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Multilevel Data Structures: Models and Performance 
ABHA MOITRA, S.  SITHARAMA IYENGAR, FAROKH B. BASTANI, MEMBER, IEEE, AND I. LING YEN 

Absfrucf-We advocate a stepwise method of deriving high perfor- 
mance implementation of a set of operations. This method is based on 
the ability to organize the data into a multilevel data structure so as to 
provide an efficient implementation of all the operations. Typically, for 
such data organization the performance may deteriorate over a period 
of time and that can be corrected by reorganizing the data. This data 
reorganization is done by the introduction of maintenance processes. 

For a particular example we consider the multilevel data organiza- 
tion and the different models of maintenance processes possible. The 
various models of maintenance processes provide varying amounts of 
concurrency by varying the degree of atomicity in different operations. 
Performance behavior for the different models are derived and we 
sketch a correctness proof for the developed implementation. Simula- 
tion studies of the performance for this example confirm that the per- 
formance improves as we move from coarse grained concurrency to 
finer grained Concurrency. 

Zndex Terms-Maintenance processes, multilevel data structures, 
performance, program correctness, weaklstrong invariants. 

I. INTRODUCTION 
YSTEM performance can be improved by scheduling S house keeping activities to occur during periods when 

the processor is waiting for messages or is transmitting 
messages. In other words performance of a distributed 
system can be improved by scheduling the computations 
required to maintain the data structure during the idle pe- 
riods. This approach is particularly suitable for distrib- 
uted systems since the data reorganization can be done 
while a response is being sent to the invoker or while the 
local processor is waiting for a new request. 

For example, it is efficient to search for a key in a per- 
fectly balanced binary search tree. However, rebalancing 
the tree after every insertion/deletion operation is ineffi- 
cient. A maintenance process in a distributed system can 
rebalance the tree while a response is being sent to the 
invoker or when the processor is waiting for a new re- 
quest. This method is proposed by Lampson [8] and Man- 
ber [9]. Manber [9] gives the algorithms and proofs for 
maintenance processes for a special form of binary search 
trees data structure called “external trees” and in Manber 
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and Ladner [lo] a binary search structure is considered. 
In Ellis [4], a distributed version of an extendible hash 
file useful in distributed data bases is developed by “dis- 
tributing a data structure”. Bastani et al. [l], [2] have 
investigated the improvement of the performance of data 
abstractions in a distributed system through the use of low 
priority maintenance process. They consider the case 
where the interface operations are implemented by fore- 
ground processes while the maintenance tasks are per- 
formed by background processes. They give algorithms 
for these processes in a stepwise manner, proceeding from 
coarse grained concurrency to fine grained concurrency. 

In this paper we discuss one approach for improving the 
average response time for a set of operations. This ap- 
proach is based on the usage of multilevel data structures 
along with maintenance processes [ 11431, [81, [91. We 
illustrate this approach by considering one example in de- 
tail. For this example we present different models which 
capture the types of interactions between the processes 
providing the original operations and the maintenance 
processes. Even though we take a specific example for 
illustration purposes, the different models of interactions 
are general and can be modified to deal with other prob- 
lems. Finally, we also present some simulation studies. 

11. DATA STRUCTURE PERFORMANCE TRADEOFFS 
The problem we consider is that of implementing a 

SearchTable which should provide the following opera- 
tions: 

ADD(k,e): 

DELETE(k): 

LOOKUP(k): 

Add element e with key k to the Search- 
Table. 
Delete the element associated with key 
k. 
Return the element associated with key 
k. 

Standard implementations cannot simultaneously opti- 
mize all the above three operations. For example, 

1) a linked list is poor for LOOKUP, but good for ADD 
and DELETE 

2) an unsorted list is poor for LOOKUP and DELETE, 
but good for ADD 

3 )  a sorted list is good for LOOKUP, but poor for ADD 
and DELETE 
4) a binary search tree has a much better performance 

for ADD and DELETE than a sorted array, although it 
has a slightly worse LOOKUP performance 

5 )  a balanced tree improves on the performance time 
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for LOOKUP at the expense of that of ADD and DE- 
LETE 

6 )  hash tables with open addressing are not suitable for 
DELETE while those with chaining have degraded per- 
formance as the chained lists get longer. 

