
BIT 28 (f988), 37-53

ON THE DYNAMIZATION OF DATA STRUCTURES

NAGESWARA S. V. RAO +, VIJAY K. VAISHNAVI : and S, SITHARAMA IYENGAR*

t Department of Computer Science, : Department of Computer Information Systems,
Louisiana State University, Georgia State University, University Plaza,
Baton Rouge, LA 70803, USA Atlanta, GA 30303, USA

Abstract.

In this paper we present a simple dynamization method that preserves the query and storage
costs of a static data structure and ensures reasonable update costs. In this method, the majority
of data dements are maintained in a single data structure, and the updates are handled using
"'smaller" auxiliary data structures. We analyze the query, storage, and amortized update costs for
the dynamic version of a static data structure in terms of a function f, such that f(n) < n, that
bounds the sizes of the auxiliary data structures (where n is the number of elements in the data
structure). The conditions on f for minimal (with respect to asymptotic upper bounds) amortized
update costs are then obtained. The proposed method is shown to be particularly suited for the
cases where the merging of two data structures is more efficient than building the resultant data
structure from scratch. Its effectiveness is illustrated by applying it to a class of data structures
that have linear merging cost; this class consists of data structures such as Voronoi diagrams,
K-d trees, quadtrees, multiple attribute trees, etc.

CR Categories: E. 1.

Additional Keywords and Phrases: dynamization, amortized insertion and deletion costs,

1. In t roduc t ion .

In recent years, the dynamiza t ion of data structures has evolved into a well-

established discipline in the area of Theoretical Compute r Science. This fact is

reflected in the large n u m b e r of research results reported in the past five or

six years. The design of efficient dynamic data structures has been con t inu ing

to be a chal lenging tasl¢. The main objective of the dynamiza t ion is to design

data structures that achieve the query and storage costs of static data structures

with fast update times. It is desirable to ob ta in a dynamic version for a given

static data structure wherein the cost of n insert ions (starting with the empty set)

is approximate ly equal to the cost of preprocessing n elements to construct the

static da ta structure. The single-dimensional da ta structures such as AVL-trees,

etc. have such opt imal characteristics. However, similar results seem extremely

difficult to ob ta in for a general da ta structure. M a n y techniques exhibit some

Received September 1986. Revised September 1987.

38 NAGESWARA S. V. RAO, VIJAY K. VAISHNAVI AND S. SITHARAMA IYENGAR

interesting trade-offs by achieving optimality for some performance measures at
the expense of the other measures.

Many techniques have been proposed and investigated for dynamizing data
structures. See Overmars [6] and Mehlhorn [4] for a comprehensive treatment
on the techniques. They can be very broadly classified into two classes. In the
first class, the entire set of data elements is stored in a single data structure;
the insertions and deletions are accommodated by carrying out some local or
global changes on it. Overmars [6] presents a comprehensive treatment on the
various techniques of this class such as local, partial, and global rebuilding. In
the second class, a set of n data elements is organized into a collection of data
structures. Of special significance is the case when the set of data elements is
organized into a set of logn data structures. Bentley and Saxe [1] present a
detailed discussion on these techniques for decomposable search problems (see
Mehthorn [4], and Overmars [6] also). Again, the appropriateness of a particular
technique to an application depends on the nature of the problem. A close look
at these methods seems to reveal that it may not be possible to obtain a
general methodology that achieves optimal performance for all costs.

In this paper we present a simple dynamization technique that preserves the
query and storage complexities of a static data structure. We consider the case
where no element is repeatedly inserted or deleted. First, we consider the
decomposable problems for semi-dynamic solutions. Then, we present a dynamic
solution for a class of problems called the deletion-decomposable problems.
These problems, to be defined formally in section 3, are similar to decomposable
searching problems. Problems such as the member searching problem, the range
search problems, the counting problem, etc., belong to this class of deletion-
decomposable problems. In our method the majority of data elements are stored
in a single main data structure. The insertions and deletions are carried out by
using two auxiliary data structures; one to handle insertions and the other
to handle deletions. To carry out these operations, the data elements are inserted
into the auxiliary data structures. When these have grown to a certain size, a
new main data structure is constructed by merging the existing main and
auxiliary data structures. The sizes of the auxiliary data structures are restricted
to f(n), a value given by a positive, non-decreasing and integer-valued function
f : N ~ N, where n is the size of the main data structure at this point, such that
f (1) = 1 and f(n) < n, n > 1. In this case the query and the storage costs of
the dynamic version are the same as those of the static data structure. The
amortized insertion and deletion costs are estimated in terms o f f (n) and in terms
of the parameters of the static data structure. The choice of f is static, i.e. f is
decided based on the parameters of the static data structure once at the
beginning. Only the value of f(n) is computed after every insertion or deletion.
Different trade-offs in the insertion and deletion costs exist based on the
function f chosen for the application. We also obtain the condition on f that
yields minimal (with respect to derived asymptotic upper bounds) update costs.

