude that concurrent
maintenance may be suitable for real-time applications,
especially if the operating system supports efficient
synchronisation primitives. However, it should be noted
that the algorithms for case C are significantly more
complex than those for the other cases.

5. SUMMARY

In this paper we have considered the implementation of
servers incorporating low-priority maintenance processes
dedicated to housekeeping activities. We first defined
multilevel data structures which are similar to hier-
archical storage systems, and discussed their imple-
mentation using multiprocessor systems. Then we gener-
alised these to include data structures which can be
characterised by weak and strong invariants. These allow
each operation of the server to be implemented efficiently,
provided that the data structure is in a state which
satisfies the strong invariant. It is the responsibility of the
maintenance processes to bring the data structure to such
a state. We discussed a stepwise development method for
the special case where we have only one maintenance
process by proceeding from coarse-grained concurrency
to fine-grained concurrency.

We have also briefly discussed the performance of
different maintenance strategies. (Details appear in Refs
2, 3 and 14.) The results indicate that concurrent main-
tenance is suitable for real-time applications.

Some research issues are (i) developing methods of
deriving the rely/guarantee conditions from the strong/
weak invariants since it is relatively straightforward to
determine the latter, (ii) considering the case where we
have multiple foreground processes (see Refs 10, 12 and
15).

Acknowledgements

The authors wish to thank Professors Abha Moitra and
Bahaa-El-Din, and an anonymous referee, for their
detailed comments and suggestions that have helped to
enhance the clarity of the paper.

5. I. R. Chen, A Distributed Directory Server in a UNIx
Network Environment. M.S. Thesis, Department of Com-
puter Science, University of Houston, University Park
(1985).

6. E. W. Dijkstra et al., On-the-fly garbage collection: an
exercise in cooperation. Comm. ACM 21 (11), 966-975
(1978).

7. C. S. Ellis, Distributed data structures: A case study. Proc.
5th Intl. Conf. Distr. Proc. Sys., Denver, CO, 201-209
(1985).

8. T. Hickey and J. Cohen, Performance analysis of on-the-
fly garbage collection. Comm. ACM 27 (11), 1143-1154
(1984).

THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988 173

2702 ‘2 |udy uo selesARIql] A1sBAIUN [eUOITRUBIU| BpLIO|H T /Blo'Seulnolploxo jufwody/:dny woly papeojumod

http://comjnl.oxfordjournals.org/

10.

11.

12.

F. B. BASTANI, S. S. IYENGAR, AND I-LING YEN

. C.B. Jones, Tentative steps towards a development

method for interfering programs. ACM Trans. Prog.
Langs. and Sys. 5 (4), 596619 (1983).

L. Lamport, Specifying concurrent program modules,
ACM Trans. Langs. and Sys. 5 (2), 190-222 (1983).

B. W. Lampson, Hints for computer system design, [EEE
Softw. 1 (1), 11-28 (1984).

U. Manber, Concurrent maintenance of binary search
trees. IEEE Trans. Softw. Eng. SE-10 (6), 777-784 (1984).

. U. Manber and R. E. Ladner, Concurrency control in a

dynamic search structure. ACM Trans. Database Sys. 9 (3),
439455 (1984).

14.

15.

17.

18.

A. Moitra, S.S.Iyengar, F.B.Bastani and I.L. Yen,
Multilevel data structures: models and performance. Tech.
Rep. to appear in IEEE Trans. Softw. Eng.

P. M. Schwarz and A. Z. Spector, Synchronizing shared
abstract types. ACM Trans. Comp. Sys.

. J.-E. Teng, An Experimental Evaluation of Maintenance

Strategies for Servers in UNix Local Area Network
Environment, M.S. Thesis, Department of Computer
Science, University of Houston, University Park (1986).
N. Wirth, Algorithms+ Data Structures = Programs. Pren-
tice-Hall, Englewood Cliffs, N.J. (1976).

