
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1.5, NO. I . JANUARY 1989 41

Data and Time Abstraction Techniques for Analyzing
Multilevel Concurrent Systems

TOSHIMI MINOURA, MEMBER, IEEE, AND S . SITHARAMA IYENGAR

Abstract-Data abstraction has long been recognized as an important
tool for designing and analyzing a complex software system. In a con-
current system an execution time of an operation is as important as its
functional effect. In this paper we argue that the design and analysis
of a concurrent system can be made simpler and more intuitive if ex-
ecution times of abstract operations are arbitrarily but systematically
defined. This technique (time abstraction) is complementary to data ab-
straction and is more effective when used in combination with data
abstraction. As examples, we analyze a bounded-buffer monitor and a
multilevel concurrency control scheme of a database system by using
data and time abstraction.

Index Terms-Access path, bounded buffer, B-tree, data abstrac-
tion, multilevel concurrency control, multilevel concurrent system,
phantom problem, time abstraction.

I. INTRODUCTION
BSTRACTION is probably one of the most versatile A and powerful mechanisms employed by human beings

coping with complex phenomena. In a sense, abstraction
is to look at things in a way we like them to be inasmuch
as they behave consistently within our concern. In the
programming field, data abstraction has long been rec-
ognized as an important means to make the design, im-
plementation and analysis of a complex software system
manageable. The first theoretical basis of data abstraction
was presented in [22] within the context of correct pro-
gram translation. Later, Hoare discussed the problem
more explicitly and more precisely [1 11. Since then work
on data abstraction for sequential programs has been stud-
ied in detail [8]-[10], [181, [191, 1301.

However, as stated in [18], most of the techniques de-
veloped for sequential programs cannot be directly ap-
plied to concurrent systems. In the case of a sequential
program, we can simply consider that abstract operations
are executed in the order in which collections of concrete
operations (e.g., subroutines), each of which implements
an abstract operation, are executed. In a concurrent sys-
tem, collections of concrete operations implementing dif-
ferent abstract operations may be executed concurrently.
Thus, it may not be simple to decide the execution order
of these abstract operations. However, we show that it is
often possible to specify explicitly the execution times for

Manuscript received September 9 , 1986; revised January 2, 1987.
T. Minoura is with the Department of Computer Science, Oregon State

S . S . Iyengar is with the Department of Computer Science, Louisiana

IEEE Log Number 8824602.

University, Corvallis, OR 9733 1.

State University, Baton Rouge, LA 70803.

abstract operations and still to maintain a consistent view.
We refer to this technique as time abstraction. The main
objective of this paper is to emphasize the usefulness of
time abstraction techniques, whose importance has not
been fully recognized.

An important basis of time abstraction is the concept of
atomicity [5], [21]. A collection of operations that are ex-
ecuted over a certain period of time, is atomic, if the net
effects of those operations are as if they were executed
instantaneously at some point in time. Such a set of op-
erations is usually called a transaction. In this paper we
proceed further to assign an artificial execution time to an
abstract operation represented by a transaction. Note that
for a concurrent system, the execution time of an opera-
tion is as important as how it transforms data. The exe-
cution times of abstract operations must be so selected
that the analysis of the resultant execution becomes easy.

Once transactions implementing abstract operations at
some level of a multilevel concurrent system are made
atomic, those abstract operations can be assumed to take
place instantaneously when they are invoked from higher
levels. This fact can make the design, implementation,
and analysis of a complex concurrent software system sig-
nificantly easier. Further, an execution of a multilevel
concurrent system can be controlled at each level; abstract
operations at each level can be synchronized based on their
hypothetical execution times.

The first step taken in designing a complex software
system is often to conceive an abstract system whose ex-
ecutions satisfy the users’ requirements. This step is es-
pecially important for a concurrent software system be-
cause such an abstract system may be the sole criterion
for correct system implementation. Abstract operations
that perform well-defined functions instantaneously make
the specification of a system simpler.

Data abstraction in a concurrent system is addressed in
[13], [26] by using other techniques, which are either
more indirect or more complex than the one discussed in
this paper. A closely related subject, i.e., control (pro-
cedural) abstraction, is discussed in [14], [17] as “re-
duction. ” Recent investigations on multilayered transac-
tion processing systems can be found in [3], [24], [25].

In Section 11, we present a model of a multilevel con-
current system as a framework for our methodology. In
Section 111, we analyze a bounded-buffer monitor by using
a simple data and time abstraction technique. Section IV
addresses the multilevel concurrency control problem for

0098-5589/89/0100-0047$01 .OO O 1989 IEEE

48 I E E E TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. I . JANUARY 1989

a database system; the example is intended to show the
usefulness of time abstraction when used in conjunction
with data abstraction. Section V concludes this paper.

11. MULTILEVEL CONCURRENT SYSTEM MODEL
In this section we describe a model of a multilevel con-

current system.' At each level of a multilevel system, a
set of (abstract) operations that operate on (abstract) data
are supported. Abstract data at one level, however, may
be imaginary entities that are represented by lower level
data, which again may be abstract data. When the data at
level L is represented by the data at level L ' , operations
at level L must be implemented by the operations at level
L' .

We characterize a level of a multilevel system by a tri-
ple (D, so, o) , where D is the set of (abstract) objects
supported at this level, so specifies the initial values of the
objects in D, and 0 is the set of operations provided at
this level. An object contains a value. A system state is a
function that designates the values of the objects in D.
Associated with each operation o is a partial function f , : S
x Z, -+ S x U,, where S is the set of all possible system
states, Z, the set of all possible input lists for 0, and U,
the set of all possible output lists produced by 0. The fact
f, (s , io) = (s f , U,) means that if operation o occurs with
system state s and with list i , of input values, then the
new system state will be s f , and list U , of output values
will be produced. We assume that a finite description of
f, is provided for each operation 0, and that given s and
io, s f and U, can be obtained as (s f , U ,) = f , (s , i o) . The
description off, may be informal.

We represent a basic execution (6-execution) at level
(D , so, 0) by e = (OZ, t , i , U) , where OZ is the set of
operation instances in e , t : OI -+ R defines the occurrence
times of the operation instances in OZ, i , which is called
the system input-list, is the list of input values provided
for e , and U , which is called the system output-list, is the
list of output values produced by e . We denote by op (a)
the operation one of whose instances is a . If a is in OZ,
o p (a) is in 0. Each operation instance a is assumed to
occur instantaneously at time t (a) . (A justification of this
assumption is the main theme of this paper.) We assume
that the number of input values consumed and the number
of output values produced by each instance of an opera-
tion are uniquely defined by the system state when the
operation is activated and the input values provided for it.
The system input- and output-lists, i and U , are obtained
by concatenating the input and output lists, respectively,
of the operation instances according to their execution or-
der. Therefore, i uniquely designates the input values pro-
vided for each operation instance, and U the output values
generated by it.

Consider a particular execution that is taking place, and
let e = (OZ, t , i, U) be the current b-execution, which is
the b-execution that occurred so far. Further, let s be the
current system state, which is the system state produced

'The model in this section extends those in [3], [23], [24]

by the last operation instance in OZ or is so if no operation
instances have occurred yet. Assume that operation in-
stance a occurs at this point, which is time tu, with its
input list i,. Then a will update the system state from s to
s f and produce the list U , of output values as specified by
(s f , U ,) = fop(,) (s, i,). The current b-execution will be-
come e f = (OZ U { a), t U { (a , t,) }, i @ i , , U @ U,),
where "@" is the list-concatenation operator.

It is often beneficial to treat a group of operation in-
stances (e.g., the set of operation instances generated by
a procedure) as a unit. An execution in which operation
instances are grouped will be called a molecular execution
(m-execution) .