ON THE D Y N A M I Z A T I O N OF D A T A STRUCTURES 39

A closed form expression for f (expressed in terms of n) satisfying this condition
is not guaranteed in a general case. This technique is particularly suited for the
case where merging two existing data structures - to form a larger data
structure - is more efficient than building the resultant data structure from scratch.
We illustrate the effectiveness of this technique by applying it to a class of data
structures with linear merging costs. This class includes data structures such as
Voronoi diagrams, quadtrees, k-d trees, multiple attribute trees, balanced binary
search trees, etc. The preprocessing cost is O(n log n) for these examples, where n
is the size of the set of data elements. Each data structure of size n can be
constructed by merging two smaller data structures of sizes n~ and n2,
n = n 1 + n 2. Thus the merging cost is O(n). The amortized insertion cost is
O(n/x/logn), and the amortized deletion cost is O(nx/logn) for these data
structures in one case. In a second case, both the amortized insertion and
deletion costs are given by O(nx/(log n/log log n)) for this class of data structures.

We characterize a static data structure S, containing n elements, with the
following parameters :

Qs(n) : cost of answering a query on S;
Ss(n) : amount of storage needed for storing S;
Ps(n) : cost of building S, i.e. preprocessing cost of S;
Ms(n) : cost of merging two data structures (each of type S)

of sizes nl and n2 respectively to form
single data structure (of type S) of size n = nl +hE.

Let Ps(n)= Ms(n)¢(n). The function ¢(n) is at least of the order O(1) and
Ms(n) is at least of the order O(n). In general ~(n) is indicative of how efficient
building a data structure by merging two existing sub-data structures is, compared
to building the data structure from scratch. For Voronoi diagrams we have
~(n) --- O(log n).

We characterize a dynamic data structure D ~vith the following parameters:

QD(n) : cost of answering a given query on D ;
So(n) : amount of storage needed to store D ;
[o(n) : amortized insertion cost,

given by [maximal total time spent on executing a sequence of n
insertions starting with an empty set]/n;

/)o(n) : amortized deletion cost,
given by [maximal total time spent on executing a sequence of n
operations 1 (insertions or deletions) starting with an empty set]/n;

The organization of this paper is as follows : In Section 2, we present a semi-

1) In [4], a query is also considered as an operation. In our discussion the amortized deletion
cost could be more appropriately called amortized update cost. However, we retain the former
for pedantic reasons.

40 NAGESWARA S. V. RAO, VIJAY K. VAISHNAVI AND S. SITHARAMA IYENGAR

dynamic solution for the decomposable searching problems. In particular, we
evaluate the query, storage, and amortized insertion costs in terms of f (n) . We
also obtain the condition for the minimal form of the derived asymptotic upper
bound on the amortized insertion cost. We then present a dynamic solution for
the deletion-decomposable searching problems in Section 3. We estimate the
various costs in terms of f(n) . We obtain the condition for the minimal form
for the derived asymptotic upper bounds on the amortized insertion and
deletion costs. Application of this technique to a class of data structures with
linear merging costs is presented in Section 4.

2. T h e s e m i - d y n a m i c solution.

In this section we present a semi-dynamic version D of a static data structure
S, i.e., D supports queries and insertions. Here, we consider the decomposable
searching problems. A problem 7r on a set A is said to be d e c o m p o s a b l e if for
all partitions B, C of A, i.e. A = B u C, B c~ C = ¢~, we have

~(A) = D(~(B), ~(C))

where =(R) denotes the answer for the problem = on the set R [1]. Moreover
[] is computable in 0(1) time.

At any point of time the set of data elements is stored in two data structnres ;
the main data structure M and the a u x i l i a r y data structure I. Let D contain n
data elements of which nl elements are stored in M and the remaining are stored
in I (see Fig. 1). In Fig. 1 each data structure is represented as a triangle. The

status at last
rebuilding

M I

J

present
status

nx = n2+f(n2) nl + f (nl) - n elements
can be inserted into I
before next rebuilding

Fig. 1. Semi-dynamic solution.

