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Data and Time Abstraction Techniques for Analyzing 
Multilevel Concurrent Systems 

TOSHIMI MINOURA, MEMBER, IEEE, AND S .  SITHARAMA IYENGAR 

Abstract-Data abstraction has long been recognized as an important 
tool for designing and analyzing a complex software system. In a con- 
current system an execution time of an operation is as important as its 
functional effect. In this paper we argue that the design and analysis 
of a concurrent system can be made simpler and more intuitive if ex- 
ecution times of abstract operations are arbitrarily but systematically 
defined. This technique (time abstraction) is complementary to data ab- 
straction and is more effective when used in combination with data 
abstraction. As examples, we analyze a bounded-buffer monitor and a 
multilevel concurrency control scheme of a database system by using 
data and time abstraction. 

Index Terms-Access path, bounded buffer, B-tree, data abstrac- 
tion, multilevel concurrency control, multilevel concurrent system, 
phantom problem, time abstraction. 

I. INTRODUCTION 
BSTRACTION is probably one of the most versatile A and powerful mechanisms employed by human beings 

coping with complex phenomena. In a sense, abstraction 
is to look at things in a way we like them to be inasmuch 
as they behave consistently within our concern. In the 
programming field, data abstraction has long been rec- 
ognized as an important means to make the design, im- 
plementation and analysis of a complex software system 
manageable. The first theoretical basis of data abstraction 
was presented in [22]  within the context of correct pro- 
gram translation. Later, Hoare discussed the problem 
more explicitly and more precisely [ 1 11. Since then work 
on data abstraction for sequential programs has been stud- 
ied in detail [8]-[10], [181, [191, 1301. 

However, as stated in [18], most of the techniques de- 
veloped for sequential programs cannot be directly ap- 
plied to concurrent systems. In the case of a sequential 
program, we can simply consider that abstract operations 
are executed in the order in which collections of concrete 
operations (e.g., subroutines), each of which implements 
an abstract operation, are executed. In a concurrent sys- 
tem, collections of concrete operations implementing dif- 
ferent abstract operations may be executed concurrently. 
Thus, it may not be simple to decide the execution order 
of these abstract operations. However, we show that it is 
often possible to specify explicitly the execution times for 
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abstract operations and still to maintain a consistent view. 
We refer to this technique as time abstraction. The main 
objective of this paper is to emphasize the usefulness of 
time abstraction techniques, whose importance has not 
been fully recognized. 

An important basis of time abstraction is the concept of 
atomicity [5], [21]. A collection of operations that are ex- 
ecuted over a certain period of time, is atomic, if the net 
effects of those operations are as if they were executed 
instantaneously at some point in time. Such a set of op- 
erations is usually called a transaction. In this paper we 
proceed further to assign an artificial execution time to an 
abstract operation represented by a transaction. Note that 
for a concurrent system, the execution time of an opera- 
tion is as important as how it transforms data. The exe- 
cution times of abstract operations must be so selected 
that the analysis of the resultant execution becomes easy. 

Once transactions implementing abstract operations at 
some level of a multilevel concurrent system are made 
atomic, those abstract operations can be assumed to take 
place instantaneously when they are invoked from higher 
levels. This fact can make the design, implementation, 
and analysis of a complex concurrent software system sig- 
nificantly easier. Further, an execution of a multilevel 
concurrent system can be controlled at each level; abstract 
operations at each level can be synchronized based on their 
hypothetical execution times. 

The first step taken in designing a complex software 
system is often to conceive an abstract system whose ex- 
ecutions satisfy the users’ requirements. This step is es- 
pecially important for a concurrent software system be- 
cause such an abstract system may be the sole criterion 
for correct system implementation. Abstract operations 
that perform well-defined functions instantaneously make 
the specification of a system simpler. 

Data abstraction in a concurrent system is addressed in 
[13], [26]  by using other techniques, which are either 
more indirect or more complex than the one discussed in 
this paper. A closely related subject, i.e., control (pro- 
cedural) abstraction, is discussed in [14], [17] as “re- 
duction. ” Recent investigations on multilayered transac- 
tion processing systems can be found in [3], [24], [25]. 

In Section 11, we present a model of a multilevel con- 
current system as a framework for our methodology. In 
Section 111, we analyze a bounded-buffer monitor by using 
a simple data and time abstraction technique. Section IV 
addresses the multilevel concurrency control problem for 
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a database system; the example is intended to show the 
usefulness of time abstraction when used in conjunction 
with data abstraction. Section V concludes this paper. 

11. MULTILEVEL CONCURRENT SYSTEM MODEL 
In this section we describe a model of a multilevel con- 

current system.' At each level of a multilevel system, a 
set of (abstract) operations that operate on (abstract) data 
are supported. Abstract data at one level, however, may 
be imaginary entities that are represented by lower level 
data, which again may be abstract data. When the data at 
level L is represented by the data at level L ' ,  operations 
at level L must be implemented by the operations at level 
L' .  

We characterize a level of a multilevel system by a tri- 
ple (D, so, o) ,  where D is the set of (abstract) objects 
supported at this level, so specifies the initial values of the 
objects in D, and 0 is the set of operations provided at 
this level. An object contains a value. A system state is a 
function that designates the values of the objects in D. 
Associated with each operation o is a partial function f ,  : S 
x Z, -+ S x U,, where S is the set of all possible system 
states, Z, the set of all possible input lists for 0, and U, 
the set of all possible output lists produced by 0. The fact 
f, (s ,  io) = ( s f  , U,) means that if operation o occurs with 
system state s and with list i ,  of input values, then the 
new system state will be s f ,  and list U ,  of output values 
will be produced. We assume that a finite description of 
f, is provided for each operation 0, and that given s and 
io, s f  and U, can be obtained as ( s f ,  U , )  = f , ( s ,  i o ) .  The 
description off, may be informal. 

We represent a basic execution (6-execution) at level 
( D ,  so, 0) by e = (OZ, t ,  i ,  U ) ,  where OZ is the set of 
operation instances in e ,  t : OI -+ R defines the occurrence 
times of the operation instances in OZ, i ,  which is called 
the system input-list, is the list of input values provided 
for e ,  and U ,  which is called the system output-list, is the 
list of output values produced by e .  We denote by op ( a )  
the operation one of whose instances is a .  If a is in OZ, 
o p ( a )  is in 0. Each operation instance a is assumed to 
occur instantaneously at time t ( a ) .  (A justification of this 
assumption is the main theme of this paper.) We assume 
that the number of input values consumed and the number 
of output values produced by each instance of an opera- 
tion are uniquely defined by the system state when the 
operation is activated and the input values provided for it. 
The system input- and output-lists, i and U ,  are obtained 
by concatenating the input and output lists, respectively, 
of the operation instances according to their execution or- 
der. Therefore, i uniquely designates the input values pro- 
vided for each operation instance, and U the output values 
generated by it. 

Consider a particular execution that is taking place, and 
let e = (OZ, t ,  i, U )  be the current b-execution, which is 
the b-execution that occurred so far. Further, let s be the 
current system state, which is the system state produced 

'The model in this section extends those in [3], [23], [24] 

by the last operation instance in OZ or is so if no operation 
instances have occurred yet. Assume that operation in- 
stance a occurs at this point, which is time tu, with its 
input list i,. Then a will update the system state from s to 
s f  and produce the list U ,  of output values as specified by 
( s f ,  U , )  = fop( , )  (s, i,). The current b-execution will be- 
come e f  = ( OZ U { a ), t U { ( a ,  t, ) }, i @ i , ,  U @ U, ), 
where "@" is the list-concatenation operator. 