If procedures are executed one at a time, they can be
considered as (macro) operations. An m-execution based
on procedure activations can be defined like a b-execution
based on operation instances. The fact that if a procedure
p is activated with a system state s and an input list i p , it
will update the system state to s f and produce the output
list up can be designated as (s ' , u p) = & (s , ip), wheref,
is a function specifying the effect of p . We represent a
serial m-execution of a set P of procedures as esm = (PI,
t , i, U) , where PI is a set of activations of the procedures
in P, t specifies the occurrence time of each procedure
activation in PI, i designates the system input-list ob-
tained by concatenating the input lists for the procedure
activations in PI, and U the system output-list obtained
from the output lists produced by the procedure activa-
tions in PI.

We now want to allow concurrent executions of the
procedures. Since allowing indiscriminate interleaving of
the operation instances generated by different procedures
is likely to lead to difficulties in designing such proce-
dures, we assume that the set of operation instances gen-
erated by an activation of each procedure can be parti-
tioned into transactions, each of which is atomic. A
transaction consisting of a set of operation instances is
atomic if the net effects of those operation instances are
as if they occur instantaneously at some point in time.
Transactions can be executed concurrently as long as their
effects are atomic. The operation instances generated by
an activation of one procedure may belong to one trans-
action, or they may be divided into multiple transactions.

We represent a concurrent m-execution of a set P of
procedures as erm = (PI, T, t , i , U) , where PI is the set
of procedure activations, T the set of the transactions cre-
ated by the procedure activations in PI, t specifies the ef-
fective occurrence time of each transaction in T, i desig-
nates the system input-list obtained by concatenating the
input lists for the procedure activations in PI, and U the
system output-list obtained from the output lists produced
by the procedure activations in PI. Note that each trans-
action T, in Tis supposed to occur instantaneously at time
t (Ti). The effective occurrence time of each transaction
can be defined in different ways according to the concur-
rency control scheme applied to the transactions. When
two-phase locking [5] is used, the lock-point [4], [27] of
each transaction can be used as its effective occurrence

49
MINOURA AND IYENGAR: ANALYZING MULTILEVEL CONCURRENT SYSTEMS

time. When timestamping [28] is used, the timestamp
value of a transaction can be used as its effective occur-
rence time.

In a multilevel system, operations at each level, except
for the lowest level, are implemented by the procedures
that use operations of lower levels. This mechanism is
well-understood for sequential programs [1 11. Our aim is
to introduce concurrency in the executions of the proce-
dures that implement higher level operations. The key
feature of our strategy is to let the effect of each higher
level operation take place instantaneously even though the
procedure that implements the operation may be executed
concurrently with other procedures. Therefore a program-
mer using operations at each level can assume that the
effects of the operations at that level are atomic.

We now state our methodology for the design and anal-
ysis of a multilevel concurrent system. Fig. I shows our
methodology graphically. Assume that level L = (D , so,
0) must be supported by its immediate lower level L‘ =
(D’, s& 0’).

A I) Data and Operation Abstraction: We let each
(meaningful) system state s of level L be represented by
a system state s’ of level L’ as specified by s = dabs (s’),
where dabs is a data abstraction finction. In particular,
it must be that so = dabs (s h) . Further, the following con-
dition must hold for each operation o in 0 implemented
by a procedure prog (0) using operations in 0’. If for
states s1 at level L and si at level L’ sI = d a b s (s ;) , f , (s l ,
i o) = (s2, U ,) andf,,,(,,(s;, io) = (si, U ;) , then it must
be that s2 = dubs(&) and U , = U:. When an operation
instance a of an operation o at level L is requested to occur
with input list io, p r o g (0) as its parameter list, and it is
executed generating operation instances of level L’ . When
prog (0) terminates, it produces the output list U,, which
can be regarded as produced by a itself. Procedures that
are executed on behalf of the operations at level L are
called foreground procedures. Further, procedures that
consume empty input lists and produce empty output lists
and that do not affect the abstract system state at level L
may be executed. Such procedures will be called back-
ground procedures. Garbage collection and data-structure
reorganization, for example, can be performed by back-
ground procedures. If a background procedure updates the
system state at level L‘ from si to s;, then it must be that
dabs(s;) = dabs($;). Now, a b-execution e = (01, t , i ,
U) at level L can be supported by serial m-execution e:,
= (PZF U PIB, t’, i , U) at level L’ , where PZF is the set
of foreground-procedure activations caused by the oper-
ation instances in 01, PIB is the set of activations of the
background procedures, and t’ specifies the occurrence
times of the procedure activations in PIF U PIB. If a
foreground-procedure activation p in PIF occurs respond-
ing to an operation instance a in 01, t (a) = t’ (p).

A2) Parallelization with Time Abstraction: We now
introduce concurrency into the executions of the proce-
dures at level L‘. A concurrent m-execution is designated
as e:,,, = (PIF U PIB, TP U TA, t” , i , U) . Operation
instances at level L’ must be partitionable into the set TP

Level L f
\ doto operation obstroction

e cm
4,
e sm + - - - - - _ _ + ’ Level L’

porallelizoiion ond propcflon
time omtroction 4

e’

Fig. 1. Multilevel concurrent system

U TA of transactions, where TP is the set of principal
transactions, and TA the set of auxiliary transactions.
Function t” designates the effective occurrence time of
each transaction in TP U TA. For each operation instance
a at level L, there must exist exactly one principal trans-
action T, in TP. Assume that for states sl at level L and
si at level L’, s1 = dabs(s ;) , that a transforms si to s2,

and that T, transforms si to si. It then must be that s2 =
dabs (si). If an auxiliary transaction transforms the sys-
tem state at level L’ from si to si, then it must be that
dabs (si) = dabs (si). An operation instance a associated
with a principal transaction T, should be regarded to take
place when T, is supposed to occur instantaneously; i.e.,
t (a) = t ” (T ,) .

A3) Projection: Responding to a b-execution e = (01,
t , i , U) a ,level L , b-execution e‘ = (OI’, t“‘, i’, U ’) is
eventually generated at level L‘, since a concurrent m-
execution at level L’ is performed by operation instances
at level L’ .

Although b-execution e at level L is realized by b-exe-
cution e’ at level L’, t is defined by t”’ , and not the other
way around; actually, t“‘ defines t“, and t‘‘ defines t. Also,
note that i’ is defined from i and U ’ , and that U is defined
from U’. This mechanism can be best compared to the
parameter binding mechanism used by Prolog programs.

111. BOUNDED-BUFFER
In this section we analyze a simple concurrent program

following the methodology described in Section 11. We
hope that our analysis clarifies the way time abstraction
can be used in combination with data abstraction.

Fig. 2 shows a bounded-buffer mechanism designed as
a monitor [12], 1131, 1261. In Fig. 2 , symbol “ + Y ” de-
notes the modulo N addition operator, and symbol “@”
the concatenation operator. We define the data abstraction
function dabs specifying the state of abstract data struc-
ture buffer as follows:

dabs(COUNT, B UFFER, HEAD, TAIL) =
if COUNT = 0 then empty
else BUFFER[HEAD] @ BUFFER[HEAD+l]
@ . . . @ BUFFERITAIL].