ON THE DYNAMIZATION OF DATA STRUCTURES 41

number inside the triangle indicates the number of elements contained in the
data structure. A query on D is handled by posing it individually on M and I,
and then combining the results to give an answer to the query. Insertion of a
new element x is carried out by inserting x into I by merging it into I. The
auxiliary data structure I is allowed to grow to the size given by f (n l) < nl.
After the size of 1 becomes f (n l) , I and M are combined to form a new M
of size nl + f (n l). This process is called the rebuilding. The rebuilding operation
is carried out on-line as soon as I attains the size of f (nl) . Now we have
n 1 < n <_ n~ +f(n~) (see Figure 1). We analyze the performance of this technique
subsequently in this section. We estimate the query, storage and amortized
insertion costs of D in terms of the performance measures of S and the function f.

(a) Query and storage costs:

The cost of a query on D is giveli by

QD(n) < Qo(nl + f(nl)) < Qs(nl)+Qs(f(nl)) .

The first term Qs(n~) corresponds to the cost of answering the query on the
main data structure M, and the second term Qs(f(nl)) corresponds to the cost
of answering the query on the auxiliary data structure 1. The cost of combining
the partial results is O(1). Now, f (n l) < nl, and

Q.(n) < 2Qs(nl) = O(Qs(n)).

Thus, the dynamic version D has the same query complexity as the static
version S. The storage cost of D is given by

SD(n) <- Ss(nl)+ S s (n -n l) .

The first term corresponds to the storage cost of the main data structure M,
and the second term corresponds to the storage cost of the auxiliary data

structure I. We have n - nt < f (n l) <- nl, and hence Ss(n - nl) < Ss(f(nl)) < Ss(nl).
Therefore,

SD(n) <- 2Ss(nl) = O(Ss(n)).

Thus, the dynamic version D has the same storage complexity as the static
version S. This is significant, as many of the existing dynamization methods
result in an increase in one or both of these costs.

(b) Amortized insertion cost:

We compute the amortized insertion cost by computing the total cost involved
in building D and dividing this cost by n. The number of rebuilding operations
carried out in building a D of size n is given in the following lemma.

42 NAGESWARA S. V. RAO, VIJAY K. VAISHNAVI AND S. SITHARAMA IYENGAR

LEMMA 1 : The number of rebuildings, k, carried out in building the data structure
D of size n, n > 1, has the following bounds

(i) k = f2(log(n-f(n)))

(ii) k = O(n/w(n)), where w(n) = f(½1og(n-f(n)) + 1)

(iii) k = O(n/ f (½1og n + 1))/f the nth insertion results in a rebuilding operation.

PROOF: Let T(i) denote the size of M after the ith merging. At the point of
the ith merging we have

T(i) = T (i - 1) + f (T (i - 1))
(2.1)

T (i) - T (i - 1) = f (T (i - 1)).

Nowf(n) < n for n > 1 and we have

T(k) <_ 2 T (k - 1)
T(k) <_ 2kT(0).

Initially we assume that the main data structure contains a single element, i.e.,
T(0) = 1, and hence we have T(k) = nl < 2 k. Thus the lower bound on k is'
given by

(2.2) k _> lognx.

By expanding equation (2.1) we have

T (k) - T (k - 1) = f (T (k - 1))
T (k - 1) - T (k - 2) = f (T (k - 2))

(2.3)
• . , ~ . . .

T(k/2 + 1) - V(k/2) = f (V(k /2))

Summation of the above equations results in the following equation :

T (k) - T(k/2) = f (T(k - 1))+ f (T (k - 2))+. . . + f (T(k/2))

(2.4) T(k) >_ (k/2) f(T(k/2))

k <_ 2T(k) / f (T(k/2)) .

From equation (2.2) we have T(k/2) > _ T(½1ognl)>_½1ognl+l, since
T(0) = 1 and f is a positive integer-valued function. Thus we have,
f(T(k/2)) >_ f((log nff2)+ 1). Using this value in equation (2.4), we get

(2.5) 2nx/ f (½1ognx + 1).

N o w n _> nl and n <- n l + f (n x) <- n l+f (n) . Thus, nl >- n - f (n), and
f (n l) > f (n - f (n)) . Also equation (2.2) reduces to

k = t 2 (l o g (n - f (n))) .

Thus Part (i) is proven. Putting w (n) = f (½ 1 o g (n - f (n)) + l) equation (2.5)

ON THE DYNAMIZATION OF DATA STRUCTURES 43

reduces to

k = O(n/w(n)).

Thus Part (ii) is proven. After the nth insertion we have n~ = n. Using (2.5)
we obtain

k <_ 2n/f(½1og n + 1) = O(n/f(½1og n + 1)).

Hence, Part (iii). •

We now compute the cost Po(n) incurred in constructing a D of size n. This
cost has two components:

(a) The total cost involved in carrying out various rebuilding operations. Each
rebuilding operation involves merging the elements of the main data
structure M and the elements of the auxiliary data structure I to form a
new main data structure.