It is often beneficial to treat a group of operation in- 
stances (e.g., the set of operation instances generated by 
a procedure) as a unit. An execution in which operation 
instances are grouped will be called a molecular execution 
(m-execution) . 

If procedures are executed one at a time, they can be 
considered as (macro) operations. An m-execution based 
on procedure activations can be defined like a b-execution 
based on operation instances. The fact that if a procedure 
p is activated with a system state s and an input list i p ,  it 
will update the system state to s f  and produce the output 
list up can be designated as ( s ' ,  u p )  = & ( s ,  ip),  wheref, 
is a function specifying the effect of p .  We represent a 
serial m-execution of a set P of procedures as esm = (PI, 
t ,  i, U ) ,  where PI is a set of activations of the procedures 
in P, t specifies the occurrence time of each procedure 
activation in PI, i designates the system input-list ob- 
tained by concatenating the input lists for the procedure 
activations in PI, and U the system output-list obtained 
from the output lists produced by the procedure activa- 
tions in PI. 

We now want to allow concurrent executions of the 
procedures. Since allowing indiscriminate interleaving of 
the operation instances generated by different procedures 
is likely to lead to difficulties in designing such proce- 
dures, we assume that the set of operation instances gen- 
erated by an activation of each procedure can be parti- 
tioned into transactions, each of which is atomic. A 
transaction consisting of a set of operation instances is 
atomic if the net effects of those operation instances are 
as if they occur instantaneously at some point in time. 
Transactions can be executed concurrently as long as their 
effects are atomic. The operation instances generated by 
an activation of one procedure may belong to one trans- 
action, or they may be divided into multiple transactions. 

We represent a concurrent m-execution of a set P of 
procedures as erm = (PI, T, t ,  i ,  U ) ,  where PI is the set 
of procedure activations, T the set of the transactions cre- 
ated by the procedure activations in PI, t specifies the ef- 
fective occurrence time of each transaction in T, i desig- 
nates the system input-list obtained by concatenating the 
input lists for the procedure activations in PI, and U the 
system output-list obtained from the output lists produced 
by the procedure activations in PI. Note that each trans- 
action T, in Tis supposed to occur instantaneously at time 
t ( Ti ). The effective occurrence time of each transaction 
can be defined in different ways according to the concur- 
rency control scheme applied to the transactions. When 
two-phase locking [5] is used, the lock-point [4], [27] of 
each transaction can be used as its effective occurrence 
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time. When timestamping [28] is used, the timestamp 
value of a transaction can be used as its effective occur- 
rence time. 

In a multilevel system, operations at each level, except 
for the lowest level, are implemented by the procedures 
that use operations of lower levels. This mechanism is 
well-understood for sequential programs [ 1 11. Our aim is 
to introduce concurrency in the executions of the proce- 
dures that implement higher level operations. The key 
feature of our strategy is to let the effect of each higher 
level operation take place instantaneously even though the 
procedure that implements the operation may be executed 
concurrently with other procedures. Therefore a program- 
mer using operations at each level can assume that the 
effects of the operations at that level are atomic. 

We now state our methodology for the design and anal- 
ysis of a multilevel concurrent system. Fig. I shows our 
methodology graphically. Assume that level L = ( D ,  so, 
0 )  must be supported by its immediate lower level L‘ = 
(D’, s& 0’ ). 

A I )  Data and Operation Abstraction: We let each 
(meaningful) system state s of level L be represented by 
a system state s’ of level L’ as specified by s = dabs ( s’  ), 
where dabs is a data abstraction finction. In particular, 
it must be that so = dabs ( s h ) .  Further, the following con- 
dition must hold for each operation o in 0 implemented 
by a procedure prog (0) using operations in 0’. If for 
states s1 at level L and si at level L’ sI = d a b s ( s ; ) , f , ( s l ,  
i o )  = (s2, U , )  andf,,,(,,(s;, io)  = (si, U ; ) ,  then it must 
be that s2 = dubs(&) and U ,  = U:. When an operation 
instance a of an operation o at level L is requested to occur 
with input list io, p r o g ( 0 )  as its parameter list, and it is 
executed generating operation instances of level L’ . When 
prog (0) terminates, it produces the output list U,, which 
can be regarded as produced by a itself. Procedures that 
are executed on behalf of the operations at level L are 
called foreground procedures. Further, procedures that 
consume empty input lists and produce empty output lists 
and that do not affect the abstract system state at level L 
may be executed. Such procedures will be called back- 
ground procedures. Garbage collection and data-structure 
reorganization, for example, can be performed by back- 
ground procedures. If a background procedure updates the 
system state at level L‘ from si to s;, then it must be that 
dabs(s;)  = dabs($;).  Now, a b-execution e = (01, t ,  i ,  
U )  at level L can be supported by serial m-execution e:, 
= (PZF U PIB, t’, i ,  U )  at level L’ ,  where PZF is the set 
of foreground-procedure activations caused by the oper- 
ation instances in 01, PIB is the set of activations of the 
background procedures, and t’ specifies the occurrence 
times of the procedure activations in PIF U PIB. If a 
foreground-procedure activation p in PIF occurs respond- 
ing to an operation instance a in 01, t ( a )  = t’ ( p  ). 

A2) Parallelization with Time Abstraction: We now 
introduce concurrency into the executions of the proce- 
dures at level L‘. A concurrent m-execution is designated 
as e:,,, = (PIF U PIB, TP U TA, t” ,  i ,  U ) .  Operation 
instances at level L’ must be partitionable into the set TP 

Level L f 
\ doto operation obstroction 

e cm 
4,  
e sm + - - - - - _ _  + ’ Level L’ 

porallelizoiion ond propcflon 
time omtroction 4 

e’ 

Fig. 1. Multilevel concurrent system 

U TA of transactions, where TP is the set of principal 
transactions, and TA the set of auxiliary transactions. 
Function t” designates the effective occurrence time of 
each transaction in TP U TA. For each operation instance 
a at level L,  there must exist exactly one principal trans- 
action T, in TP. Assume that for states sl at level L and 
si at level L’, s1 = dabs(s ; ) ,  that a transforms si to s2, 

and that T, transforms si to si. It then must be that s2 = 
dabs (si). If an auxiliary transaction transforms the sys- 
tem state at level L’ from si to si, then it must be that 
dabs (si ) = dabs (si). An operation instance a associated 
with a principal transaction T, should be regarded to take 
place when T, is supposed to occur instantaneously; i.e., 
t ( a )  = t ” ( T , ) .  

A3) Projection: Responding to a b-execution e = (01, 
t ,  i ,  U )  a ,level L ,  b-execution e‘ = (OI’,  t“‘, i’,  U ’ )  is 
eventually generated at level L‘, since a concurrent m- 
execution at level L’ is performed by operation instances 
at level L’ . 