The bounded-buffer monitor supports two kinds of ab-
stract operations (append(x) and remove (x)) on bufer.
Let us denote the number of messages in buffer by
1 buffer 1 . When an abstract operation append (x) is is-
sued, message x is appended to bufer as its last element
if)buffer/ < N . If]buffer) = N , the operation ap-
pend(x) is suspended until the condition I buffer I < N
becomes true. When an abstract operation remove(x) is

50 I E E E T R A N S ACTIONS ON SOFTWARE ENGINEERING, VOL. 15, N O . I . JANUARY 19x9

ROUNDED-BUFFER: monitor

hq!lIl

COUNT. 0 .. N;
I1UFFER: anay[0..N-l] of messages;
HEAD: 0 .. N-1;
TAIL. 0 ._ N-1;
NONFULL: condition;
NONEMPTY: condition;

Ipiocsdure APPEND(x: message)

{buffer = b. x = m}

{buffer = b, x = m}

{buffer = b, x = m)

TAlL : = T A I L + I ;
BUFFERITAIL]Ns x;
NONEMFTYsignal;
return

{buffer = b @ m}

h q i n

o,, ,: if COUNT = N then NONFULL.walt;

......................

op2 COUNT:= C O U N T + I ;

end;

procedure REMOVE(resu1t x: message)
begin

{buffer = b}

{buffer = b}

{buffer = m @ b}

r , ~ ; if COUNT = 0 then NONEMPTY.wait;

......................

nn2 COUNT:=COUNT -1;
x := BUFFERIHEAD];
HEAD := HEAD + I ;
NONFULL.signal;N
return;

{ x = rn, buffer = b}
end;

COUNT .= 0 , HEAD := 0; TAIL := N-l

end

Fig. 2. Bounded-buffer monitor.

issued, the message at the head of bufer is returned as x .
If such a message does not exist in bufer , the operation
remove(x) is blocked until such a message becomes
available.

A monitor consists of blocks of statements each of
which is executed indivisibly, and hence an execution of
each block can be regarded as a transaction. In Fig. 2, the
effect of each block of statements is indicated by the pre-
and postconditions attached to the block. The predicates
in each { } show the state of the abstract data (pri-
marily, bufer) .

This bounded-buffer monitor can be modeled as level
L' and (D ' , s& Of) , where D' = { COUNT, BUFFER,
HEAD, TAIL } and { s;)(COUNT) = 0 , s;l (HEAD) = 0 ,
s;l(TAIL) = N - 1 }. We do not specify 0' explicitly
since it is too detailed. A concurrent m-execution at level
L' can be specified as ekm = (PIF , TP U TA, t " , i , U) ,

where PIF is a set of activations of procedures AP-
P E N D (x) and R E M O V E (x) , TP is the set of principal
transactions caused by the executions of block up, of AP-
P E N D (x) and block rm2 of REMOVE(x) , and TA is the
set of auxiliary transactions caused by the executions of
block a p , of A P P E N D (x) and block rml of REMOVE(x) .
The occurrence time of each transaction in TP U TA is
specified by t" . Although each block of the monitor is not
executed instantaneously, the execution start time of a
block, for example, can be used as the occurrence time of
the transaction representing the execution of the block.
This is acceptable since each block is executed indivisi-

bly. The system input-list i consists of the input parame-
ters for the A P P E N D (x) operations, and the system out-
put-list U consists of the values returned by the
REMOVE (x) operations.

Let us now define an abstract execution e over level L
= (D , so 0) , where D = {buffer}, {so(buffer) =
empty}, and 0 = { u p p e n d (x) , r e m o v e (x) } , as follows.

B1) An activation of A P P E N D (x) with x = m causes
an execution of block up,. Assume that an abstract oper-
ation u p p e n d (x) with x = m occurs when up2 is executed.

B2) An activation of REMOVE(x) causes an execution
of block rm,. Assume that an abstract operation re-
m o v e (x) occurs when rm2 is executed.

Then e correctly models e' by data and time abstraction
because the following conditions hold.

C l) The condition so = dabs(s;l) is satisfied; i.e., when
the monitor is initialized, s;l defines an empty buffer. Note
that s ; l (COUNT) = 0.

C2) It is easy to confirm that A P P E N D (x) correctly
implements append (x) under the interpretation given as
rule B1. Assume that Append(x) is called with x = m,
and that BUFFER [HEAD] @ - @ BUFFER [TAIL] =
b in state si for which the execution of block up, occurs.'
Then, in state si produced by the execution of block up2,
BUFFER[HEAD] @ . @ BUFFERLTAIL] = b @ m .
Similarly it is easy to confirm that REMOVE(x) correctly
implements remove (x) under the interpretation given as
rule B2.

C3) Transactions representing the executions of blocks
up, and rm, have no effects on the abstract buffer state,
although they prevent abstract operations from being ex-
ecuted at wrong timings. For example, up, allows an up-
p e n d (x) operation to be applied only to a nonfull buffer.

We have shown that the bounded-buffer monitor given
in Fig. 2 is a correct implementation of an abstract buffer
of size N under one interpretation. That is, under a dif-
ferent interpretation the bounded-buffer monitor will not
work as an abstract buffer of size N . For example, if we
assume that each abstract append(x) operation occurs
when execution of A P P E N D (x) is initiated (abstract re-
move (x) operations are assumed to occur as in our orig-
inal interpretation), then the effective abstract buffer size
becomes greater than N . Note that a process being blocked
by waiting for a nonfull condition can effectively buffer
one message. Further, messages may be removed from
the abstract buffer in a different order from the execution
order of the abstract u p p e n d (x) operations if the wait-
signal mechanism uses a scheduling policy other than
FCFS.

One interesting feature of our model is that an abstract
operation may not be immediately executed when it is is-
sued; its occurrence time is defined by the occurrence
times of lower level operations. In our example of the

*In general, the system state si seen by a transaction T, is a (hypotheti-
cal) system state in which the effects of all the transactions that logically
precede T, are reflected and the effects of no transactions that logically
follow T, are reflected.

MINOURA AND IYENGAR: ANALYZING MULTILEVEL CONCURRENT SYSTEMS

bounded-buffer monitor, an append (x) operation, for ex-
ample, occurs only when the buffer is not full. If the buffer
is full when an append(x) operation is issued, the oper-
ation is delayed by the lower level mechanism; an abstract
operation occurs only at an acceptable time.

IV . MULTILEVEL CONCURRENCY CONTROL
In this section we investigate the multilevel concur-

rency control problem of a database system by using data
and time abstraction technique^.^ The major objective of
a database system is to maintain data useful to its users.
We call such data logical data. A typical database system
maintains also data that facilitate faster accesses to logical
data [11, [3 13. We call such data access path data. Access
path data are often organized into indexing structures like
B-trees because of their flexibility and good performance
[2]. Logical data and access path data are stored as phys-
ical data.

At the logical level of our multilevel concurrency con-
trol of a database system, user transactions operate on
logical data, and access path data are completely hidden.
At the physical level, access path data are considered, and
operations on access path data are considered correct as
long as logical data are correctly accessed. Since opera-
tions on access path data need not be serializable in terms
of the user transactions that activate them, it is possible
to enhance concurrency for access path data by using var-
ious techniques [151, [161. As long as each logical oper-
ation that manipulates logical data is correctly imple-
mented, we say that action-level consistency is maintained
161

We refer to concurrency control that achieves consis-
tency for user transactions as long-term concurrency con-
trol, and concurrency control that achieves action-level
consistency as short-term concurrency control. For ex-
pository convenience, we consider only simple locking
methods for concurrency control. Locking on logical data
by user transactions will be referred to as long-term luck-
ing (typically, two-phase locking [5]) , and that on phys-
ical data short-term locking.

Unfortunately, a straightforward integration of long-
term and short-term concurrency control methods may fail
because of the phantom problem [5] . Consider a tiny da-
tabase system that maintains account data for a hypothet-
ical bank. As shown in Fig. 3, each account is represented
by a record (AccountNumber, AccountHolder, Balance).
Account numbers 00-99 are used for checking accounts,
and account numbers 100-199 for savings accounts. The
database currently contains records for accounts 10, 30,
110, 120, and 130. Now, execution of transaction T, that
computes the total asset of each account holder is started.
After Ti has read the records for accounts 10 and 30,
transactions T2 that moves all the money of person B from
his savings account to a new checking account is started.
T2 first deletes the record for account 120, and then it in-
serts the record for account 20. After T2 is completed,

' A preliminary version of this section has appeared in [24].