111. MULTILEVEL DATA STRUCTURES 
Typically, the data on which the operations are per- 

formed is organized in some particular data structure. 
However, in the multilevel data structure approach the 
data is organized in a number of different data structures 
so as to provide efficient implementation for all the op- 
erations. As a sequence of operations are performed, the 
organization of the data is altered. Now since the different 
data structures have different performance characteristics, 
the performance of the operations may deteriorate as a 
result of the new organization of the data. Consequently, 
some maintenance processes [9] have to be invoked to 
reorganize the data so as to improve the performance of 
the operations. 

Since, an operation may be performed under different 
data organization, the implementation of the operation 
should be consistent with all the different data organiza- 
tions. This is achieved by defining two types of invariants 
for the data organization: a strong and weak invariant, 
such that the following hold. 

1) If the strong invariant is true then any operation can 
be implemented efficiently. The processing of an opera- 
tion may falsify the strong invariant. 

2) If the weak invariant holds then execution of an op- 
eration will maintain the weak invariant. 

The maintenance process when invoked attempts to es- 
tablish the strong invariant given that the weak invariant 
holds. Whether the maintenance process actually suc- 
ceeds in this attempt depends on the model considered; 
however, for any model if no new requests arrive from 
the client for a certain period of time then the maintenance 
process will establish the strong invariant. This point will 
become clearer when we discuss the different models. 

For the data type SearchTable and its associated oper- 
ations, a multilevel data structure consisting of a binary 
search tree and a sorted array can be used as given in Fig. 
1. Elements to be added are added to the binary search 
tree and for efficient implementation of DELETE, each 
element has a flag (with values “dead” and “alive”) as- 
sociated with it. The strong invariant is that the binary 
search tree is empty and that all the elements in the array 
have flag value “alive”. One or more maintenance pro- 
cesses (which we will also call as background processes) 
transfer elements from the binary search tree to the sorted 
array and also remove dead elements. 

The reason for calling such a data organization as a 
multilevel data structure is that it is similar to the memory 
hierarchy used in computer systems. The binary search 
tree in the above example can be viewed as a cache stor- 
age while the sorted array corresponds to long term stor- 
age. One possible application of such a technique is in the 

implementation of a password file for an authorization 
server in a local area network. 

One of the earliest systematic methods of developing 
interfering programs is the stepwise development method 
of Jones [6] which uses rely/guarantee conditions for each 
of the processes. A general method for showing noninter- 
ference is to identify an invariant and show that execution 
of each statement preserves the invariant [ l  11. A basic 
approach for implementing such programs is to start from 
programs with coarse grained concurrency and refine them 
to ones with fine grained concurrency [3]. 

In [ l ]  the “coarse grained concurrency to fine grained 
concurrency” approach is combined with the stepwise ap- 
proach of [6]. This allows modular proofs of the different 
procedures to be undertaken and hence the addition of new 
operations only requires proofs about the added code. 

The stepwise development from coarse grained concur- 
rency to fine grained concurrency proceeds in the follow- 
ing sequence. 

1)  In Case A, only the foreground process is present, 
the data structure used is a binary search tree. 

2) In Case B, background processes are added but all 
the processes are nonpreemptible. The multilevel data 
structure of Fig. 1 is used. 

3) In Case C ,  a background process is preemptible by 
a foreground process. The multilevel data structure of Fig. 
1 is used. 

Iv. MODELS FOR MULTILEVEL DATA STRUCTURES 
We now develop formal models (Kleinrock [7]) for the 

three cases and derive their performance behavior (see also 
[5]). We assume that the client (i.e., the program using 
the abstract data type) repeatedly executes the following 
cycles: 

Compute for a period having the exponential distribu- 
tion with parameter A; then invoke an operation of the 
abstract data type. 

If the average response time is R ,  then the productive work 
PW performed by the client is 

1 / h  P W = -  
l / h  + R ‘  

This is the proportion of time that the client is doing some 
other (presumably more useful) chore than waiting for an 
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operation of the abstract data type to complete. Clearly, 
if 1 / h  is large then this abstract data type is rarely used 
by the client, so that optimization is not critical. How- 
ever, if l / h  is small then operations on the abstract data 
type could be a bottleneck. 