Although b-execution e at level L is realized by b-exe- 
cution e’ at level L’, t is defined by t”’ , and not the other 
way around; actually, t“‘ defines t“, and t‘‘ defines t. Also, 
note that i’ is defined from i and U ’ ,  and that U is defined 
from U’. This mechanism can be best compared to the 
parameter binding mechanism used by Prolog programs. 

111. BOUNDED-BUFFER 
In this section we analyze a simple concurrent program 

following the methodology described in Section 11. We 
hope that our analysis clarifies the way time abstraction 
can be used in combination with data abstraction. 

Fig. 2 shows a bounded-buffer mechanism designed as 
a monitor [12],  1131, 1261. In Fig. 2 ,  symbol “ + Y ”  de- 
notes the modulo N addition operator, and symbol “@” 
the concatenation operator. We define the data abstraction 
function dabs specifying the state of abstract data struc- 
ture buffer as follows: 

dabs( COUNT, B UFFER, HEAD, TAIL) = 
if COUNT = 0 then empty 
else BUFFER[HEAD] @ BUFFER[HEAD+l] 
@ . . . @ BUFFERITAIL]. 

The bounded-buffer monitor supports two kinds of ab- 
stract operations (append(x)  and remove (x ) )  on bufer. 
Let us denote the number of messages in buffer by 
1 buffer 1 .  When an abstract operation append ( x )  is is- 
sued, message x is appended to bufer as its last element 
if )buffer/ < N .  If ]buffer) = N ,  the operation ap- 
pend(x)  is suspended until the condition I buffer I < N 
becomes true. When an abstract operation remove(x) is 
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ROUNDED-BUFFER: monitor 

hq!lIl 

COUNT. 0 .. N; 
I1UFFER: anay[0..N-l] of  messages; 
HEAD: 0 .. N-1; 
TAIL. 0 ._ N-1; 
NONFULL: condition; 
NONEMPTY: condition; 

Ipiocsdure APPEND(x: message) 

{buffer = b. x = m} 

{buffer = b, x = m} 

{buffer = b, x = m) 

TAlL  : = T A I L  + I ;  
BUFFERITAIL]Ns x; 
NONEMFTYsignal; 
return 

{buffer = b @ m} 

h q i n  

o,, ,: if COUNT = N then NONFULL.walt; 

...................... 

op2 COUNT:= C O U N T +  I ;  

end; 

procedure REMOVE(resu1t x: message) 
begin 

{buffer = b} 

{buffer = b} 

{buffer = m @ b} 

r , ~ ;  if COUNT = 0 then NONEMPTY.wait; 

...................... 

nn2 COUNT:=COUNT -1; 
x := BUFFERIHEAD]; 
HEAD := HEAD + I ;  
NONFULL.signal;N 
return; 

{ x  = rn, buffer = b} 
end; 

COUNT .= 0 ,  HEAD := 0; TAIL := N-l 

end 

Fig. 2. Bounded-buffer monitor. 

issued, the message at the head of bufer  is returned as x .  
If such a message does not exist in bufer ,  the operation 
remove(x )  is blocked until such a message becomes 
available. 

A monitor consists of blocks of statements each of 
which is executed indivisibly, and hence an execution of 
each block can be regarded as a transaction. In Fig. 2, the 
effect of each block of statements is indicated by the pre-  
and postconditions attached to the block. The predicates 
in each { } show the state of the abstract data (pri- 
marily, bufer ) .  

This bounded-buffer monitor can be modeled as level 
L' and ( D ' ,  s& Of) ,  where D' = { COUNT, BUFFER, 
HEAD, TAIL } and { s;)( COUNT ) = 0 ,  s;l (HEAD ) = 0 ,  
s;l( TAIL) = N - 1 }. We do not specify 0' explicitly 
since it is too detailed. A concurrent m-execution at level 
L' can be specified as ekm = (PIF ,  TP U TA, t " ,  i ,  U ) ,  

where PIF is a set of activations of procedures AP- 
P E N D ( x )  and R E M O V E ( x ) ,  TP is the set of principal 
transactions caused by the executions of block up, of AP- 
P E N D ( x )  and block rm2 of REMOVE(x) ,  and TA is the 
set of auxiliary transactions caused by the executions of 
block a p ,  of A P P E N D ( x )  and block rml of REMOVE(x) .  
The occurrence time of each transaction in TP U TA is 
specified by t" . Although each block of the monitor is not 
executed instantaneously, the execution start time of a 
block, for example, can be used as the occurrence time of 
the transaction representing the execution of the block. 
This is acceptable since each block is executed indivisi- 

bly. The system input-list i consists of the input parame- 
ters for the A P P E N D ( x )  operations, and the system out- 
put-list U consists of the values returned by the 
REMOVE ( x )  operations. 

Let us now define an abstract execution e over level L 
= ( D ,  so 0) ,  where D = {buffer}, {so(buffer) = 
empty}, and 0 = { u p p e n d ( x ) ,  r e m o v e ( x ) } ,  as follows. 

B1) An activation of A P P E N D ( x )  with x = m causes 
an execution of block up,. Assume that an abstract oper- 
ation u p p e n d ( x )  with x = m occurs when up2 is executed. 

B2) An activation of REMOVE(x)  causes an execution 
of block rm,. Assume that an abstract operation re- 
m o v e ( x )  occurs when rm2 is executed. 

Then e correctly models e' by data and time abstraction 
because the following conditions hold. 

C l )  The condition so = dabs(s;l) is satisfied; i.e., when 
the monitor is initialized, s;l defines an empty buffer. Note 
that s ; l (COUNT)  = 0. 

C2) It is easy to confirm that A P P E N D ( x )  correctly 
implements append ( x )  under the interpretation given as 
rule B1. Assume that Append(x) is called with x = m, 
and that BUFFER [ HEAD] @ - @ BUFFER [ TAIL] = 
b in state si for which the execution of block up, occurs.' 
Then, in state si produced by the execution of block up2, 
BUFFER[HEAD] @ . @ BUFFERLTAIL] = b @ m .  
Similarly it is easy to confirm that REMOVE(x)  correctly 
implements remove ( x )  under the interpretation given as 
rule B2. 

C3) Transactions representing the executions of blocks 
up, and rm, have no effects on the abstract buffer state, 
although they prevent abstract operations from being ex- 
ecuted at wrong timings. For example, up, allows an up- 
p e n d ( x )  operation to be applied only to a nonfull buffer. 

We have shown that the bounded-buffer monitor given 
in Fig. 2 is a correct implementation of an abstract buffer 
of size N under one interpretation. That is, under a dif- 
ferent interpretation the bounded-buffer monitor will not 
work as an abstract buffer of size N .  For example, if we 
assume that each abstract append( x )  operation occurs 
when execution of A P P E N D ( x )  is initiated (abstract re- 
move (x )  operations are assumed to occur as in our orig- 
inal interpretation), then the effective abstract buffer size 
becomes greater than N .  Note that a process being blocked 
by waiting for a nonfull condition can effectively buffer 
one message. Further, messages may be removed from 
the abstract buffer in a different order from the execution 
order of the abstract u p p e n d ( x )  operations if the wait- 
signal mechanism uses a scheduling policy other than 
FCFS. 