(b) The total cost of building the auxiliary data structures. Note that the
auxiliary data structures are built as the insertions are carried out.

Consider that rebuilding operation which involves the largest number of
elements. It is the latest rebuilding operation that resulted in M of size n~
(see Figure 1). This operation involves the merging of M of size /12 with I
of size f (n2) , where nl = n2 +f (n2) . The cost of any rebuilding operation carried
out (so far in the construction of D) is less than or equal to Ms(n 2 +f(n2)) =
Ms(n1) < Ms(n). There can be O(n/w(n)) rebuilding operations. Hence, the total
cost involved in the rebuilding operations is O(nMs(n)/w(n)). After the
rebuilding operation, I is initialized to an empty data structure, i.e., contains no
elements. The new elements are progressively merged into the existing data
structure I till it reaches the size given by f (n l) . The cost of any insertion
operation is at most M s (f (n l) - l + l) < M s (f (n)). In the construction of D,
there are O(nf(n)/w(n)) insertions, in view of Lemma 1. Thus the amortized
insertion cost is given by

lo(n) = Po(n)/n

= o(Ms(n)+f(n)Ms(f(n))~- _ = - { Ps(n) . f (h)Ps (f (n))'~

since Ms(n) = Ps(n)/~(n). Note that the first term corresponds to the total cost
incurred in carrying out the rebuilding operations, and the second term to the
total cost incurred in building the required auxiliary data structures. The
discussion of this section proves the following Theorem.

THEOREM 1: Given a static data structuFe S and f (with parameters defined as
in section 1), there exists a semi-dynamic data structure D such that, for n > 1,

44 NAGESWARA S. V. RAO, VIJAY K. VAISHNAVI AND S. SITHARAMA IYENGAR

Qo(n) = O(Qs(n))

So(n) = O(So(n))

to(n)- \ w(n)]

Consider U(lo(n)) = (Ms(n)+f(n)Ms(f(n)))/w(n), the asymptotic upper bound
on Io(n) given in the above theorem. If f (n) = O(n) then U(Io(n)) = O(nMs(n)),
since in such case the order of w(n) is at least O(I). In particular, if
n/c1 < f (n) < n/c2 where cl and Cz are positive integers greater than 1, then we
can directly derive that w(n) = O(log n) and [o(n) = O(nMs(n)/log(n)).

If, on the other hand, f (n) < O(n) O.e.f(n) is an order less than O(n)), then we
have f (n) < n/2, n - f (n) = O(n), since f (n) _> 1, and w(n) = O(f(logn)). Then,

U(Io(n)) = (Ms(n)+ f (n)Ms(f(n)))/f (logn)
= ~9(f(n)Ms(f(n))/f(log n))

when Ms(n) < O(f(n)Ms(f(n))), a function that decreases (in its rate of growth)
as f decreases (note that Ms(n) = f2(n)), or

= ~9(Ms(n)/f(log n))

when Ms(n) > 6)(f(n)Ms(f(n))), a function that increases as f decreases. Clearly,
the minimum (rate of growth) of U(Io(n)) is achieved when the following
condition is satisfied:

(2.6) Ms(n) = O (f (n)Ms(f (n))).

Equivalently, we have

(2.7) Ps(n)/~ (n) = f (n)Ps (f (n))/~ (f (n)).

Intuitively, U(i-o(n)) is composed of two conflicting terms (namely the total
cost of rebuildings and the total construction cost of auxiliary data structures),
and an attempt to reduce one by suitably choosing f will result in the increase
of the other. Thus if a critical function f is chosen such that the cost of
rebuildings is equal to the accumulated cost of constructing the auxiliary data
structure, to within a constant factor, then we have obtained the minimal form
for U(ID(n)). Any deviation of f from this critical form will result in an
increase in one of the two terms of U(l'o(n)). A value for f lower (in terms of
order) than the critical value results in an increased number of rebuildings and
thus the first term dominates. On the other hand a value for f larger (in terms

ON THE DYNAMIZATION OF DATA STRUCTURES 45

of order) than the critical value results in high cost for building the auxiliary
data structures, and thus the second term dominates Iv(n).

In general, the f that satisfies the condition in (2.7) may or may not have a
closed form expression. For the case where such an f has a closed form
expression, the amortized insertion cost is given by

Io(n) = O(Ps(n)/w(n)~(n)) = O(Ms(n)/w(n)).

For the corresponding case where the nth insertion initiates a rebuilding
operation, we can write

/-D(n) = O(Ms(n)/f (½1og n)).