A. Case A-No Background Processes 
The state transition diagram is shown in Fig. 2. In this 

case the client is blocked until the current update is over. 
In state so, the client is doing some other work. In state 

sI I ,  a LOOKUP operation is being performed. In state s12, 
an update operation (to complete the ADD or DELETE 
operation) is in progress. The probability that a client re- 
quest needs to update the data structure is p ’ .  The search 
operation is completed with rate puo, while the update op- 
eration has rate p l .  If P,  denotes the probability of being 
in state s, then the following equations are obtained for 
the states. 

for sI2: p ’ p O P l I  = pI  P12 

for s I I :  p o P I I  = hP, 

Po + PI1 + PI* = 1 
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Solving these we obtain 

1 /A 
l / h  + 1/Po + P ’ l P I ’  

1 /A 
I/X + ] / P o  + P%l 

1 P‘ 

Po = 

Now PW = Po and hence we obtain 

PW = 

R = - + + .  
Po PI 

Remarks: 
1) As h increases, PWdecreases since this module then 

2) If the search algorithm is improved, then po in- 

3) If there are fewer ADD/DELETE requests then p‘ 

4) If the update algorithm is improved then p l  in- 

becomes a bottleneck. 

creases and hence PW increases. 

decreases and hence P W increases. 

creases and hence PW increases. 

B. Case B-Nonpreemptible Background Processes 
The state transition diagram is shown in Fig. 3 .  Here 

the client is blocked until the previous update is over. 
In this implementation, the foreground process returns 

control to the client process as soon as the LOOKUP por- 
tion of the operation is completed. The background pro- 
cesses do the actual update in state s12. Since there is no 
preemption, these processes complete the update even if 
the client issues a new operation. This is indicated by the 
transition from state s12 to s2. For this case we obtain the 
following equations: 

Fig. 2 .  State transition for Case A 

PI 
Fig. 3.  State transition for Case B.  

for s2: XP,, = p1 PI 

fors12: (A + PII)P12 = P‘POPII 

f o r s , , :  p o P I I  = hPo + p l P 2  

Po + PI1 + PI2 + P? = 1. 

Solving these, we obtain 

5 1  
h 

since ~ 

+ PI 
PW for Case A 

1 P’ 
Po (A + PII)Pl 
- +  

5 1  
1 P’ h 
- + - since ~ 

Po PI + PI 

response time for Case A. 

Thus, implementation for Case B is always better than 
implementation for Case A. 

C. Case C-Preemptible Background Processes 
The state transition diagram is shown in Fig. 4. Here 

the client is blocked for significantly shorter durations 
(more details in Section V). In this implementation, the 
foreground process can interrupt the background pro- 
cesses. The background processes then continue to do the 
actual updates in states s ~ , ~ .  s , , ~ ,  * . 0 ,  sl,,, * a .  The 
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also assume that a steady state is reached so that proba- 
bilities for the operations ADD and DELETE are equal; 
otherwise, the search table will overflow or be empty in 
the steady state. 

With these assumptions we obtain 

R = L ( I + ? )  PO 

1 / A  
l / h  + ( 1  + P’X/P)/PO’ 

PW = 

For small A ,  these can be simplified to give 

1 R z -  
PO 

1 /h  
l / h  + VPO‘ 

PW = 

’ Since this is the best possible response time, this imple- 
mentation is very efficient for reasonable rates of client 
requests. However, as X increases, R tends to infinity and 
PW tends to 0. Thus, at some point the performance of 
Case C becomes worse than that of Case A. Notice that 
the three models presented here provide varying levels of 
concurrency by varying the degree of atomicity. 

Fig. 4. State transition for Case C.  

general equations are 

for s i+ l , l ,  i 2 0: piPi+l ,k  = hPi.2 

forsi,2, i 2 1: ( X  + p!)Pi,2 = p ’ ~ j - l P i , l  +p~ ip i+ I , I  

m m 

c Pi,* + c Pj.1 = 1 
i = O  i =  1 

And these can be solved to give 

1 
1 

And we have 
m 

Now 
m m I 

- 
m i  

K =  - 

C P i , 2  
i = O  

A closed form solution is useful to draw some conclusions 
regarding the performance of this implementation. This is 
possible under the following assumptions. 

1) p,’ = p = constant. 