51

Fig. 3. Phantom problem.

execution of Ti is continued, and Ti accesses the records
for accounts 110 and 130. If transactions apply long-term
locks only to the account records that are accessed by
them, TI and T2 do not interfere with each other since they
do not access any common account record. In the resul-
tant execution, however, Ti will report that person B does
not have any account. This phenomenon, which is unac-
ceptable, will never happen if T, and T2 are executed one
at a time.

The cause for the phantom problem in the above ex-
ample can be informally explained as follows. Consider
again the database given in Fig. 3 and a person, say, per-
son 0, for whom no account record is provided. The da-
tabase implies that person D does not have an account
with the bank. However, this information is hidden in the
indexing structure. If we examine the indexing structure
carefully, we can further localize to the lowest-level ac-
cess-path objects the places where such information is
stored. Note that an account record cannot exist if a
pointer to the account record is not contained in any low-
est-level access-path object. In order to handle the phan-
tom problem, we will introduce abstract objects groups
that supposedly store such information. This example
shows some subtleties required in deciding what should
be treated as logical objects.

A . Logical Level
A logical database system contains a set of data items

and a set of groups, and it supports a set of logical op-
erations that operate on those data items and groups. Data
items and groups are collectively called logical objects.

A data item can possess a data value. The data value
possessed by a data item is called useless if it will never
be accessed. Otherwise, it is usefil. The set of data items
may be countably infinite, although the number of data
items with useful data values must be finite at any given
time.

Further, a data item can belong to any finite number
(possibly zero) of groups at each given time. When a data
item X belongs to a group G, we say that X is a member
of G. Associations of data items with groups can dynam-
ically change. The set of groups may also be countably
infinite, but the number of groups with at least one mem-
ber must be finite at any given time.

A group can be defined in any conceivable way. A typ-
ical case is one where a set of data items possessing a
common attribute value form a group. Even a set of data
items sharing a page for their physical representations can

52 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15. NO. 1. JANUARY 1989

form a group. Groups are not mathematical sets since two
different groups may contain the same set of members.

The data values possessed by data items can be manip-
ulated by the following logical operations.

Read (X) : The current data value of data item X is re-
turned.

Write (X) : The data value of data item X is updated to
the one supplied; since the data value provided is not rel-
evant for our discussions, we do not show it explicitly by
an argument.

Further, data items can be added to and deleted from
groups by using the following logical operations.

Insert (X , G): Data item X is made a member of group
G.

Remove (X , G) : The membership of data item X with
group G is resolved.

Although groups can be arbitrarily defined, groups are
usually formed so that the members of each group possess
some common property. Then the set of data items pos-
sessing a certain property can be located by locating the
members of the groups associated with that property. The
following logical operation is used for locating the mem-
bers of a group.

MemLocate (G) : The names of the data items that are
currently members of group G are returned.

Various operations like splitting and merging groups
can be implemented by combining MemLocate (G) , Re-
move (X , G) and Insert (X , G) operations.

Assume that data items Wand Yare members of group
G I , and that data item Z is the only member of group G2.
At this point, MernLocate(G ,) will return the names of
Wand Y, and MemLocate (G 2) the name of Z . Now, con-
sider that Znsert(X, G I) is issued. Then X becomes a
member of group G I . If MemLocate (GI) is issued at this
point, the names of W, X , and Y will be returned.

We now let GUpdate (G) represent either Insert (X , G)
or Remove (X , G) for some X . Note that neither an Zn-
sert(X, G) operation nor a Remove(X, G) operation af-
fects data item X itself. Then, define the relation conjlict
over the set of logical operations as shown in Fig. 4. We
leave to the reader the proof that the effects seen by user
transactions will not change even if the execution order
of any pair of nonconflicting operations are changed. We
can regard a GUpdate (G) operation as a write operation
to logical object G and a MemLocate (G) operation as a
read operation to logical object G. Although a GUp-
date(G) operation does not conflict with another GUp-
date (G) operation unless they manipulate the same mem-
ber, we do not exploit this property.

An execution of user transactions in which their net ef-
fects are as if they were executed one at a time is called
serializable [5] , [27]. Let us call a database system that
does not allow dynamic creations or deletions of database
entities (in our model, data items and groups) a static da-
tabase system. It is well known that two-phase locking
[5] can guarantee a serializable execution for a static da-
tabase system. Although our model includes an unusual
feature (i.e., groups), it still is a static database system,

ReodfXI - W r i t e f X / a
(Shore) (Exclusive)

MemLocofe (G I - GUpdofe (G I 3

Fig. 4. Conflicting operations and locks used by them.

(Locote) (Updote)

and hence two-phase locking can still realize a serializa-
ble execution, if groups as well as data items are two-
phase locked according to relation conjlict.

Locking consistent with relation conjict can be
achieved with three lock modes (Free, Share, and Exclu-
sive) provided for data items and with additional three
lock modes (Free, Locate, and Update) provided for
groups. When a data item or a group is accessed, it must
be locked in the mode as indicated in Fig. 4.

We assume that the following logical operations are
used for logical locking.

MemLock(X, m): Data item X is locked in mode m ,
which is either Share or Exclusive.

MernUnlock(X): The lock set on data item X by the
user transaction issuing this operation is reset.

GLock(G, m) : Group G is locked in mode m, which
is either Locate or Update.

GUnlock(G): The lock set on group G by the user
transaction issuing this operation is reset.

If data item X or group G is already locked in a con-
flicting mode when a MemLock (X , m) or GLock(G, m)
operation is issued, the operation must be blocked, or the
user transaction issuing the operation must be aborted.

In a typical database system, data items to be accessed
are often designated by specifying their key values or the
ranges of their key values. In this paper, a key value is
not required to identify a data item uniquely. It is simply
a value of an attribute or a set of values of multiple attri-
butes. We now consider a method of defining groups in
order to support such value-based accessing. For exposi-
tory convenience, we consider only one key attribute
whose values are totally ordered. The model that satisfies
the following rules will be referred to as the single-key
logical database model.

D1) The key value of each data item X is uniquely de-
fined at any time as k e y (X) . The key value may vary ac-
cording to time, and further it may be NUL.4 The set of
all possible key values except for NUL forms a domain
D. The key values in domain D are totally ordered by < .
Further, -00 < K < + 00 for any key value K in D.

D2) Group G [K] is defined for every key value K in
D. A data item X such that key (X) = K must be a member
of group G [K] .

Now, we can locate the data items whose current key
values are equal to K by locating the members of G [K 1.
Further, we assume that we can locate by an operation
RLocate (Ki, Kj) the members of the groups whose key
values are in the range between Ki and K j . If there is a
countably infinite number of key values in this range, then

4An undefined key value must be regarded as NUL.

MINOURA A N D I Y E N G A R : A N A L Y Z I N G M U L T I L E V E L C O N C U R R E N T SYSTEMS 53

we must theoretically check the countably infinite number
of groups associated with those key values. In Section
IV-B we will discuss a method to handle this problem.

B. Physical Level
In this subsection we present a physical level imple-

mentation for the single-key logical database model given
in Section IV-A. If we want to support multiple access
paths, a separate indexing structure must be provided for
each key attribute. Note that a data item can be a member
of multiple groups.

Since the single-key logical database model allows pos-
sibly countable infinite sets of data items and groups, we
cannot permanently provide physical objects for all of
those logical objects. Hence, we dynamically assign
physical objects to logical objects and maintain only those
physical objects whose values are useful or are different
from default value^.^ More specifically, a physical object
is not provided for a data item with a useless data value
or for a group with no members. However, we ensure that
the values of logical objects are always uniquely defined
unless they are useless, even if their corresponding phys-
ical objects do not exist. Since we are assuming that the
set of data items that contain useful data values and the
set of groups that contain at least one member are both
finite at any given time, the number of physical objects
thus required is finite.