In section 4 we discuss a class of data structures that have linear merging
times. This class includes Voronoi diagrams, k-d trees, quad trees, multiple
attribute trees, balanced binary trees, etc. For this class f (n) = x/n, satisfies the
condition for the minimality given in (2.7). In the next section, we present a
dynamic solution that supports insertions and deletions.

status at last
rebuilding

I M J

.J

present
status

Fig. 2. Dynamic solution.

3. Tim dynamic solution.

The dynamic solution that supports insertions and deletions is obtained by
extending the concepts used in the semi-dynamic solution described in Section 2.
The composite data structure D now contains a second auxiliary data structure J
of the same type as S. When an element x is to be deleted, it is inserted into J
by merging x into J. A query on D is processed by posing it individually on

46 N A G E S W A R A S. V. R A O , v I J A Y K. VAISHNAVI A N D S. S I T H A R A M A I Y E N G A R

M, I, and J and then combining the partial answers. We restrict our treatment
to the class of deletion-decomposable problems. A problem n on a set A is said
to be deletion-decomposable if there exists a function [] such that

n(A) = • (u (A ~ B),u(B))

for any set B, A c~ B = q~, where r~(R) denotes the answer to rc on the set R.
Furthermore [] is computable in a time less than or equal to the time taken
for the computation of r~(A w B) or re(B), whichever is larger. Many problems
belonging to the classes of membership, counting, and enumeration problems
satisfy this property. Table t shows the results for computing [] for a
membership problem. In this case the answer rc(A) is either "yes" or "no". As an
example for an enumeration problem consider the range search problem. In this
case rt(A) is a subset of A containing the elements (of A) that satisfy the
range condition specified by re. We have re(A) = rc(A w B)-Tt(B). The compu-
tation time of this set intersection is at most equal to the time taken for
computing rc(A ~ B).

Table 1. The computations of [] for membership problem.

x(A u B) ~(B) ~(A)

yes yes n o
yes n o yes
n o n o n o
n o yes does n o t ar ise

The rebuilding is carried out whenever either I or J reaches the size f(nl),
where nl is the size of M (see Figure 2). A rebuilding operation is carried out
(on-line) as soon as this condition is reached. The rebuilding operation is carried
out in two phases: (a) the set of elements contained in either M or I and not
contained in J are computed, (b) the main data structure is constructed by
preprocessing the resultant set of elements obtained in phase (a). However, in the
cases when J is empty, M and I are merged as in the semi-dynamic case. This
condition can be checked easily by maintaining a flag variable. Subsequently
in this section we analyze the query, storage and amortized update costs for the
dynamic version D.

(a) Query and storage costs:

The cost of processing a query on D is given by

QD(n) <-- Qs(nl) + Qs(f (nl)) + Qs(f (nl)) + Qs(nl).

ON THE DYNAMIZATION OF DATA STRUCTURES 47

The first three terms correspond to answering the query on M, I, and J
respectively. The fourth term corresponds to computing the final answer from the
partial answers. Now we have

QD(n) < 4Qs(n) = O(Qs(n)).

The storage cost of D is given by

SD(n) <- Ss(nl) +Ss(f(nl)) + Ss (f (nl)).

The first, second and third terms correspond to the storage costs of M, I and J
respectively. Now,

So(n) < 3Ss(n) = O(Ss(n)).

Thus the dynamic version D has the same query and storage costs as those
of the static structure S. In the remainder of this section, we estimate the
amortized insertion and deletion costs for the dynamic version D.

(b) Amortized insertion and deletion costs:

Consider the latest point of merging in the construction of D (Figure 2). At
this point the present M, of size nl < n2 +f(n2), is built from the old M (of
size nz) and the corresponding I and J ; each of I and d contains at most
f(n2) elements and at least one of them contains f (nz) elements. We compute
the set of elements contained either in M or in ! but not in J as follows: we
construct a balanced binary tree of the elements of J. The time complexity of
this construction is O(f(n)log(f(n))) . We compute the union of elements of M
and I in a linked list L. Time complexity of constructing L is O(nl +f (n l)) = O(n).
We traverse L element by element checking for the membership of current
element in the tree containing elements of J. If the element is present in the
tree then it is removed from L. The cost of checking for each element is
O(log(f(n))) and the cost of deletion is O(1) (by keeping a pointer to the
previously examined element in the list). Hence the cost of computing the set of
elements contained either in M or in I and not in d is O(n log(f (n))). The cost
of building a new M for this data structure is given by Ps(n). Note that
nl = nz +f(n2) is an upper bound on the size of new M.