Assumption 1 is optimistic, although it is a reasonable 
approximation for certain update operations such as re- 
moving dead elements. Assumption 2 is pessimistic for a 
number of processor structures; a more reasonable as- 
sumption would be p ,  = [ pol/ log ( i  + 1 ) ]  + pO2 where 
po2 is the average rate for searching the sorted array while 
pol is the average rate for searching the binary tree. We 

2) P ,  = P O / U  + 1 ) .  

V.  PROGRAM FOR CASE C 
The implementation of Case A is straightforward and 

the implementation of Case B is a special case of that of 
Case C. So, we now present the details of the implemen- 
tation for Case C.  

A. Data Structures 
The data structure is given below and consists of two 

binary search trees (with t l ,  t2 pointing to the roots, and 
for conciseness we will call them tree t l  and tree t2, re- 
spectively) and two arrays, a l  and a2. The reason for 
using two binary search trees is as follows. The fore- 
ground process adds an element to tree t 1 when executing 
an ADD operation. The job of the background process is 
to merge the contents of a tree with the elements of an 
array. However, since the background process is preemp- 
tible we should allow for elements to be added while this 
merging is in progress. Hence, the usage of two binary 
search trees. 

Of the two arrays, we use a1 for copying the elements 
from tree t2 in inorder traversal. This array is not really 
necessary but its usage simplifies the code. The array a2 
contains a sorted list of elements. This array actually has 
two partitions, a21 and a22, so that the background pro- 
cess alternates between merging a21 and a l  into a22, and 
merging a22 and a1 into a21. In this process of merging, 
a21 and a22 grow in opposite directions. We assume that 
sufficient space is allocated for a2 so that the two parti- 
tions do not overlap. 

It is possible to write an in-place merge of two array 
wherein the elements of two sorted arrays are merged 
without making use of a third array. Such a scheme would 
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avoid extra storage and is particularly efficient for this 
problem as one of the arrays contains a number of “dead” 
elements and hence the data movement can be made min- 
imal. We wrote such an in-place merge, however, for 
simplicity we did not use it in our simulation studies and 
hence we do not present the code here. 

type element = record 

Data Structure: 

I: info; 
S: (dead, alive); 
K: key 

end; 
ptr = ^node; 
node = record 

E: element; 
left,right: ptr: = nil 

end; 

var tl ,t2: ptr; 

var a1 : array [ 1.. numl] of element; 

var a2: array [ 1.. num21 of element; 

start1 ,endl : 0.. num 1 ; 

start21 ,end21 ,start22,end22: integer 

The amount of additional storage required for the short 
term storage depends on the arrival rate of the various 
requests. 

B. Program 
For simpler and cleaner presentation we take some lib- 

erties with Pascal syntax as summarized below. 
1) “ {  ” and “ } ”  are used for “begin” and “end”, 

respectively; these will also be used for enclosing asser- 
tions. The usage will be clear from the context. 

2) Comments are preceded by “-”. Explicit return 
statement is used. 

t l : =  nil; 
t2:= nil; 
startl:= 1; endl := 0; 
start21:= 1; end21:= 0; 

3) A number of values can be returned as a result of a 
procedure call, for example, use the notation ret-value1 
X ret-value2 : = procedure-name( . . ). 
4) To maintain uniformity between arrays and trees we 

use “address of a[m]” to refer to the index “m” in the 
array a. For simplicity, if p is an address we use p.1 etc. 

-Two partitions: a21 = a2[start21. .end211 
- a22 = a2[start22..end22] 

to refer to elements in trees as well as elements in the 
arrays. 

5) “ < ” and “ > ” are used for enclosing atomic ac- 
tions. 

The main features of the program presented below are 
the following. A search for an element proceeds by 
searching a2, (a1 or t2), t l ,  in that order until the search 
is successful. Further, the array a2 is searched by search- 
ing only one of its two partitions. The background process 
ensures that new elements are added only to t 1 by switch- 
ing around the pointers to the roots of the two trees. 