One interesting feature of our model is that an abstract 
operation may not be immediately executed when it is is- 
sued; its occurrence time is defined by the occurrence 
times of lower level operations. In our example of the 

*In general, the system state si seen by a transaction T, is a (hypotheti- 
cal) system state in  which the effects of all the transactions that logically 
precede T, are reflected and the effects of no transactions that logically 
follow T, are reflected. 
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bounded-buffer monitor, an append (x)  operation, for ex- 
ample, occurs only when the buffer is not full. If the buffer 
is full when an append(x) operation is issued, the oper- 
ation is delayed by the lower level mechanism; an abstract 
operation occurs only at an acceptable time. 

IV . MULTILEVEL CONCURRENCY CONTROL 
In this section we investigate the multilevel concur- 

rency control problem of a database system by using data 
and time abstraction  technique^.^ The major objective of 
a database system is to maintain data useful to its users. 
We call such data logical data. A typical database system 
maintains also data that facilitate faster accesses to logical 
data [ 11, [3 13. We call such data access path data. Access 
path data are often organized into indexing structures like 
B-trees because of their flexibility and good performance 
[2]. Logical data and access path data are stored as phys- 
ical data. 

At the logical level of our multilevel concurrency con- 
trol of a database system, user transactions operate on 
logical data, and access path data are completely hidden. 
At the physical level, access path data are considered, and 
operations on access path data are considered correct as 
long as logical data are correctly accessed. Since opera- 
tions on access path data need not be serializable in terms 
of the user transactions that activate them, it is possible 
to enhance concurrency for access path data by using var- 
ious techniques [ 151, [ 161. As long as each logical oper- 
ation that manipulates logical data is correctly imple- 
mented, we say that action-level consistency is maintained 
161 

We refer to concurrency control that achieves consis- 
tency for user transactions as long-term concurrency con- 
trol, and concurrency control that achieves action-level 
consistency as short-term concurrency control. For ex- 
pository convenience, we consider only simple locking 
methods for concurrency control. Locking on logical data 
by user transactions will be referred to as long-term luck- 
ing (typically, two-phase locking [ 5 ] ) ,  and that on phys- 
ical data short-term locking. 

Unfortunately, a straightforward integration of long- 
term and short-term concurrency control methods may fail 
because of the phantom problem [5] .  Consider a tiny da- 
tabase system that maintains account data for a hypothet- 
ical bank. As shown in Fig. 3, each account is represented 
by a record (AccountNumber, AccountHolder, Balance). 
Account numbers 00-99 are used for checking accounts, 
and account numbers 100-199 for savings accounts. The 
database currently contains records for accounts 10, 30, 
110, 120, and 130. Now, execution of transaction T,  that 
computes the total asset of each account holder is started. 
After Ti has read the records for accounts 10 and 30, 
transactions T2 that moves all the money of person B from 
his savings account to a new checking account is started. 
T2 first deletes the record for account 120, and then it in- 
serts the record for account 20. After T2 is completed, 

' A  preliminary version of this section has appeared in [24]. 
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Fig. 3.  Phantom problem. 

execution of Ti is continued, and Ti accesses the records 
for accounts 110 and 130. If transactions apply long-term 
locks only to the account records that are accessed by 
them, TI and T2 do not interfere with each other since they 
do not access any common account record. In the resul- 
tant execution, however, Ti will report that person B does 
not have any account. This phenomenon, which is unac- 
ceptable, will never happen if T, and T2 are executed one 
at a time. 

The cause for the phantom problem in the above ex- 
ample can be informally explained as follows. Consider 
again the database given in Fig. 3 and a person, say, per- 
son 0, for whom no account record is provided. The da- 
tabase implies that person D does not have an account 
with the bank. However, this information is hidden in the 
indexing structure. If we examine the indexing structure 
carefully, we can further localize to the lowest-level ac- 
cess-path objects the places where such information is 
stored. Note that an account record cannot exist if a 
pointer to the account record is not contained in any low- 
est-level access-path object. In order to handle the phan- 
tom problem, we will introduce abstract objects groups 
that supposedly store such information. This example 
shows some subtleties required in deciding what should 
be treated as logical objects. 

A .  Logical Level 
A logical database system contains a set of data items 

and a set of groups, and it supports a set of logical op- 
erations that operate on those data items and groups. Data 
items and groups are collectively called logical objects. 

A data item can possess a data value. The data value 
possessed by a data item is called useless if it will never 
be accessed. Otherwise, it is usefil. The set of data items 
may be countably infinite, although the number of data 
items with useful data values must be finite at any given 
time. 

Further, a data item can belong to any finite number 
(possibly zero) of groups at each given time. When a data 
item X belongs to a group G, we say that X is a member 
of G. Associations of data items with groups can dynam- 
ically change. The set of groups may also be countably 
infinite, but the number of groups with at least one mem- 
ber must be finite at any given time. 

A group can be defined in any conceivable way. A typ- 
ical case is one where a set of data items possessing a 
common attribute value form a group. Even a set of data 
items sharing a page for their physical representations can 
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form a group. Groups are not mathematical sets since two 
different groups may contain the same set of members. 

The data values possessed by data items can be manip- 
ulated by the following logical operations. 

Read ( X ) :  The current data value of data item X is re- 
turned. 

Write (X) :  The data value of data item X is updated to 
the one supplied; since the data value provided is not rel- 
evant for our discussions, we do not show it explicitly by 
an argument. 

Further, data items can be added to and deleted from 
groups by using the following logical operations. 

Insert ( X ,  G):  Data item X is made a member of group 
G. 

Remove ( X ,  G ) :  The membership of data item X with 
group G is resolved. 

Although groups can be arbitrarily defined, groups are 
usually formed so that the members of each group possess 
some common property. Then the set of data items pos- 
sessing a certain property can be located by locating the 
members of the groups associated with that property. The 
following logical operation is used for locating the mem- 
bers of a group. 

MemLocate ( G ) :  The names of the data items that are 
currently members of group G are returned. 

Various operations like splitting and merging groups 
can be implemented by combining MemLocate ( G ) ,  Re- 
move ( X ,  G ) and Insert ( X ,  G ) operations. 

Assume that data items Wand Yare members of group 
G I ,  and that data item Z is the only member of group G2. 
At this point, MernLocate( G , )  will return the names of 
Wand Y, and MemLocate ( G 2 )  the name of Z .  Now, con- 
sider that Znsert(X, G I )  is issued. Then X becomes a 
member of group G I .  If MemLocate ( GI ) is issued at this 
point, the names of W, X ,  and Y will be returned. 

We now let GUpdate ( G ) represent either Insert ( X ,  G ) 
or Remove ( X ,  G )  for some X .  Note that neither an Zn- 
sert(X, G )  operation nor a Remove(X, G )  operation af- 
fects data item X itself. Then, define the relation conjlict 
over the set of logical operations as shown in Fig. 4. We 
leave to the reader the proof that the effects seen by user 
transactions will not change even if the execution order 
of any pair of nonconflicting operations are changed. We 
can regard a GUpdate ( G ) operation as a write operation 
to logical object G and a MemLocate ( G ) operation as a 
read operation to logical object G. Although a GUp- 
date( G ) operation does not conflict with another GUp- 
date ( G ) operation unless they manipulate the same mem- 
ber, we do not exploit this property. 