The amortized insertion cost is obtained by computing PD(n), the cost of
constructing D by n consecutive insertions. In this case, at each rebuilding
operation the J is empty, and hence the rebuilding operation consists of direct
merging. Hence, this amortized cost is the same as that computed in section 2.
Thus the amortized insertion cost is given by

Io(n) = 0 (Ms(n) + f (n)Ms(f (n)) ~
\)

48 NAGESWARA S. V. RAO, VIJAY K. VAISHNAVI AND S. SITHARAMA IYENGAR

We now compute the amortized deletion cost. First, we compute the total
worst-case construction cost Po(n) incurred in carrying out a sequence of n
update - either an insertion or a deletion - operations. This cost, again, is
constituted by two factors: (a) the total cost involved in performing the
rebuilding operations, and (b) the total cost involved in constructing the various
I and J data structures. The worst-case sequence of n operations satisfies the
properties stated in the following Lemma.

LEMMA 2: The number of rebuildings involved in the worst-case sequence is
O(n/w(n)).

PROOF. A sequence of n operations must contain at least n/2 insertions, since
the data structure is initially empty. The amortized insertion (deletion) cost has
two components : (a) the cost corresponding to insertion into I (J). (b) The cost
corresponding to the merging (preprocessing) operation at the time of rebuilding.
The amortized insertion cost involves the "averaged" cost incurred in merging
the element into the auxiliary data structure and the "averaged" cost involved
in rebuilding operations carried out using merging. The amortized deletion cost
involves the "averaged" cost incurred in merging the element into the auxiliary
data structure and the "averaged" cost involved in rebuilding operations carried
out using preprocessing. Since the preprocessing cost is at least as much as
merging cost, the amortized insertion cost iD(n) is at most as much as the
amortized deletion cost Do(n). Here, we have two cases: Case (i): When
Io(n) = Do(n), the worst-case sequence is clearly a sequence of n insertions. Thus
the claim is true by (ii) of Lemma 1. Case (ii): Consider the case i-o(n) < Do(n).
We now show that the cost of worst-case sequence is no more than the cost
of a sequence of n insertions followed by a sequence of n deletions.

First, for the worst-case sequence, we prove that the sequence of operations, in
between any two consecutive rebuildings, entirely consists of either insertions or
deletions. Let i be the number of elements in D immediately after the kth
rebuilding. The (k + 1)th rebuilding takes place after the size of I or J reaches
f(i). The cost of building either I or J is ~c-'_)lMs(j)= O(~J~Ms(j)). The
complexity of constructing both of them is also the same. By the same argument,
the cost of constructing one (either I or J) fully and the other either fully or
partially has the same cost of O(~c-'_)iMs(j)). Thus for maximizing the total
cost only one should be constructed in between any two rebuildings.

We now show that the first n/2 operations must be insertions. Let ID(i) and
DD(i) denote the insertion and deletion costs, respectively when D contains i
elements. We have Io(i) < lv(i + 1) and Do(i) < Do(i + 1). The cost of the sequence
of n/2 insertions followed by n/2 deletions is given by (assume n to be even for
discussion sake)

C1 = Io(0)+Io(1)+"" + lo(n/2- 1)+ Do(n/2)+ Do(n/2-1)+ ... +Do(l) .

ON THE DYNAMIZATION OF DATA STRUCTURES 49

Now consider the case in which some deletions take place during the first n/2
operations. For the worst-case sequence the deletions must occur in a complete
sequence in between two consecutive rebuildings. Let the sequence of f (j)
deletions take place after M is freshly built as a result of j insertions. Then the
total cost corresponding to this sequence of n operations is given by

C2 = Io (0)+"" +Io(j - - 1) + D o (j) + D D (j - 1) + ' " + D D (j - - f (j) + 1)

+ lo(j - - f (j)) +"" + ID(n/2 - - f (j) -- 1) + DD(n/2 - - f (j)) +"" + Do(1)

= Io(O) +"" + 2[Io(j - - f (j)) +' '" + lo(j -- 1)] + ID(j) +' '" + Io(n/2 - f (j) - 1)

+ Do(n~2 - f (j)) +"" + 2[Do(j) +"" + DD(j - - f (j) + 1)] +--- + Do(1).

Thus, C1 > C2, because both Io(n) and Do(n) are non-decreasing functions.
Thus, in the worst-case sequence the first n/2 operations must be insertions.
However, there may be more than n/2 such insertions in a worst-case sequence.