-initialization 

-start21 is always 1 
start22:= num2+ 1; end22:= num2 -end22 is always num2 

Foreground Process: 

LOOKUP(k): found X p: = search-data-structures(k,false); 
if not found or else p.S = dead then return error message 
else return p.1; 

ADD(k,i): found X p: = search-data-structures(k,true); 
if found and p.S = alive then return error message 
else (p . I := i; p.S:= alive} 

DELETE(k): found X p: = search-data-structures(k,false); 
if not found or else p.S = dead then return error message 
else p.S: = dead; 

search-data-structures(k: key; add: boolean): 
found X p: = if end21 < start21 or a2[end21].K < k 
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then binary-search(a2 ,start22 ,end22) 
else binary_search(a2,start21 ,end2 1); 

if found and p.S = alive then return true X p; 
found X p :=  if endl < start1 or al[endl].K < k 

then search-tree(t2 ,false) 
else binary-search(a 1 ,start 1 ,end 1) ; 

if found and p.S = alive then return true X p; 
return search-tree(t 1 ,add); 

while 1 < = U do 
binary-search(var a: a r ray  [ < > ]  of element; 1,u: integer): 

{m:= (1+ U) div 2; 
if a[m].K = k then return true X address of a[m] 
else if a[m].K < k then 1:= m +  1 
else u: = m- 1);  

return false X nil; 

if t = nil then 
search-tree(var t: ptr; add: boolean); 

if not add then return false X nil 
else {new(t); t^.E.K: = k; return false X address of tA.E} 

else if tA .E.K = k then return true X address of tA .E 
else if tA .E.K < k then searchtree(t^ .right,add) 
else search-tree(t^ .left,add); 

Background Process: 
while true do 

{ < t 2 : =  t l ;  t l : =  nil;> 
transfer-t2-to-a 1 ; 
expand-a22; 
< t2 :=  t l ;  t l : =  nil;> 
transfer-t2-to-a 1 ; 
expand-a2 1 ; 
endl := 0; start]:= I}; 

transfer-t2-to-a 1 : inorder(t2) 

inorder(var t: ptr) : if t < > nil then 
{inorder(t^ .left); 
<if t^.E.S. = alive then {endl := endl+  1; al[endl]:= tA.E}; 
x:= t; 
t: = tA .right > ; 
dispose( x) ; 
inorder( t) } 

expand-a22: while end21 > = start21 and endl > = start1 do 
if a2[end21].S = dead then end21 : = end21 - 1 
else if al[endl].S = dead then end]:= endl-1 
else if a2[end21].K > al[endl].K 

else 
then { < start22: = start22- 1; a2[start22]: = a2[end21]; end21: = end21 - 1 > } 

{ <start22:= start22-1; a2[start22]:= al[endl];endl:= endl -1>};  
-a2[end2 11 .K < a1 [endl] .K 

while end21 > = start21 do 
if a2[end21].S = alive 
then { < start22: = start22- 1; a2[start22]: = a2[end21]; end21: = end21 - 1 > }  
else end2 1 : = end2 1 - 1 ; 

while endl > = start1 do 
if al[endl].S = alive 
then { <start22:= start22-1; a2[start22]:= al[endl]; end1:= end1-1>} 
else endl :  = endl - 1;  

I 
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expand-a21: while end22 > = start22 and endl > = start1 do 
if a2[start22].S = dead then start22: = start22+ 1 
else if al[startl].S = dead then startl: = startl + 1 
else if a2[start22].K < al[startl].K 

else -a2[start22].K < al[startl].K 
then { <end21: = end21 + 1; a2[end21]: = a2[start22]; start22: = start22+ 1 > 1 

{<end21:= end21+ 1; a2[end21]:= al[startl]; startl:= startl+ 1 > } ;  

while end22 > = start22 do 
if a2[end22].S = alive 
then { <end21: = end21 + 1; a2[end21]: = a2[start22]; start22: = start22 + 1 > }  
else start22: = start22 + 1 ; 

if al[startl].S = alive 
then {<end21:= end21+ 1; a2[end21]:= al[startl]; startl:= startl+ 1 > )  
else startl: = start1 + 1; 

while endl > = start1 do 

VI. PROOF OF CORRECTNESS 
We discuss the correctness of the program presented in 

the previous section. T~ avoid excessive details we will 
only sketch the correctness proof leaving out some of the 
details. Let 

From INV it follows that to search for an element in 
a2lstafl21 ..end211 and a2[start22..end22], it is enough to 
search only one partition. Similarly, it is enough to search 
for an element in a1 [s taal .  .end11 and t2 by just searching 
one of them. Proving A1 is then straightforward. In prov- 

D = The multiset of all the alive elements in al[startl..endl], a2[start21..end21], 
a2[start22..end22], tree t l  and tree t2. 