An execution of user transactions in which their net ef- 
fects are as if they were executed one at a time is called 
serializable [5] ,  [27]. Let us call a database system that 
does not allow dynamic creations or deletions of database 
entities (in our model, data items and groups) a static da- 
tabase system. It is well known that two-phase locking 
[5] can guarantee a serializable execution for a static da- 
tabase system. Although our model includes an unusual 
feature (i.e., groups), it still is a static database system, 

ReodfXI - W r i t e f X / a  
(Shore ) (Exclusive ) 

MemLocofe ( G I  - GUpdofe ( G I 3  

Fig. 4. Conflicting operations and locks used by them. 

(Locote) (Updote) 

and hence two-phase locking can still realize a serializa- 
ble execution, if groups as well as data items are two- 
phase locked according to relation conjlict. 

Locking consistent with relation conjict can be 
achieved with three lock modes (Free, Share, and Exclu- 
sive) provided for data items and with additional three 
lock modes (Free, Locate, and Update) provided for 
groups. When a data item or a group is accessed, it must 
be locked in the mode as indicated in Fig. 4. 

We assume that the following logical operations are 
used for logical locking. 

MemLock(X, m): Data item X is locked in mode m ,  
which is either Share or Exclusive. 

MernUnlock(X): The lock set on data item X by the 
user transaction issuing this operation is reset. 

GLock(G, m) :  Group G is locked in mode m, which 
is either Locate or Update. 

GUnlock(G): The lock set on group G by the user 
transaction issuing this operation is reset. 

If data item X or group G is already locked in a con- 
flicting mode when a MemLock ( X ,  m )  or GLock( G,  m )  
operation is issued, the operation must be blocked, or the 
user transaction issuing the operation must be aborted. 

In a typical database system, data items to be accessed 
are often designated by specifying their key values or the 
ranges of their key values. In this paper, a key value is 
not required to identify a data item uniquely. It is simply 
a value of an attribute or a set of values of multiple attri- 
butes. We now consider a method of defining groups in 
order to support such value-based accessing. For exposi- 
tory convenience, we consider only one key attribute 
whose values are totally ordered. The model that satisfies 
the following rules will be referred to as the single-key 
logical database model. 

D1) The key value of each data item X is uniquely de- 
fined at any time as k e y ( X ) .  The key value may vary ac- 
cording to time, and further it may be NUL.4 The set of 
all possible key values except for NUL forms a domain 
D. The key values in domain D are totally ordered by < . 
Further, -00 < K < + 00 for any key value K in D. 

D2) Group G [  K ] is defined for every key value K in 
D. A data item X such that key ( X  ) = K must be a member 
of group G [ K ] .  

Now, we can locate the data items whose current key 
values are equal to K by locating the members of G [ K 1. 
Further, we assume that we can locate by an operation 
RLocate ( Ki, Kj ) the members of the groups whose key 
values are in the range between Ki and K j .  If there is a 
countably infinite number of key values in this range, then 

4An undefined key value must be regarded as NUL. 
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we must theoretically check the countably infinite number 
of groups associated with those key values. In Section 
IV-B we will discuss a method to handle this problem. 

B. Physical Level 
In this subsection we present a physical level imple- 

mentation for the single-key logical database model given 
in Section IV-A. If we want to support multiple access 
paths, a separate indexing structure must be provided for 
each key attribute. Note that a data item can be a member 
of multiple groups. 

Since the single-key logical database model allows pos- 
sibly countable infinite sets of data items and groups, we 
cannot permanently provide physical objects for all of 
those logical objects. Hence, we dynamically assign 
physical objects to logical objects and maintain only those 
physical objects whose values are useful or are different 
from default  value^.^ More specifically, a physical object 
is not provided for a data item with a useless data value 
or for a group with no members. However, we ensure that 
the values of logical objects are always uniquely defined 
unless they are useless, even if their corresponding phys- 
ical objects do not exist. Since we are assuming that the 
set of data items that contain useful data values and the 
set of groups that contain at least one member are both 
finite at any given time, the number of physical objects 
thus required is finite. 

In order to represent each data item, we use a target 
object. A target object is a physical object of the follow- 
ing format: 

record 

PLockMode : (Free, Share, Exclusive); 

PLockCount : integer; 

Refcount ’: integer; 

LLockMode : (Free, Share, Exclusive); 

LLockCount : integer; 

Value : ValueType 

end. 

The data value of a data item X is stored in the Value 
field of the target object x that represents X .  The 
LLockMode field of x shows the current lock mode of X .  
The LLockCount field of x indicates the number of user 
transactions that currently hold locks on X .  When X is 
locked in Exclusive mode, x. LLockCount must be one. 
The use of other fields will be explained later. 

On the other hand, in order to handle a group, a group 
descriptor is provided. A group descriptor is a physical 
object of the following format: 

record 

PLockMode : (Free, Share, Exclusive); 

5A default value may not be fixed. When a default value is not fixed, it 
must be computable from the values of existing physical objects. . 

PLockCount : integer; 

Refcount : integer; 

Key : KeyType; 

GLockMode : (Free, Locate, Update); 

GhckCount : integer; 

ILockCount : integer; 

Members : set of TargetObjectPtr 
end. 

The Key field of the group descriptor g for a group 
G[ K ] contains the key value K. The identifiers of the 
target objects that represent the members of G[ K ] are 
kept in the Members field of g .  The GLockMode field of 
g indicates the current lock mode of G [ K ] .  The 
GLockCount field of g shows the number of locks being 
applied to G [ K 1. 

According to rule D2, group G [ K ] is defined for every 
key value K in the domain D .  Then, providing a group 
descriptor for every group is simply impossible since there 
can be a countably infinite number of key values. We han- 
dle this problem by not providing a group descriptor g 
such that g. Refcount = 0 and g. Members = NIL.6 

We now discuss an additional locking mechanism for 
groups. Assume that group descriptors g, and gJ such that 
g,. Key = K,, g,. Key = K,, and K ,  < K, are provided, and 
that no group descriptor g such that K, < g.Key < KJ is 
provided. When this assumption holds, we say that inter- 
val I (  K,, KJ ) exists. Assume further that a RLocate( K,, 
KJ ) request is issued. Then, every group G [  K ]  such that 
K, < K < K, must be locked in Locate mode. 

Let us now consider locking every group G [ K ] such 
that K, < K < K, , or interval I (  K,, KJ ), in Locate mode, 
which is the only lock mode possible for an interval. In- 
stead of creating and locking possibly infinite number of 
group descriptors that should exist between g, and g J ,  we 
maintain in the ZLockCount field of g, the number of locks 
being applied to these hypothetical group descriptors in 
interval I (  K,, KJ ). When interval I (  K,, KJ ) is locked in 
Locate mode, a data item cannot be inserted or removed 
from any group G [ K 3 such that K, < K < KJ . This lock- 
ing method will be called interval locking. 

We now precisely define the default value for a non- 
existing group descriptor. Assume that there exist two 
group descriptors g, and g, such that g, .Key = K,, g, .Key 
= K,, and K, < KJ and that there exists no group descrip- 
tor g such that K, < g. Key < KJ. Then, if the group de- 
scriptor g‘ associated with any group G [ K ] such that K, 
< K < KJ would exist, 

g’.Refcount = 0,  

g’.GLockMode = Free if g,.ILockCount = 0, 

Locate if g,.ZLockCount # 0, 

6The precise conditions will be given after “interval locks” are intro- 
duced 
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g’ .GLockCount = g;. ILockCount, 

g’.ILockCount = gi. Ihckcount, and 

g’.Members = NIL. 