In order to represent each data item, we use a target
object. A target object is a physical object of the follow-
ing format:

record

PLockMode : (Free, Share, Exclusive);

PLockCount : integer;

Refcount ’: integer;

LLockMode : (Free, Share, Exclusive);

LLockCount : integer;

Value : ValueType

end.

The data value of a data item X is stored in the Value
field of the target object x that represents X . The
LLockMode field of x shows the current lock mode of X .
The LLockCount field of x indicates the number of user
transactions that currently hold locks on X . When X is
locked in Exclusive mode, x. LLockCount must be one.
The use of other fields will be explained later.

On the other hand, in order to handle a group, a group
descriptor is provided. A group descriptor is a physical
object of the following format:

record

PLockMode : (Free, Share, Exclusive);

5A default value may not be fixed. When a default value is not fixed, it
must be computable from the values of existing physical objects. .

PLockCount : integer;

Refcount : integer;

Key : KeyType;

GLockMode : (Free, Locate, Update);

GhckCount : integer;

ILockCount : integer;

Members : set of TargetObjectPtr
end.

The Key field of the group descriptor g for a group
G[K] contains the key value K. The identifiers of the
target objects that represent the members of G[K] are
kept in the Members field of g . The GLockMode field of
g indicates the current lock mode of G [K] . The
GLockCount field of g shows the number of locks being
applied to G [K 1.

According to rule D2, group G [K] is defined for every
key value K in the domain D . Then, providing a group
descriptor for every group is simply impossible since there
can be a countably infinite number of key values. We han-
dle this problem by not providing a group descriptor g
such that g. Refcount = 0 and g. Members = NIL.6

We now discuss an additional locking mechanism for
groups. Assume that group descriptors g, and gJ such that
g,. Key = K,, g,. Key = K,, and K , < K, are provided, and
that no group descriptor g such that K, < g.Key < KJ is
provided. When this assumption holds, we say that inter-
val I (K,, KJ) exists. Assume further that a RLocate(K,,
KJ) request is issued. Then, every group G [K] such that
K, < K < K, must be locked in Locate mode.

Let us now consider locking every group G [K] such
that K, < K < K, , or interval I (K,, KJ), in Locate mode,
which is the only lock mode possible for an interval. In-
stead of creating and locking possibly infinite number of
group descriptors that should exist between g, and g J , we
maintain in the ZLockCount field of g, the number of locks
being applied to these hypothetical group descriptors in
interval I (K,, KJ). When interval I (K,, KJ) is locked in
Locate mode, a data item cannot be inserted or removed
from any group G [K 3 such that K, < K < KJ . This lock-
ing method will be called interval locking.

We now precisely define the default value for a non-
existing group descriptor. Assume that there exist two
group descriptors g, and g, such that g, .Key = K,, g, .Key
= K,, and K, < KJ and that there exists no group descrip-
tor g such that K, < g. Key < KJ. Then, if the group de-
scriptor g‘ associated with any group G [K] such that K,
< K < KJ would exist,

g’.Refcount = 0,

g’.GLockMode = Free if g,.ILockCount = 0,

Locate if g,.ZLockCount # 0,

6The precise conditions will be given after “interval locks” are intro-
duced

54 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. IS. NO. I , JANUARY 1989

g’ .GLockCount = g;. ILockCount,

g’.ILockCount = gi. Ihckcount, and

g’.Members = NIL.

As we stated, we assume that data items to be accessed
are designated by specifying their key values. A common
method for supporting such an access method is to pro-
vide an indexing structure consisting of access path ob-
jects, which also are physical objects. We assume that
access path objects are of the following format:

record

PLockMode : (Free, Share, Exclusive);

PLockCount : integer;

NumberOjSons : 1 . . MaxFunout;

Son : array[1.. MaxFanout] of ObjectPrr;

while ((x. PLockMode = Exclusive) or
(x. PLockMode = Share) and (m = Exclusive))
do wait;

x.PLockMode : = m;
x.PLockCount : = x.PLockCount + 1.

punlock(x): The physical lock set by the process issuing
this operation on physical object x is reset. This operation
can be implemented as follows.

x. PLockCount : = x. PLockCount - 1 ;
if x. PLockCount = 0 then x. PLockMode : = Free.

In principle, a physical lock applied to a physical object
can be released as soon as the access to the physical object
is completed. That is, two-phase locking in terms of user
transactions is not necessary. If a physical object is ac-
cessed more than once by the same user transaction, the
physical object can be locked each time when it is ac-

Boundary :array [I . . MaxFanout- 13 of KeyType cessed.
We are now ready to discuss implementations of var-

ious logical operations. Fig. 5 shows the correspondence end.

Access path objects and group descriptors are organized
as a multiway search tree.

El) The search tree is empty or possesses one root
node.

E2) The root node, if it exists, is either an access path
object or a group descriptor.

E3) When an access path object is the root node, it pos-
sesses at least two and at most MaxFanout descendant
nodes. Otherwise, it possesses at least MinFanout and at
most MaxFanout descendant nodes. We assume that
MinFanout I (MaxFanout div 2). A descendant node is
either an access path object or a group descriptor.

E4) All leaf nodes of the search tree are group descrip-
tors, and all group descriptors are at the same distance
from the root node.

E5) If a group descriptor g can be reached by following
Son[i] of an access path object p , then p.Boundary[i -
11 < g. Key I p. Boundary [i] forp. Boundary [i - 1] and
p. Boundary [i] if they exist.

The condition that MinFanout I (MaxFanout div 2)
guarantees that an access path object with MaxFanout
descendants can be split into two access path objects of
legitimate sizes. This condition, which is slightly differ-
ent from the one for an ordinary B-tree, is required by the
top-down algorithm [7] used for tracing the search tree.

When a physical object (an access path object, a group
descriptor, or a target object) is accessed, it must bephys-
icully locked in either Share or Exclusive mode depending
on the mode of the access. The following two operations
are used for physical locking.

plockfx, m): The physical object designated by x is
physically locked in lock mode m. If it is already locked
in a conflicting mode, then the process issuing this oper-
ation is blocked. This operation can be implemented as
follows.

between the logical operations and the physical-level pro-
cedures that implement them.

Note that logical object identifiers X and G used in Fig.
5 are conceptual (imaginary); only their surrogates x and
g can actually be used.

In order to locate a target object for a data item X , we
must first locate the group descriptor g such that g. Key =
key (X). Procedure glocate (K) is provided for this pur-
pose.

glocate(K): If the group descriptor g such that g.Key
= K already exists, its Refcount is incremented by one,
and its identifier is returned. If the group descriptor g such
that g.Key = K does not exist, it must be created. Let ml
and c1 be the lock mode and the lock count, respectively,
of the interval where g falls. That is, if Ki is the largest
key value such that Ki < K and for which a group de-
scriptor gi currently exists, then let ml = Free when
g,.ILockCount = 0 or ml = Locate when gi.ILoclcount #
0, and let c1 = g;.ZLockCount. Now, g can be created with
the following field values.

PLockMode = Free,

PLockCount = 0,

Refcount = 1,

Key = K,

GLockMode = ml,

GLockCount = c1,

ILockCount = c1,

Members = NIL.

After g is inserted into the search tree, the identifier of g
is returned.