A (al[startl. .endl] 0 inorder(t2), a2[start2l..end21] 0 a2[start22.end22], 

A start2 1 = 1 A end22 = num2 

INV = (No duplicates in D) A (D is the set of all the elements in the system) 

inorder(t1) are all sorted on key) 

where “0” denotes concatenation. 
The invariant INV is actually the weak invariant that 

we referred to earlier. The strong invariant for this pro- 
gram, SINV, is given below 

ing A2 the only complication is that if a new location is 
allocated we require that it be in tree tl and this is achieved 
because search of t2 is done always by search-tree(t2, 
false). 

SINV = (No duplicates in D) A (D is the set of all the elements in the system) 
A (there are no dead elements in the system) 
A t l  =nil A t2=nil A endl < startl A [end21 < start21 V end22 < start221 
A (a2[start21 ..end211 0 a2[start22. .end221 is sorted on key). 

The background process in Case B establishes the strong 
invariant; however, in Case C this is established only if 
the background process is not preempted by the fore- 
ground process for a period of time. We will come back 
to this point later. 

Consider the foreground process which is nonpreemp- 
tible. We first prove that INV is indeed an invariant. For 
this we first show that 

Now, LOOKUP and DELETE both maintain the inva- 
riant INV since search-data-structures(k,false) maintains 
it. For ADD, executing “p.I:= i; p.S:= alive” main- 
tains the invariant INV because of A2. 

We now consider the background process. Program an- 
notation for the background process will be more compli- 
cated as this process can be preempted by the foreground 
process. We show the following annotation to be valid. 

A1 : {INV} 
found X p : = search-data-structures(k,false) 
{INV A (found - p.K = k) 

A ( 1  found - ( V j E D : j . K  #k))} 
A2 : {INV} 

found X p : = search-data-structures(k,true) 
{INV A (found * p.K = k) 

A (1 found * (Vj  E D  - { p } :  j.K # k 
A (p points to a new location added to tl)))} 
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11 
12 : while true do 

: {INV A t2 = nil A start1=1 A end1=0 A start22=num2+ 11 

13 : 
14 : 
15 : 
16 : 
17 : 
18 : 
19 : 
110 : 
111 : 
112 : 
113 : 
114 : 
115 : 
116 : 
117 : 

{INV A t2 = nil A start1=1 A end1=0 A start22=num2+ 1) 
{ < t 2 : =  t l ;  t l : =  nil;> 
{INV A startl = 1 A endl =0} 
transfer-t2-to-a 1 ; 
{INV A t2 = nil A s ta r t l= l}  
expand-a22; 
{INV A t2 = nil A start1 = 1 A endl = O  A end21 =0} 
{ <t2:= t l ;  t l : =  nil;> 
{INV A start1 = 1 A endl =0} 
transfer-t2-toaa 1 ; 
{INV A t2 = nil A start1 = 1 } 
expand-a2 1 ; 
{INV A t2 = nil A endl < startl A start22=num2+ l }  
end1:=0; startl:= 1 
{INV A t2 = nil A start1=1 A end1=0 A start22=num2+ I }  

1; 
We now proceed sequentially to show that the above an- 
notation is valid. Assertion at 11 holds because of the in- 
itialization. We now show that 

INV A t2 = nil A startl = 1 A endl = O  A start22 

is the loop invariant for the background process. We do 
that by assuming it holds at the start of the execution of 
this loop and show that it will then hold after the loop has 
been executed once more. The validity of the triples 
13,14,15; 19,110,111, and 115,116,117 is straightforward. 
We therefore consider the assertions for transfer-t2-to-a 1, 
expand-a22 and expand-a2 1. 

The effect of the code for transfer-t2-to-a1 is that val- 
ues from t2 are copied in inorder traversal into a l .  Now 
since the precondition for executing this is that start1 = 1 
and endl=O it follows that al[startl..endl] 0 t2 is sorted; 
everything in INV remains as before. 

For the code expand-a22, the following loop invariants 
can be used for the three while loops respectively. 

=num2+ 1 

Consequently the background process maintains the in- 
variant INV. 