As we stated, we assume that data items to be accessed 
are designated by specifying their key values. A common 
method for supporting such an access method is to pro- 
vide an indexing structure consisting of access path ob- 
jects, which also are physical objects. We assume that 
access path objects are of the following format: 

record 

PLockMode : (Free, Share, Exclusive); 

PLockCount : integer; 

NumberOjSons : 1 . . MaxFunout; 

Son : array[ 1.. MaxFanout] of ObjectPrr; 

while ((x.  PLockMode = Exclusive) or 
(x. PLockMode = Share) and (m  = Exclusive)) 
do wait; 

x.PLockMode : = m; 
x.PLockCount : = x.PLockCount + 1. 

punlock(x): The physical lock set by the process issuing 
this operation on physical object x is reset. This operation 
can be implemented as follows. 

x. PLockCount : = x. PLockCount - 1 ; 
if x. PLockCount = 0 then x. PLockMode : = Free. 

In principle, a physical lock applied to a physical object 
can be released as soon as the access to the physical object 
is completed. That is, two-phase locking in terms of user 
transactions is not necessary. If a physical object is ac- 
cessed more than once by the same user transaction, the 
physical object can be locked each time when it is ac- 

Boundary :array [ I . .  MaxFanout- 13 of KeyType cessed. 
We are now ready to discuss implementations of var- 

ious logical operations. Fig. 5 shows the correspondence end. 

Access path objects and group descriptors are organized 
as a multiway search tree. 

El)  The search tree is empty or possesses one root 
node. 

E2) The root node, if it exists, is either an access path 
object or a group descriptor. 

E3) When an access path object is the root node, it pos- 
sesses at least two and at most MaxFanout descendant 
nodes. Otherwise, it possesses at least MinFanout and at 
most MaxFanout descendant nodes. We assume that 
MinFanout I (MaxFanout div 2). A descendant node is 
either an access path object or a group descriptor. 

E4) All leaf nodes of the search tree are group descrip- 
tors, and all group descriptors are at the same distance 
from the root node. 

E5) If a group descriptor g can be reached by following 
Son[ i ]  of an access path object p ,  then p.Boundary[i - 
11 < g.  Key I p.  Boundary [ i ]  forp. Boundary [i - 1 ] and 
p.  Boundary [ i ]  if they exist. 

The condition that MinFanout I (MaxFanout div 2) 
guarantees that an access path object with MaxFanout 
descendants can be split into two access path objects of 
legitimate sizes. This condition, which is slightly differ- 
ent from the one for an ordinary B-tree, is required by the 
top-down algorithm [7] used for tracing the search tree. 

When a physical object (an access path object, a group 
descriptor, or a target object) is accessed, it must bephys- 
icully locked in either Share or Exclusive mode depending 
on the mode of the access. The following two operations 
are used for physical locking. 

plockfx, m): The physical object designated by x is 
physically locked in lock mode m. If it is already locked 
in a conflicting mode, then the process issuing this oper- 
ation is blocked. This operation can be implemented as 
follows. 

between the logical operations and the physical-level pro- 
cedures that implement them. 

Note that logical object identifiers X and G used in Fig. 
5 are conceptual (imaginary); only their surrogates x and 
g can actually be used. 

In order to locate a target object for a data item X ,  we 
must first locate the group descriptor g such that g.  Key = 
key ( X  ). Procedure glocate ( K  ) is provided for this pur- 
pose. 

glocate(K): If the group descriptor g such that g.Key 
= K already exists, its Refcount is incremented by one, 
and its identifier is returned. If the group descriptor g such 
that g.Key = K does not exist, it must be created. Let ml 
and c1 be the lock mode and the lock count, respectively, 
of the interval where g falls. That is, if Ki is the largest 
key value such that Ki < K and for which a group de- 
scriptor gi currently exists, then let ml = Free when 
g,.ILockCount = 0 or ml = Locate when gi.ILoclcount # 
0, and let c1 = g;.ZLockCount. Now, g can be created with 
the following field values. 

PLockMode = Free, 

PLockCount = 0, 

Refcount = 1, 

Key = K, 

GLockMode = ml, 

GLockCount = c1, 

ILockCount = c1, 

Members = NIL. 

After g is inserted into the search tree, the identifier of g 
is returned. 



MINOURA A N D  IYENGAR: ANALYZING MULTILEVEL CONCURRENT SYSTEMS 

varX <---> x :- new(7argerObjecrType) 

g :- glocare(K); 
{ x } :- memlocore(g) { X } :- MemLocare(G[KI) <---> 

(no counterpart) <---> grelease(g) 

(no counterpan) <---> memrelease(x) 

Re&O <---> read(x) 

Wrire(x) <---> wn.re(x) 

Inserr(X, G )  <---> inserr(x, g) 

Remove(X, G) <---> remove(x, 8 )  

MemLuck(X, m) <---> memlock(x, m)  

MemUnlock(X) <---> memunlock(x) 

GLOck(G, m) <---> glock(g, m) 

GUnlock(G) <--> gunlock(g) 

Fig. 5 .  Logical operations and their associated physical-level procedures. 

Function glocate ( K  ) must scan the search tree starting 
from the root node until a group descriptor is reached. 
The implementation of glocate ( K  ) shown in Fig. 6 uses 
the top-down algorithm given in [7] .’ Only exclusive locks 
are used for short-term locking. If an access path object 
with too many (=MaxFanout) descendants is encoun- 
tered, the access path object is split. If an access path 
object with too few ( = MinFanout) descendants is en- 
countered, the access path object is merged with its neigh- 
bor or some descendant pointers in its neighbor are moved 
to the access path object. (Although the root node must 
be treated differently, we do not discuss the details.) Fur- 
ther, physical locks on access path objects are seized and 
released according to the tree protocol of [29]. 

When group descriptor g such that g K e y  = K is 
reached, the set of target objects that represent the data 
items belonging to G [ K ] can be located. 

memlocate (g): The target object identifiers in 
g.Members are returned. When the identifier of a target 
object x is returned, x.  Refcount is incremented by one. 

If a target object x does not exist for a data item X, then 
x can be created as ‘ ‘x  : - new( TargetObjectType).”8 

Once the target object x for a data item X is known, the 
data value of X can be accessed. 

read (x): X .  Value is returned. 
write (x): x. Value is updated to the data value pro- 

vided. 
Assume that target object x represents a data item X, 

and group descriptor g represents a group G.  Then, Zn- 
sert (X, G ) and Remove (X, G ) operations can be imple- 
mented as follows. 

insert (x, 8): 
g.Members : = g.Members U { x }; 
x. Refcount : = x. Refcount + 1. 

70bviously, any algorithm that guarantees consistency for search tree 
accesses can be used. See [15], [16] for various algorithms that can be used 
for this purpose. 