MINOURA A N D IYENGAR: ANALYZING MULTILEVEL CONCURRENT SYSTEMS

varX <---> x :- new(7argerObjecrType)

g :- glocare(K);
{ x } :- memlocore(g) { X } :- MemLocare(G[KI) <--->

(no counterpart) <---> grelease(g)

(no counterpan) <---> memrelease(x)

Re&O <---> read(x)

Wrire(x) <---> wn.re(x)

Inserr(X, G) <---> inserr(x, g)

Remove(X, G) <---> remove(x, 8)

MemLuck(X, m) <---> memlock(x, m)

MemUnlock(X) <---> memunlock(x)

GLOck(G, m) <---> glock(g, m)

GUnlock(G) <--> gunlock(g)

Fig. 5 . Logical operations and their associated physical-level procedures.

Function glocate (K) must scan the search tree starting
from the root node until a group descriptor is reached.
The implementation of glocate (K) shown in Fig. 6 uses
the top-down algorithm given in [7] .’ Only exclusive locks
are used for short-term locking. If an access path object
with too many (=MaxFanout) descendants is encoun-
tered, the access path object is split. If an access path
object with too few (= MinFanout) descendants is en-
countered, the access path object is merged with its neigh-
bor or some descendant pointers in its neighbor are moved
to the access path object. (Although the root node must
be treated differently, we do not discuss the details.) Fur-
ther, physical locks on access path objects are seized and
released according to the tree protocol of [29].

When group descriptor g such that g K e y = K is
reached, the set of target objects that represent the data
items belonging to G [K] can be located.

memlocate (g): The target object identifiers in
g.Members are returned. When the identifier of a target
object x is returned, x. Refcount is incremented by one.

If a target object x does not exist for a data item X, then
x can be created as ‘ ‘x : - new(TargetObjectType).”8

Once the target object x for a data item X is known, the
data value of X can be accessed.

read (x): X . Value is returned.
write (x): x. Value is updated to the data value pro-

vided.
Assume that target object x represents a data item X,

and group descriptor g represents a group G. Then, Zn-
sert (X, G) and Remove (X, G) operations can be imple-
mented as follows.

insert (x, 8):
g.Members : = g.Members U { x };
x. Refcount : = x. Refcount + 1.

70bviously, any algorithm that guarantees consistency for search tree
accesses can be used. See [15], [16] for various algorithms that can be used
for this purpose.

’“: -” is the Simula notation for the assignment operator for a pointer
value.

function glocate(K: KeyType): GroupDescriprTyp;

begin
LastNodePu :- nil;
plock(LastN0dePtrf); (* lock RootNodePtr *)
NodePtr :- RootNodeRr, (* start with the mot node *)
plock(NodePuf);
while NodePUt is an access path object do

(* lock the root node *)

begin
case

NodePtrf is too birr:
begln

s pl I t NodePtrf ;
ounlocklNodePtrfk
adjust NodePtr; (*put N c d e h on the right path *)
plock(Nodehf);

NodePtrf is too small:
end;

begin
plock(neighbor of Nodeb?);
merge NcdePtrf with its neighbor or move
some son pointers of the neighbor to NodePuf;
punlock(neighbor of NodePtrf);
punlock(Nodehf);
adjust NodePtr; (* put N o d e b on the right path *)
plock(NodeRrf);

end;
punlock(LastNodePtrf);
LastNodePtr :- NodeRr;
NodePtr :- NodePuf.Son[Rank] where

plock(NodePUt);

end;

Boundary[Rank-l]< K < Boundary[Rank] for NodePuf;

end;

(* group descriptor is reached *)
If NcdePtrf.Key = K then

begin (* group descriptor for K already exists *)
punlock(LastNodePtrf);
NodebT.RefCount :- NodePtrf.Recount + I ;
glocate :- Node-

end

begin
else

(* group descriptor for K does not exist *)
create a group descriptor NewLeaft

with Key - K, Recount = 1 , ... ;
insert the pointer to NewLeaft into LastNodePtrf;
punlock(LastNodePUf);
glocate :- NewLeat

end;
punlock(NodePtrf);

end

Fig. 6 . Function glocate(K).

remove (x, g):

g.Members := g.Members - {x};
x . Refcount : = x. Refcount - 1.

A target object and a group descriptor must be released
after their use. A target object can be released as follows.

memrelease(x): x. Refcount is decremented by one. If
the resultant x. Refcount is zero, then x is deleted.

If x. Refcount = 0, then neither x belongs to any group,
nor its identifier is held by any process. Therefore, x will
never be accessed, and hence it can be deleted. Note that
when x. Refcount = 0, x. LLockCount must be zero. This
requirement is natural since a lock on x cannot be released
if x has been released.

Our implementation does not allow target objects to be
deleted explicitly. However, a request for a target object
deletion can be supported as follows. Assume that NUL
is the data value to be returned when a r e a d (x) operation
is applied to a nonexisting target object x . Then, x is ef-
fectively deleted if NUL is assigned to x. Value. A target
object containing such NUL value can be regarded as a
“tombstone” [20].

56 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 15, NO. 1 , JANUARY 1989

A group descriptor g seized by a glocate (K) operation
can be released by a grelease (g) operation.

grelease(g): g. Refcount is decremented by one. Let g,
be the group descriptor that immediately precedes g (i.e.,
g,. Key < g. Key, and g,. Key < g I . Key < g. Key for no
existing group descriptor g'). Now, if the following con-
dition holds, g can be deleted:

g. Refcount = 0,

g. GLockMode = Free if g,. ILockCount = 0,

Locate if g,. ILockCount # 0 ,

g. GLockCount = g,. ILockCount,

g. ILockCount = g,. ILockCount, and

g.Members = NIL.

In order for the top-down algorithm to work correctly,
each grelease (g) must be preceded by a glocate ' (K) op-
eration such that K = g.Key if the deletion of g is ex-
pected. This operation must work like a glocate (K) op-
eration except that it does not increment g.Refcount. A
glocate'(K) operation prevents access path objects from
possessing too few descendants, as well as it locates the
immediate ancestor node of g from which the pointer to g
is deleted.

Logical locking must be performed by regarding that
each Read(X) or Write (X) operation occurs when its
corresponding read (x) or write (x) operation occurs. The
reason why this rule works correctly is discussed in Sec-
+ion IV-C. Let x be the target object representing a data
item X . Then, logical operations MemLock(X, m) and
MemUnlock (X) can be performed by physical operations
memlock (x , m) and memunlock (x), respectively.

while ((x . LLockMode = Exclusive) or

memlock(x, m):

(x. LLockMode = Share) and (m = Exclusive))
do wait;

x. LLockMode : = m;
x. LLockCount : = x.LLockCount + 1,

memunlock(x) :

x. LLockCount : = x. LLockCount - 1 ;
if x. LLockCount = 0 then x. LLockMode : = Free.

Group locking can be performed similarly. Let g be the
group descriptor representing a group G . Then, logical
operations GLock(G , m) and GUnlock (G) can be per-
formed by physical operations glock(g, m) and gun-
lock (g), respectively.

glock(g, m):

while ((8. GLockMode = Update) or
(g.GLockMode = Locate) and (m = Update))
do wait;

g. GLockMode : = m;
g.GLockCount := g.GLockCount + 1.

gunlock (g):

g. GlockCount : = g. GLockCount - 1 ;
if g. GLockCount = 0 then g. GLockMode : = Free.

Assume that for a pair of group descriptors gi and gj,
gi.Key = K j , gj.Key = K,, and K, < K,, and further that
there exists no group descriptor g such that K j < g.Key
< K,. Then, interval I (K i , K j) can be locked and un-
locked as follows.

ilock (si):
g j . ILockCount : = g,. ILockCount + 1.

iunlock (g j):

gi. ILockCount : = g j . ILockCount - 1.

Assume that a single data item X such that key (X) =
K must be updated. An example of an execution at the
logical level and its counterpart at the physical level is
given in Fig. 7. Note that logical locks are applied ac-
cording to the two-phase locking rule.