Let first j, n/2 < j < n, operations be insertions in a worst-case sequence. By
applying the same method as above we can show that the next n - j operations
must be deletions. Thus a worst-case sequence contains j, n/2 < j < n, insertions
followed by n - j deletions. Now the cost of such a sequence is at most equal
to the cost of a sequence consisting of n insertions followed by n deletions. The
number of rebuildings in such a sequence is O(n/w(n)+ n/w(n)) = O(n/w(n)). •

The cost of each rebuilding operation is at most Ps(n)+O(nlog(f(n))) , and
the number of such rebuilding operations is as given in Lemma 2. The cost of
constructing an auxiliary data structure is the same as in the semi-dynamic case
because the size of an auxiliary data structure is at most f(n), and only one
(either I or J) is constructed in between two rebuildings. Thus the amortized
deletion cost is given by

Do(n) = 0 (Ps(n) + nlog(f (n)) . f (n)Ps(f (n))" ~
\ w(.) *

The above discussion leads to the following Theorem.

THEOREM 2: Given a static data structure S and f (with parameters as defined
in section 1), there exists a dynamic data structure D such that, for n > 1

Qu(n) = O(Qs(n))

So(n) = O(Ss(n))

/'D(n) = 0 (M s (n) + f (n) M s (f (n)) ~
\ w(n)]

50 NAGESWARA S. V. RAO, VIJAY K. VAISHNAVI AND S. StTHARAMA IYENGAR

Do(n) = O (es(n) +_n log(f (n)) + f(n)Ms(f(n))~
\ w(,) w(n) /"

As in the semi-dynamic case, if f is chosen such that f(n) takes values
near n then the second terms of g(Io(n))= (Ms(n)+f(n)Ms(f(n)))/w(n) and
g(Dv(n) = (Ps(n)+nlog(f(n)))/w(n)+f(n)Ms(f(n))/w(n), (asymptotic upper
bounds for lo(n) and Dr(n), respectively) dominate. Similarly, a slower growing f
makes the first term dominate. It is clear from Theorem 2 that different functional
forms o f f minimize U(i~(n)) and U(DD(n)). The condition for the minimal form
for U(i-o(n)) is the same as in condition (2.6) or (2.7). For such an f we have

[o(n) = O(Ps(n)/w(n)~(n)) = O(Ms(n)/w(n)).

This leads to the following complexities

(Ps(n)+nlog f (n)'~
(3.1) Do(n) = 0 \- ~(n) /

(3.2) i-o(n) = O(Ms(n)/w(n)).

Consider the cost of Do(n). We have two cases.

Case (a): Ps(n) >- O(nlogn).

We have

DD(n) = o (P s(n) + f(n)Ms(f(n))~
\ w(,) w(n))"

Let

(Ps(n) + f(n)Ms(f(n))']
U(DD(n)) = \ win) w(n)]

so that DD(n) = O(U(DD(n))). The minimal form for U(DD(n)) is obtained when

(3.3) Ps(n) = O(f(n)Ms(f(n)))

using arguments similar to those.used in showing (2.6). Equivalently we have

(3.4) Ps(n) = O(f (n)Ps(f (n))/~(f (n))).

If the above condition is satisfied then

(3.5) Do(n) = O(Ps(n)/w(n) = ID(n).

ON THE DYNAMIZATION OF DATA STRUCTURES

Case (b): Ps(n) < O(nlogn).

We have

Let

(n log n + f (n)Ms(f (n)))
~o(n) = Ok w(n) w(n) /"

51

(n log n f(n)Ms(f(n))~
u(~o(n)) = \ w(n) + w(n) /

so that Do(n)= O(U(Do(n))). It can be easily seen that the minimal form of
U(Do(n)) is given by the condition

(3.6) n log n = 6)(f(n)Ms(J'(n)))

or equivalently, we have

(3.7) n log n = O(f(n)Ps(f(n))/~(f(n))).

If the above condition is satisfied then

bo(n) = O(n log n/w(n)) = To(n).

We denote the choice of f satisfying (2.6) by fl- We also denote the f that
satisfies (3.3) or (3.6) by f2. In general f l and f2 are different and it is easy
to see that fl(n)= O(f2(n)) since fl(n)= O(Ms(n)/Ms(f(n))) by (2.6) and
f2(n) = (9(Ps(n)/Ms(f(n))) by (3.3). Also, if f is chosen as f l then the derived
asymptotic upper bound for]-/~(n) is the same or better than if it is chosen as)'2-
Conversely, if f is chosen as f2 then the derived asymptotic upper bound for
/SD(n) is the same or better than if it is chosen as f~. Thus, we suggest that f~
be chosen if insertions are more frequent than deletions, and f2 be chosen
otherwise.