I.-L. Yen, The Role of Parallel Processing in Application
Programs, M.S. Thesis, Department of Computer Science,

University of Houston, University Park (1985).

Announcements

28 NOVEMBER —2 DECEMBER 1988

International Conference on Fifth Generation
Computer Systems 1988, Tokyo, Japan
FGCS 88 is an international conference
following on from the last conference, FGCS
’84. The conference will be held for five days.
The first two days will be mainly devoted to
reports of the FGCS project’s results, and the
last three days to technical sessions for
presentation of papers and related discussions.

The scope of technical sessions encompasses
the technical aspects of new-generation com-
puter systems which are particularly within
the framework of knowledge information pro-
cessing, logic programming and parallel archi-
tectures. This conference is intended to pro-
mote interaction among researchers in all
disciplines related to fifth-generation com-
puter technology. Of special interest are
papers discussing the future direction or
prospects of new-generation computing. The
topics of interest include (but are not limited
to) the following.

Program areas

Foundation

Formal semantics

Computation models

Theory of parallel computation
Automated reasoning

Foundation of AI

Prospect of new-generation computing
Social impact of FGCS

Architecture

Inference machines
Knowledge-base machines
Parallel architectures

Al architectures

VLSI architectures
Human-machine architectures

Software
Logic/functional/object-oriented program-
ming

Parallel programming languages and method-
ologies

Program verification/debugging

Program analysis/transformation

Implementation techniques

Applications

Knowledge-based systems

Natural language understanding/machine
translation

Real-time Al systems

Application of parallel systems

Games/simulation

Paper submission requirements

Authors should send six copies of manuscripts
to:

Professor Hidehiko Tanaka, FGCS ’88 Pro-
gram Chairman, ICOT, Mita Kokusai Build-
ing 21F, 1-4-28 Mita, Minato-ku, Tokyo 108,
Japan.

Papers to be received by 10 May 1988.

Papers are restricted to 20 double-spaced
pages (about 5000 words) including figures.
Each paper must contain a 200 to 250 word
abstract. Papers must be written and presented
in English.

Papers will be reviewed by international
referees. Authors will be notified of acceptance
by 15 July 1988, and will be given instructions
for final preparation of their papers at that
time. Camera-ready papers for the proceedings
should be sent to the Program Chairman prior
to 15 September 1988.

General information

Date: 28 November to 2 December 1988
Venue: Tokyo Prince Hotel, Tokyo, Japan
Host: Institute for New Generation Computer
Technology

174 THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988

Outline of the conference program

General sessions
Keynote speeches
Report of research activities on Japan’s
FGCS Project
Panel discussions

Technical sessions (parallel sessions)
Presentation by invited speakers
Presentation of submitted papers

Special events
Someof theresearch resultsincluding parallel
software and hardware systems, natural-
language understanding systems and expert
systems will be demonstrated at the con-
ference site.

Further information
Conference information will be available from
the Secretariat from December 1987.

Organisation of the Conference

Conference Chairman: Hideo Aiso, Keio
University

Conference Vice-Chairman: Kazuhiro Fuchi,
ICOT

Programme Chairman: Hidehiko Tanaka,
The University of Tokyo

Programme Vice-Chairman: Koichi Furu-
kawa, ICOT
Publicity Chairman:
JIPDEC

Publicity Vice-Chairman: Fumio Mizoguchi,
Science University of Tokyo

Kinko Yamamoto,

Secretariat

FGCS ’88 Secretariat, Institute for New
Generation Computer Technology (ICOT),
Mita Kokusai Building 21F, 1-4-28 Mita,
Minato-ku, Tokyo 108, Japan. (Phone: 03-
456-3195. Telex: 32964 ICOT.)

2102 ‘2 |udy uospelesArelql AseAIUN [euoTeuURIU| BPLIO|H e /B10'S[eunoplo)xo’ Jufwody/:dny woly pspeojumoq

http://comjnl.oxfordjournals.org/