In Fig. 8, the periods of the logical locks and the phys-
ical locks applied during an execution of a user transac-
tion whose logical representation is Read (X); Read(Y);
W r i t e (Z) is shown, where k e y (X) = K , , key(Y) = K2,
key (Z) = K3. Note that physical locks are applied for far
shorter periods than logical locks.

In Fig. 9, the database state histories created by three
different ways of interleaving of logical operations are
shown. The logical write operations of TI and T2 do not
conflict with each other, and hence they may interleave in
any way. Note that Write(B), for example, must be ex-
ecuted as follows:

g B : - glocate('B ') ;
b : - New(Target0bjectType);
write(b);
inserr(b , g B) ;
grelease(g,).

Target objects are not shown in Fig. 9.
The tree structure of Fig. 9(h), which results if TI and

T2 are executed in the order of Write(B) , W r i t e (D) ,
W i r e (I) , and Write(G) , cannot occur if TI and T2 are
executed one at a time; either Fig. 9(e) or Fig. 9(1) will
result. Note that the tree structure in Fig. 9(h) represents
the same logical database state as the tree structure in Fig.
9(e) or Fig. 9(1), and that it must be considered correct.

C. Correctness
In this subsection, we show that the implementation of

a multilevel concurrency control scheme given in the pre-
ceding subsection is correct. First, it is proved that logical
objects and logical operations are correctly implemented
by physical objects and physical operations. Then, we
show that logical operations will be correctly scheduled
if consistent locking is used for logical operations.

We first show that logical objects and logical operations
applied to them are correctly implemented. For this pur-

MINOURA A N D IYENGAR: ANALYZING MULTILEVEL CONCURRENT SYSTEMS

~

57

g := glocare(K);

{ x } :- memlocate(g);
GLock(G[Kl, Locate); glock(g, Locate);

Membck(X, Exclusive); rnemlock(x, Exclusive);
GUnlock(G[Kl); gunlock(g);

greleare(g);
Read(X); read(x);

Wrire(X); write(x);
MemlJnlock(X); memunlock(x);

memrelease(xk

Fig. 7 . A logical execution and its physical counterpart

Write(z 1
Re_oc-*-

glocale(K,) glocate(Kp) glocaIe(K,)
R>ad(X 1

_ _
_.

..

._
_ _ _ _ ___._ _ _ _ _ _._._ _. ___._

r e a d (x) r e a d (y) write(z

- loglcal (long-term) lack
. physical (short- term)lock

Fig. 8. Long-term and short-term locking.

pose, we consider the data abstraction function that as-
sociates logical objects with physical objects as follows.

F I : Each target object x represents a separate data item
X.9 If a target object x exists for a data item X , then the
data value of X is defined by x. Value, and the lock status
of X is defined by x.LLockMode and x.LLockCount. If
such x does not exist, then the data value of X is unde-
fined, and no locks are applied on X .

F2: If a group descriptor g such that g.Key = K exists
for a key value K, then g. Members contains the identifiers
of the target objects that represent the members of group
G [K] , and the lock status of G [K] is shown by
g. GLockMode and g. GLockCount. If such g does not ex-
ist for a key value K, then G [K] is empty. In this case,
the lock status of G [K] can be known from
gi. ZLockCount, where gi is the group descriptor that would
immediately precede g if there were g .

An implementation of logical operations is correct if
the following conditions are satisfied.

GI: A logical write operation Wri te(X) correctly up-
dates the data value of X as defined by F1, and a logical
read operation Read(X) returns the current data value of
X as defined by F 1.

G2: Each group G [K] as defined by F2 is properly
accessed by Insert (X , G [K]) , Remove (X , G [K 3) and
MemLocate (G [K]) operations as discussed in Section
IV-A.

Now, the following lemma is trivially true.
Lemma I : Read (X) and Write (X) are properly imple-

mented by read(x) and write(x) , respectively where x is
the target object for data item X .

Note that a data item with an undefined data value will
never be accessed, since its target object cannot be
reached.

91f a target object x2 is not a continuation of a target object x I , they
represent different data items even if they are an identical data item from
the user's viewpoint.

1, : WRlTElBl, WRlTElGl

TI: WRITEID), WRITE(I) n

A C D ~ F ~ J

Fig. 9 . Physically nonserializable execution.

The following lemma is also trivial.
Lemma 2: Znsert(X, G) , Remove(X, G) and Mem-

Locate (G) are correctly implemented by insert (x , g),
remove (x , g), and memfocate (g), respectively, where x
and g are the target object and the group descriptor that
respectively represent X and G.

We say that gfocate (K) and grelease (g) are correctly
implemented, if they satisfy the following requirements.

HI: At any time at most one group descriptor exists in
the system for each group G [K] .

H2: For each pair of gfocate (K) and grelease (g) is-
sued by a user transaction, group descriptor g returned by
glocate (K) is the correct group descriptor for G [K 3 until
the corresponding grelease (g) occurs.

H3: The state of G [K] is continuous when its group
descriptor is created or deleted.

Although we do not show the detailed implementations
of procedure grefease (g), we assume that gfocate (K) and
grefease (g) satisfy the specifications given in Section
IV-B. Then, we have the following lemma, which con-
cerns correctness of sequential programs.

Lemma 3: Requirements H1, H2, and H3 are satisfied
if glocate (K) [and glocate ' (K) 3 and grelease (g) are ex-
ecuted one at a time.

58 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. I . JANUARY 1989

Proofi Requirements H1 and H2 immediately follow
from the specifications for glocate (K) and grelease (g).
Requirements H3 follows from the fact that the value of
a group descriptor created or deleted is identical to the

17
Further, requirements H1, H2, and H3 are still satisfied

even when glocate (K) and grelease (g) are executed
concurrently.

Lemma 4: Even if procedures glocate(K) and gre-
lease (g) are executed concurrently, they produce the
same effects as when they are executed one at a time.

Proofi The implementation of glocate (K) and gre-
lease (g) follows the tree protocol of [29], and hence their
execution is serializable in terms of these operations. 0

If logical operations are correctly implemented and if
the execution of logical operations is serializable in terms
of user transactions, then we can consider that the resul-
tant system operation is correct. This condition is satisfied
if a consistent locking scheme is employed for logical ob-
jects. The point here is that accesses to physical objects
(in particular, to access path objects) need not be serial-
izable in terms of user transactions.

In order to define the execution of logical operations,
their occurrence times can be specified as follows.

Dejinition (Execution Times of Logical Opera-
tions): The occurrence time of a logical operation
Read (X) or Write (X) is defined to be the time when the
target object x for logical object Xis accessed by the phys-
ical operation r e a d (x) or write (x) that implements
Read (X) or Write (X). Similarly, the occurrence time of
a logical operation MemLocate (G), Insert (X, G) or Re-
move(X, G) is defined to be the time when the group
descriptor g that represents G is accessed by the physical
operation memlocate(g), insert(x, g) , or remove(x, g)
that implements the logical operation.

Once occurrence times of logical operations are defined
as above, the following lemma is immediate from the im-
plementations of logical operations.

Lemma 5: The values of logical objects as defined by
F1 and F2 are accessed by logical operations exactly at
the points when those logical operations are supposed to
occur according to the above definition.

We now can conclude that logical objects can be re-
garded as real objects as far as logical operations are con-
cerned. Hence, if logical operations are performed under
a consistent (logical) locking scheme, the resultant exe-
cution will be serializable at the logical level.

default value defined for the group descriptor.

V. CONCLUSION
We have presented a framework for the design, imple-

mentation, and analysis of a multilevel concurrent soft-
ware system. Time abstraction used in combination with
data abstraction plays a key role in our methodology. Time
abstraction allows us to specify explicitly the execution
times of abstract operations. Abstract operations imple-
mented in this way can be readily used, and they can be
synchronized according to their hypothetical execution
times.