4. Applications.

For a given static data structure S, and a given f , we can obtain the
amortized deletion costs by applying Theorem 2. In this section, we discuss a
special class of data structures that are naturally suited for the technique pre-
sented in this paper. This class is characterized by the property that two data
structures can be merged in linear time. The examples are Voronoi diagrams,
k-d trees, quadtrees, multiple attribute tree, balanced binary trees, etc. which are
applied in various disciplines such as computational geometry, physical database
organization, image processing, multidimensional searching, etc. The Voronoi

52 NAGESWARA S. V. RAO, VIJAY K. VAISHNAVI AND S. SITHARAMA IYENGAR

diagrams are extensively used in computational geometry for solving various
proximity problems [3, 4, 7]. The quadtrees are used for two-dimensional image
processing applications. The k-d trees and multiple attribute trees are used for
various applications such as complete match, partial match, and range queries
for multidimensional data [5]. Specifically, the multiple attribute trees are used
for physical database organization [5]. All these data structures share the
property that Ms(n)= O(n). Now the condition (2.6) is used as follows to
obtain the minimal form for f (n)

(4.1) M(n) = 6)(f(n)M(f(n)))

f (n) =

Using (3.1) and (3.2), we have

(4.2)

(4.3)

Io(n) = O(n/v/log n)

Do(n) = O((n~(n) + n log n)/x//log n).

Now consider the Voronoi diagrams. We have ¢(n) = O(logn), SM(n) = O(n),
Ps(n) = O(n log n).

Using (4.2) and (4.3) we obtain

Io(n) = O(n/x//log n)

Do(n) = O(nx/log n).

Considering the condition (3.4) we have n logn = f (n) f (n) or equivalently
f (n) = x/(nlogn).

Using (3.5) we obtain

Do(n) = lo(n) = O(n log n / f (½1og n + 1)) = O(nx/log n/,v/log log n).

Notice that the complexity of amortized deletion cost is less in the latter case.
This reduction results in an increase in the amortized insertion cost.

Similar results are presented in [2] for the Voronoi diagrams and related data
structures used for geometric applications. In that paper, for Voronoi diagrams,
the query cost is the same as the cost obtained here. Better update costs are
realized by using additional amount of storage. Our technique presented in
sections 2 and 3 is more generalized than that of [2]. The latter is restricted to
data structures with linear merging costs whereas our method is applicable to a
general data structure.

We note that the closed form expression for f (n) that satisfies the condition
in (2.7) or (3.3) or (3.6) is not guaranteed in a general case. In such a case,
an expression for f (n) that makes the two terms of Io(n) and/or /)o(n) as
close as possible, can be used as a good approximation. Furthermore, the bounds

ON THE DYNAMIZATION OF DATA STRUCTURES 53

in Theorems 1 and 2 are general. It may be possible to obtain tighter bounds in
a specific given case.

5. Conclusions.

The technique presented in this paper can be modified and extended in many
ways. First, the complexity estimates presented here are gross upper bounds.
Evaluating tighter upper bounds and general lower bounds will provide more
insight into the dynamization technique. Second, it would be interesting to see i f f
that gives rise to minimal or close to minimal form update costs has a closed
form expression in a general case. We feel that some more classes of data
structure (such as that presented in section 4) can be found wherein the f will
have closed form expressions. Third, in our approach the auxiliary data
structures are of the same type as the main data structures. The technique
presented in this paper can be generalized by allowing the auxiliary data
structures to be of any general type. It is interesting to see if some specific choices
for the auxiliary data structures provide some useful performance trade-offs or
improvements.

Acknowledgements.

We deeply appreciate the thorough and careful reviews by the anonymous
referees, which greatly improved the clarity and quality of the presentation in
the paper.

R E F E R E N C E S

1. J. L. Bentley and J. B. Saxe, Decomposable searching problems I: Static-to-dynamic trans-
formations, J. of Algorithms 1, 1980, pp. 571-577.

2. I. G. Gowda and D. G. Kirkpatrick, Exploiting linear meroin O and extra storage in the
maintenance of fully dynamic geometric data structures, Proc. 19th Annual Allerton Conf. on
Communication, Control and Computing, 1980, pp. 1-10.

3. D. T. Lee and F. P. Preparata, Computational geometry - a survey, IEEE Trans. Computers
C-33 (12), Dec. 1985, pp. 1072-1101.

4. K. Mehlhorn, Data Structures and Algorithms 3: Multi-dimensional Searching and Computational
Geometry, Springer-Verlag, 1984.

5. S. V. N. Rag, S. S. lyengar and C. E. V. Madhavan, A comparative study of multiple attribute
tree and inverted file structures for large bibliographic files, Information Process. and Mgmt. 21,
(5), 1985, pp. 433-442.

6. M. H. Overmars, The Design of Dynamic Data Structures, Lecture Notes in Computer Science
No. 156, Springer-Verlag, 1984.

7. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,
1985.