’“: -” is the Simula notation for the assignment operator for a pointer 
value. 

function glocate(K: KeyType): GroupDescriprTyp; 

begin 
LastNodePu :- nil; 
plock(LastN0dePtrf); (* lock RootNodePtr *) 
NodePtr :- RootNodeRr, (* start with the mot node *) 
plock(NodePuf); 
while NodePUt is an access path object do 

(* lock the root node *) 

begin 
case 

NodePtrf is too birr: 
begln 

s pl I t NodePtrf ; 
ounlocklNodePtrfk 
adjust NodePtr; (*put N c d e h  on the right path *) 
plock(Nodehf); 

NodePtrf is too small: 
end; 

begin 
plock(neighbor of Nodeb?); 
merge NcdePtrf with its neighbor or move 
some son pointers of the neighbor to NodePuf; 
punlock(neighbor of NodePtrf); 
punlock(Nodehf ); 
adjust NodePtr; (* put N o d e b  on the right path *) 
plock( NodeRrf ); 

end; 
punlock(LastNodePtrf ); 
LastNodePtr :- NodeRr; 
NodePtr :- NodePuf.Son[Rank] where 

plock(NodePUt); 

end; 

Boundary[Rank-l]< K < Boundary[Rank] for NodePuf; 

end; 

(* group descriptor is reached *) 
If NcdePtrf.Key = K then 

begin (* group descriptor for K already exists *) 
punlock(LastNodePtrf); 
NodebT.RefCount :- NodePtrf.Recount + I ;  
glocate :- Node- 

end 

begin 
else 

(* group descriptor for K does not exist *) 
create a group descriptor NewLeaft 

with Key - K, Recount = 1 ,  ... ; 
insert the pointer to NewLeaft into LastNodePtrf; 
punlock(LastNodePUf); 
glocate :- NewLeat 

end; 
punlock(NodePtrf); 

end 

Fig. 6 .  Function glocate(K). 

remove (x, g):  

g.Members := g.Members - {x}; 
x .  Refcount : = x. Refcount - 1. 

A target object and a group descriptor must be released 
after their use. A target object can be released as follows. 

memrelease(x): x. Refcount is decremented by one. If 
the resultant x. Refcount is zero, then x is deleted. 

If x. Refcount = 0, then neither x belongs to any group, 
nor its identifier is held by any process. Therefore, x will 
never be accessed, and hence it can be deleted. Note that 
when x. Refcount = 0, x. LLockCount must be zero. This 
requirement is natural since a lock on x cannot be released 
if x has been released. 

Our implementation does not allow target objects to be 
deleted explicitly. However, a request for a target object 
deletion can be supported as follows. Assume that NUL 
is the data value to be returned when a r e a d ( x )  operation 
is applied to a nonexisting target object x .  Then, x is ef- 
fectively deleted if NUL is assigned to x. Value. A target 
object containing such NUL value can be regarded as a 
“tombstone” [20]. 
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A group descriptor g seized by a glocate ( K  ) operation 
can be released by a grelease ( g  ) operation. 

grelease(g): g. Refcount is decremented by one. Let g, 
be the group descriptor that immediately precedes g (i.e., 
g,. Key < g. Key, and g,. Key < g I .  Key < g. Key for no 
existing group descriptor g'). Now, if the following con- 
dition holds, g can be deleted: 

g. Refcount = 0,  

g. GLockMode = Free if g,. ILockCount = 0,  

Locate if g,. ILockCount # 0 ,  

g. GLockCount = g,. ILockCount, 

g. ILockCount = g,. ILockCount, and 

g.Members = NIL. 

In order for the top-down algorithm to work correctly, 
each grelease ( g  ) must be preceded by a glocate ' ( K  ) op- 
eration such that K = g.Key if the deletion of g is ex- 
pected. This operation must work like a glocate ( K  ) op- 
eration except that it does not increment g.Refcount. A 
glocate'( K )  operation prevents access path objects from 
possessing too few descendants, as well as it locates the 
immediate ancestor node of g from which the pointer to g 
is deleted. 

Logical locking must be performed by regarding that 
each Read( X ) or Write ( X  ) operation occurs when its 
corresponding read ( x )  or write ( x )  operation occurs. The 
reason why this rule works correctly is discussed in Sec- 
+ion IV-C. Let x be the target object representing a data 
item X .  Then, logical operations MemLock(X, m )  and 
MemUnlock ( X  ) can be performed by physical operations 
memlock ( x ,  m ) and memunlock (x),  respectively. 

while ( (x .  LLockMode = Exclusive) or 

memlock(x, m): 

(x.  LLockMode = Share) and (m = Exclusive)) 
do wait; 

x. LLockMode : = m; 
x. LLockCount : = x.LLockCount + 1, 

memunlock(x) : 

x. LLockCount : = x.  LLockCount - 1 ; 
if x. LLockCount = 0 then x.  LLockMode : = Free. 

Group locking can be performed similarly. Let g be the 
group descriptor representing a group G .  Then, logical 
operations GLock( G ,  m )  and GUnlock ( G ) can be per- 
formed by physical operations glock(g,  m )  and gun- 
lock ( g  ), respectively. 

glock(g, m): 

while ((8. GLockMode = Update) or 
(g.GLockMode = Locate) and ( m  = Update)) 
do wait; 

g. GLockMode : = m; 
g.GLockCount := g.GLockCount + 1. 

gunlock ( g  ): 

g. GlockCount : = g. GLockCount - 1 ; 
if g. GLockCount = 0 then g. GLockMode : = Free. 

Assume that for a pair of group descriptors gi and gj, 
gi.Key = K j ,  gj.Key = K,, and K, < K,, and further that 
there exists no group descriptor g such that K j  < g.Key 
< K,. Then, interval I ( K i ,  K j )  can be locked and un- 
locked as follows. 

ilock (si): 
g j .  ILockCount : = g,. ILockCount + 1. 

iunlock ( g j  ): 

gi. ILockCount : = g j .  ILockCount - 1. 

Assume that a single data item X such that key ( X  ) = 
K must be updated. An example of an execution at the 
logical level and its counterpart at the physical level is 
given in Fig. 7. Note that logical locks are applied ac- 
cording to the two-phase locking rule. 

In Fig. 8,  the periods of the logical locks and the phys- 
ical locks applied during an execution of a user transac- 
tion whose logical representation is Read ( X  ); Read( Y ); 
W r i t e ( Z )  is shown, where k e y ( X )  = K , ,  key( Y )  = K2,  
key ( Z  ) = K3.  Note that physical locks are applied for far 
shorter periods than logical locks. 

In Fig. 9, the database state histories created by three 
different ways of interleaving of logical operations are 
shown. The logical write operations of TI and T2 do not 
conflict with each other, and hence they may interleave in 
any way. Note that Write(B ), for example, must be ex- 
ecuted as follows: 

g B  : - glocate( 'B ' ) ;  
b : - New(Target0bjectType); 
write(b); 
inserr(b , g B )  ; 
grelease(g,). 

Target objects are not shown in Fig. 9. 
The tree structure of Fig. 9(h), which results if TI and 

T2 are executed in the order of Write(B) ,  W r i t e ( D ) ,  
W i r e (  I ) ,  and Write( G ) ,  cannot occur if TI and T2 are 
executed one at a time; either Fig. 9(e) or Fig. 9(1) will 
result. Note that the tree structure in Fig. 9(h) represents 
the same logical database state as the tree structure in Fig. 
9(e) or Fig. 9(1), and that it must be considered correct. 