Although we have not shown any examples, concurrent
background processing like garbage collection and data-
structure reorganization can be discussed within the
framework presented in Section 11. Time abstraction has
been implicit in such concepts as atomicity, timestamp-
based concurrency control, and multiversion concurrently
control. We consider that its usefulness can be further ex-
ploited by its full recognition.

ACKNOWLEDGMENT
The authors wish to thank the anonymous referees for

their constructive comments.

REFERENCES
[l] M. M. Astrahan, et a l . , “System R: Relational approach to database

management,” ACM Trans. Database Sysr., vol. 1, pp. 97-137, June
1976.

[2] R. Bayer and E. McCreight, “Organization and maintenance of large
ordered indexes,” Acta Inform., vol. 1, pp. 173-189, 1972.

[3] C. Beeri, P. A. Bernstein, and N. Goodman, “A model for concur-
rency in nested transactions systems,’’ Dep. Comput. Sci., Hebrew
Univ., Rep. TR CS-86-1, 1986.

[4] P. Bernstein, D. Shipman, and W. Wong, “Formal aspects of seri-
alizability in database concurrency control,” IEEE Trans. Software
Eng., SE-5, pp. 203-216, May 1979.

[5] K. Eswaran, J. Gray, R. Lorie, and I . Traiger, “The notions of con-
sistency and predicate locks in a database system,” Commun. ACM,

[6] J . Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price,
F. Putzolu, and I. Traiger, “The recovery manager of the System R
database manager,” Cornput. Surveys, vol. 13, pp. 223-242, June
1981.

[7] L. J. Guibas and R. Sedgewick, “A dichromatic framework for bal-
anced trees,” in Proc. 19th Symp. Foundations Comp. Sr i . , 1978,

[8] J. Guttag, “Abstract data types and the development of data struc-
tures,” Commun. ACM, vol. 20, pp. 396-404, June 1977.

[9] J. V. Guttag, E. Horowitz, and D. R. Musser, “Abstract data types
and software validation,” Commun. ACM, vol. 21, pp. 1048-1064,
Dec. 1978.

[lo] I. Guttag, “Notes on type abstraction (version 2);’ IEEE Trans. Soft-
ware Eng., vol. SE-6, pp. 13-23, Jan. 1980.

[l l] C. A. R. Hoare, “Proof of correctness of data representations,” Acta
Inform., vol. 1, pp. 271-281, 1972.

[12] -, “Monitors: An operating system structuring concept,” Com-
mun ACM, vol. 17, pp. 549-557, Oct. 1974.

[13] J . H. Howard, “Proving monitors,” Commun. ACM, vol. 19, pp.
273-279, May 1976.

1141 Y. S. Kwong, “On reduction of asynchronous systems,” Theoretical
Comput. Sci. , vol. 5 , pp. 25-50, 1977.

[I51 Y. S. Kwong and D. Wood, “A new method for concurrency in
B-Trees,” IEEE Trans. Software Eng., vol. SE-8, pp. 21 1-222, May
1982.

[I61 P. L. Lehman and S . B. Yao, “Efficient locking for concurrent op-
erations on B-trees,” ACM Trans. Database Sysr., vol. 6 , pp. 650-
670, Dec. 1981.

[17] R. J. Lipton, “Reduction: A method of proving properties of parallel
programs,” Commun. ACM, vol. 18, pp. 717-721, Dec. 1975.

[l e] B. H. Liskov and S . N. Zilles, “Specification techniques for data
abstractions,” IEEE Trans. Software Eng., vol. SE-I, pp. 7-19, Mar.
1975.

[I91 B. Liskov and A. Snyder, “Abstraction mechanisms in CLU,” Com-
nrun. ACM, vol. 20, pp. 564-576, Aug. 1977.

[20] D. B . Lomet, “Scheme for invalidating references to freed storage,”
IBM J . Res. Develop., vol. 19, pp. 26-35, Jan. 1975.

[2 11 -, “Process structuring synchronization, and recovery using atomic
actions,” SIGPLAN Notices, vol. 12, pp. 128-137, 1977.

[22] J. McCarthy, “Toward a mathematical science of computation,” in
Proc. IFIP, 1962, pp. 21-28.

1231 T. Minoura, “Time abstraction,” unpublished draft, Univ. Southern
Calif., 1981.

[24l -, “Multi-level concurrency control of a database system,” in

vol. 19, pp. 624-633, NOV. 1976.

pp. 8-21.

MINOURA A N D IYENGAR: A N A L Y Z I N G M U L T I L E V E L C O N C U R R E N T SYSTEMS 59

Proc. 4th Symp. Reliabiliry in Disrribured Software and Database
Systems, 1984, pp. 156-168.

[25] J. E. Moss, N. D. Griffeth, and M. H. Graham, “Abstraction in re-
covery management,” in Proc. ACM-SIGMOD Int. Con$ Manage-
ment o jDa ta , 1986, pp. 72-83.

(261 S . S . Owicki, “Specifications and proofs for abstract data types in
concurrent programs,” Comput. Syst. Lab., Standford Univ., Tech.
Rep. 133, 1977.

(271 C. H. Papadimitriou, “The serializability of concurrent database up-
dates,” J . ACM, vol. 26, no. 4, pp. 631-653, Oct. 1979.

(281 D. P. Reed, “Implementing atomic actions on decentralized data,”
ACMTrans. Cornput. Syst., vol. I, pp. 3-23, Feb. 1983.

(291 A. Silberschatz and 2. Kedem, “Consistency in hierarchical database
systems,’’ J . ACM, vol. 27, pp. 72-80, Jan. 1980.

[30] W. A. Wulf, R. L. London, and M. Shaw, “An introduction to the
construction and verification of Alphard programs, ” IEEE Trans.
Sofrware Eng . , vol. SE-2, pp. 253-265, Dec. 1976.

(311 S . B. Yao, “An attribute based model for database access cost anal-
ysis,” ACM Trans. Ddrabase Syst., vol. 2, pp. 45-67, Mar. 1977.

Toshimi Minoura (S’76-M’79-S’79-M’80) re-
ceived the B.S. and M.S. degrees from Tokyo
University, Tokyo, Japan, in 1968 and 1970, re-
spectively, and the Ph.D. degree from Stanford
University, Stanford, CA, in 1980, all in electri-
cal engineering.

He is currently an Associate Professor of Com-
puter Science at Oregon State University, Corval-
lis. He has conducted research on deadlock prob-
lems, true-copy token schemes, multiversion and
multilevel concurrency control, and reliable stor-

S. Sitharama Iyengar received the Ph.D. degree
in engineering in 1974.

He is currently a Professor of Computer Sci-
ence and Supervisor of robotic research and par-
allel algorithms at Louisiana State University,
Baton Rouge. He has authored (coauthored) more
than 75 research papers in parallel algorithms, data
structures, navigation of intelligent mobile ro-
bots, etc. He is currently studying the application
of neural network techniques for path planning and
learning in mobile robots. His papers have ap-

peared in the following journals: IEEE TSE, IEEE PAMI; IEEE SMC,
IEEE JOURNAL OF ROBOTICS A N D AUTOMATION, IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, CACM, JCIS, Computer Networks, Journal of
Roboric Systems, BIT, Theoretical Computer Science, and several other
international journals and IEEE proceedings. He is an ACM National Lec-
turer for 1986-1988. His research has been funded by NASA, DOE,
NAVY, Jet Propulsion Lab., and Caltech.

Dr. Iyengar has been on program committees for several major confer-
ences in the USA and in Europe. He was a Co-Guest Editor for a special
issue of IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. He is also a guest
editor for a special issue on autonomous intelligent machines in IEEE Com-
puter magazine.

age subsystems. He recently started to work on 4GL approach for CAD.