We now prove that the foreground and background pro- 
cesses correctly implement their respective tasks. 

Foreground Process: Its “rely condition” is that the 
multiset D is not changed by the background process. The 
background process “guarantees” this since 1) whenever 
it executes “<t2 :=  t l ;  t l : =  n i l> ,”  t2 is nil, and 2) all 
data structure modifications required in order to transfer 
items with flag=alive from one data structure to another 
(e.g., in procedures transfer-t2-to-a1, expand-a22, 
expand-a1 1) are atomic and correct. 

Background Process: Its “rely condition” is that the 
only modifications by the foreground process to t2, a l ,  
a21, a22 is to change the flag of an item from alive to 
dead. The foreground process “guarantees” this since the 
only modifications to t2, a1 , a21, a22 is to change the flag 
of an item from alive to dead in operation DELETE(k). 
All the other modifications by the foreground process oc- 

11: 

12: I1 A ((start1 = 1 A endl =0) V end21 =0) 
13: I1 A end21=0 

(a21start21. .end211 @ a2tstart22. .end22], altstartl.  .end11 0 a2tstart22. .end221 is sorted on key) 
A t2 =nil 

and consequently the following assertion will hold at the 
end of expandPa22 ground process. 

cur in t 1, and these are of no consequence to the back- 
- -  

The task of the background process is to achieve the 
strong invariant, SINV, if it is not interrupted by the fore- INV A t2=nil A s ta r t l= l  A end1=0 A end21=0 

For the code expand-a21, the following loop invariants 
can be used for the three while loops, respectively. 

ground process. Assume that it is not interrupted between 
13 and 19. Then, 1 )  t l  is nil since the foreground process 

14: (a2[start2l..end21] @ a2[start22..end22], a2[start2l..end21] 0 al[startl..endl] is sorted on key) 
A t2 =nil 

15: I4 A (endl < startl V start22=num2+ 1) 
16: 14 A start22 = num2 -t 1 

and consequently the following assertion will hold at the 
end of expand-a2 1 

INV A t2=nil A endl < startl A start22=num2+ 1 

has not added any items to t l  (by assumption), and 2) 
there are no items with flag=dead since a) all such items 
which existed at 13 have been removed by the background 
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Fig. 5. Experimental comparison of Cases A and C. 

process by the time execution reaches 19, and b) the fore- 
ground process has not changed the flag of any item (by 
assumDtion). Hence. at 19 we can assert: 

being sent to the client. We have presented various models 
for the maintenance processes, the different models pro- 
vide varying amounts of concurrency. Both the derived 

* I  

performance and the experimental results favor the usage 
of maintenance processes with finer grained concurrency 
over coarse grained concurrency for a wide range of pa- 

INV A t2 =nil A start 1 = 1 A end 1 = 0 A end2 1 = 0 A t 1 =nil 
A (there are no items with Aag=dead in the system) 

This implies SINV. A similar argument can be given for 
the phase starting at 19 and terminating at 117. 

VII. PERFORMANCE STUDIES 

Fig. 5 shows the results of an experiment conducted to 
compare the performance of cases A and C using VAX@/ 
VMS interrupt and timing system services. The details of 
the experiment are discussed in [12]. The parameters of 
the experiment are as follows. 

1) A ,  the rate at which the client issues a request. 
2) p ,  the probability that the request is for LOOKUP. 
Also, for each request there is a parameter which spec- 

ifies the probability that the request is valid. For the data 
shown here, these probabilities are all 0.9. 

From Fig. 5 ,  we observe that 
1) For small to medium A ,  Case C is much better than 

2) Case C is better than Case A as the LOOKUP prob- 
Case A. 

ability p increases. 

VIII. SUMMARY 

In this paper we have discussed one method for devel- 
oping high performance implementation for abstract data 
types. This method relies on the usage of multilevel data 
structures and maintenance processes and achieves high 
performance by scheduling the computations required to 
maintain the data structure during the idle periods. This 
approach is particularly suitable for distributed system as 
the data reorganization can be done while response is 

V A X  is a registered trademark of Digital Equipment Corporation. 

rameters. 
Possible research directions in this area include devel- 

oping performance models for multilevel data structures 
when the foreground process is also preemptible and when 
there are multiple clients concurrently accessing the data 
type. 
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