C. Correctness 
In this subsection, we show that the implementation of 

a multilevel concurrency control scheme given in the pre- 
ceding subsection is correct. First, it is proved that logical 
objects and logical operations are correctly implemented 
by physical objects and physical operations. Then, we 
show that logical operations will be correctly scheduled 
if consistent locking is used for logical operations. 

We first show that logical objects and logical operations 
applied to them are correctly implemented. For this pur- 
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g := glocare(K); 

{ x } :- memlocate(g); 
GLock(G[Kl, Locate); glock(g, Locate); 

Membck(X, Exclusive); rnemlock(x, Exclusive); 
GUnlock(G[Kl); gunlock(g); 

greleare(g); 
Read(X); read(x); 

Wrire(X); write(x); 
MemlJnlock(X); memunlock(x); 

memrelease(xk 

Fig. 7 .  A logical execution and its physical counterpart 
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r e a d ( x )  r e a d ( y )  write(z 

- loglcal (long-term) lack 
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Fig. 8.  Long-term and short-term locking. 

pose, we consider the data abstraction function that as- 
sociates logical objects with physical objects as follows. 

F I :  Each target object x represents a separate data item 
X.9 If a target object x exists for a data item X ,  then the 
data value of X is defined by x. Value, and the lock status 
of X is defined by x.LLockMode and x.LLockCount. If 
such x does not exist, then the data value of X is unde- 
fined, and no locks are applied on X .  

F2: If a group descriptor g such that g.Key = K exists 
for a key value K,  then g.  Members contains the identifiers 
of the target objects that represent the members of group 
G [ K ] ,  and the lock status of G [ K ]  is shown by 
g.  GLockMode and g. GLockCount. If such g does not ex- 
ist for a key value K, then G [ K ] is empty. In this case, 
the lock status of G [ K ]  can be known from 
gi. ZLockCount, where gi is the group descriptor that would 
immediately precede g if there were g .  

An implementation of logical operations is correct if 
the following conditions are satisfied. 

GI: A logical write operation Wri te(X)  correctly up- 
dates the data value of X as defined by F1, and a logical 
read operation Read( X ) returns the current data value of 
X as defined by F 1. 

G2: Each group G [  K ] as defined by F2 is properly 
accessed by Insert ( X ,  G [ K ] ) , Remove ( X ,  G [ K 3 ) and 
MemLocate ( G [ K ] ) operations as discussed in Section 
IV-A. 

Now, the following lemma is trivially true. 
Lemma I :  Read ( X  ) and Write ( X  ) are properly imple- 

mented by read(x)  and write(x) ,  respectively where x is 
the target object for data item X .  

Note that a data item with an undefined data value will 
never be accessed, since its target object cannot be 
reached. 

91f a target object x2 is not a continuation of a target object x I ,  they 
represent different data items even if they are an identical data item from 
the user's viewpoint. 

1, : WRlTElBl, WRlTElGl 

TI: WRITEID), WRITE(I) n 

A C D ~ F ~ J  

Fig. 9 .  Physically nonserializable execution. 

The following lemma is also trivial. 
Lemma 2: Znsert(X, G ) ,  Remove(X, G )  and Mem- 

Locate ( G ) are correctly implemented by insert ( x ,  g ), 
remove ( x ,  g ), and memfocate ( g  ), respectively, where x 
and g are the target object and the group descriptor that 
respectively represent X and G. 

We say that gfocate ( K  ) and grelease ( g  ) are correctly 
implemented, if they satisfy the following requirements. 

HI:  At any time at most one group descriptor exists in 
the system for each group G [  K ] .  

H2: For each pair of gfocate ( K  ) and grelease ( g  ) is- 
sued by a user transaction, group descriptor g returned by 
glocate ( K  ) is the correct group descriptor for G [ K 3 until 
the corresponding grelease ( g  ) occurs. 

H3: The state of G [ K ]  is continuous when its group 
descriptor is created or deleted. 

Although we do not show the detailed implementations 
of procedure grefease ( g  ), we assume that gfocate ( K  ) and 
grefease ( g )  satisfy the specifications given in Section 
IV-B. Then, we have the following lemma, which con- 
cerns correctness of sequential programs. 

Lemma 3: Requirements H1, H2, and H3 are satisfied 
if glocate ( K  ) [and glocate ' ( K ) 3 and grelease ( g  ) are ex- 
ecuted one at a time. 
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Proofi Requirements H1 and H2 immediately follow 
from the specifications for glocate ( K  ) and grelease ( g  ). 
Requirements H3 follows from the fact that the value of 
a group descriptor created or deleted is identical to the 

17 
Further, requirements H1, H2, and H3 are still satisfied 

even when glocate ( K  ) and grelease ( g  ) are executed 
concurrently. 

Lemma 4: Even if procedures glocate(K)  and gre- 
lease ( g  ) are executed concurrently, they produce the 
same effects as when they are executed one at a time. 

Proofi The implementation of glocate ( K  ) and gre- 
lease ( g  ) follows the tree protocol of [29], and hence their 
execution is serializable in terms of these operations. 0 

If logical operations are correctly implemented and if 
the execution of logical operations is serializable in terms 
of user transactions, then we can consider that the resul- 
tant system operation is correct. This condition is satisfied 
if a consistent locking scheme is employed for logical ob- 
jects. The point here is that accesses to physical objects 
(in particular, to access path objects) need not be serial- 
izable in terms of user transactions. 

In order to define the execution of logical operations, 
their occurrence times can be specified as follows. 

Dejinition (Execution Times of Logical Opera- 
tions): The occurrence time of a logical operation 
Read (X  ) or Write (X ) is defined to be the time when the 
target object x for logical object Xis accessed by the phys- 
ical operation r e a d ( x )  or write ( x )  that implements 
Read (X ) or Write (X  ). Similarly, the occurrence time of 
a logical operation MemLocate ( G ), Insert (X, G ) or Re- 
move(X,  G )  is defined to be the time when the group 
descriptor g that represents G is accessed by the physical 
operation memlocate(g), insert(x, g ) ,  or remove(x, g )  
that implements the logical operation. 

Once occurrence times of logical operations are defined 
as above, the following lemma is immediate from the im- 
plementations of logical operations. 

Lemma 5: The values of logical objects as defined by 
F1 and F2 are accessed by logical operations exactly at 
the points when those logical operations are supposed to 
occur according to the above definition. 

We now can conclude that logical objects can be re- 
garded as real objects as far as logical operations are con- 
cerned. Hence, if logical operations are performed under 
a consistent (logical) locking scheme, the resultant exe- 
cution will be serializable at the logical level. 

default value defined for the group descriptor. 

V. CONCLUSION 
We have presented a framework for the design, imple- 

mentation, and analysis of a multilevel concurrent soft- 
ware system. Time abstraction used in combination with 
data abstraction plays a key role in our methodology. Time 
abstraction allows us to specify explicitly the execution 
times of abstract operations. Abstract operations imple- 
mented in this way can be readily used, and they can be 
synchronized according to their hypothetical execution 
times. 

Although we have not shown any examples, concurrent 
background processing like garbage collection and data- 
structure reorganization can be discussed within the 
framework presented in Section 11. Time abstraction has 
been implicit in such concepts as atomicity, timestamp- 
based concurrency control, and multiversion concurrently 
control. We consider that its usefulness can be further ex- 
ploited by its full recognition. 
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