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’ Autonomous Robot Navigation in Unknown Terrains: 
Incidental Learning and Environmental Exploration 

NAGESWARA S. V. R A 0  AND S. S. IYENGAR 

Abstract -The navigation of autonomous mobile machines, which are 
referred to as robots, through unknown terrains, i.e., terrains whose 
models are not a priori known is considered. We deal with point-sized 
robots in two- and three-dimensional terrains and circular robots in 
two-dimensional terrains. The two-dimensional (three-dimensional) ter- 
rains are finite-sized and populated by an unknown, hut, finite, number 
of simple polygonal (polyhedral) obstacles. The robot is equipped with a 
sensor system that detects all vertices and edges that are visible from its 
present location. In this context, the work deals with two basic naviga- 
tional problems. In the visit problem, the robot is required to visit a 
sequence of destination points, in a specified order, using the sensor 
system. In the terrain model acquisition problem, the robot is required 
to acquire the complete model of the terrain hy exploring the terrain 
with the sensor. A framework that yields solutions to both the visit 
problem and the terrain model acquisitioh problem using a single 
approach is presented. The approach consists of incrementally con- 
structing, in an algorithmic manner, an appropriate geometric graph 
structure (1-skeleton), called the navigational course. A point robot 
employs the restricted visibility graph and the visibility graph as the 
navigational course in two- and three-dimensional cases respectively. A 
circular robot employs the modified visibility graph. The algorithms to 
solve the visit problem and the terrain model acquisition problem based 
on the abovementioned structures are presented and analyzed. 

I. INTRODUCTION 
A vital component of unmanned machines or rovers is the 

navigation system that enables these machines to autonomously 
navigate to the required destinations. The machines with au- 
tonomous navigation capability can be employed in various 
applications such as autonomous land navigation, unmanned 
extraterrestrial and underwater exploration, maintenance and 
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repairs in nuclear power plants, operation in chemical and toxic 
industries, unmanned vigilance and security systems, etc. Such 
systems must be capable of navigating in known environments, 
i.e., the environments whose precise models are known, as well 
as in unknown environments, i.e., environments whose models 
are not known. 

The problem of planning collision-free paths for moving a 
body through a known terrain has been extensively studied 
under the popular generic name of the piano movers problem. 
There has been a surge of research activities in this area due to 
the important contributions of Lozano-Perez and Wesley [6], 
O’Dunlaing and Yap [9], Reif [14], and Schwartz and Sharir [15]. 
Yap [17] and Sharir [16] present excellent surveys of various 
formulations of this problem and their solutions. 

The problem of robot navigation through an unknown terrain, 
has been studied by several researchers although not to the 
extent of its counterpart in known terrains. Lumelsky and 
Stepanov [8] present two algorithms for a point robot to move 
from a source point to a destination point using touch sensing. 
In his survey paper, Lumelsky [7] presents a comprehensive 
discussion on several algorithmic and complexity issues dealing 
with a point robot in unknown terrains. For the terrains popu- 
lated by convex polygonal obstacles, Oommen et al. [lo] develop 
algorithms for a point robot to navigate to a destination point, 
and at the same time “learn” about the parts of terrain that are 
encountered on the way to the destination. Here the robot uses 
a combination of touch sensing and distance probing. In this 
treatment, several interesting obstacle configurations such as the 
mazes, traps etc., are not dealt with. The above problems can be 
grouped under a broad title, the visit problem, wherein a robot 
is required to visit a sequence of destination points through an 
unknown terrain. Another problem, called the terrain model 
acquisition problem is discussed by Rao et al. [13]. Here, a point 
robot is required to acquire the complete model of the terrain. 

The visit problem and the terrain model acquisition problem 
have been solved independent of each other. Here we present a 
framework to solve these two problems using a single approach 
that implements a graph search on an incrementally-constructed 
graph called the nacigation course. A general outline of this 
approach has been presented by Rao [ 111. Here we present the 
visibility graph methods to implement this approach, by present- 
ing the technical issues, such as proofs of the properties of 
various navigational courses, extension to circular robots, lower 
bounds on sensor operations, etc. We deal with point robots and 
circular robots. The method of Oommen et al. [lo] uses the 
visibility graph (in plane) in their algorithms. We extend their 
work to terrains with nonconvex obstacles which include mazes 
and traps. In two-dimensional (2-D) terrains, we show that a 
subgraph of visibility graph, the rrstricted risibility graph, with 
only the convex obstacle vertices as nodes, suffices to solve these 
two problems. This results in a reduction in the number of 
sensor operations and the storage, if the terrain consists of 
non-convex corners. Also, we establish the lower bounds on the 
worst-cast number of scan operations performed by these algo- 
rithms. 

Motii9ation for Nacigational Problems 
The visit problem and the terrain model acquisition problem 

have been motivated by a specific practical application involving 
the development of an autonomous rescue robot. However, our 
treatment is more general than this specific application. In this 
application, the robot is required to carry out rescue operations 
in nuclear power plants in the event of radiation leakages, and 
other events that prevent human operation. A solution to the 
visit problem enables the robot to carry out a set of operations 
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in different locations in unfamiliar environments. Since the 
motion planning in this case is essentially sensor-based, the 
robot may be required to perform a number of expensive sensor 
operations. Furthermore, the robot could temporarily navigate 
into local detours because of the partial nature of the informa- 
tion returned by the sensors. By incorporating the incidental 
learning feature, we reduce the expected number of sensor 
operations, and the expected number of detours, as the robot 
visits newer locations. Further, if the complete terrain model is 
available, the robot can avoid 1) local detours, 2) sensor opera- 
tions. These two important points motivate the terrain model 
acquisition problem. In general, a dedicated rescue robot typi- 
cally idles in between two rescue operations, and the rescue 
operations could be fairly infrequent. Thus there are definite 
advantages if the robot is employed in the terrain modcl acquisi- 
tion process during this period. Our methodology provides a 
basic algorithmic framework that aids the design of a naviga- 
tional system for the abovemcntioned rescue robot. 

The organization of the paper is as follows: Preliminaries are 
presented in Section 11. In Section 111, we define the restricted 
visibility graph and the modified visibility graph, and prove some 
of their properties. rIn Section IV, we present solutions for the 
terrain model acquisition and the visit problems. We compare 
our method with the other methods in Section V. 

11. P R t L l M l N A R l t S  

We eonsidcr a point robot R in two- and three-dimensional 
(3-D) terrains. Here, the location of R is also called the position 
of R. Additionally, in 2-D terrains, we consider a circular body 
R of radius 6, ( 6  > 0). The location of the center of R is called 
thc position of R. The R houses a computational device with 
storage capability. The point robot R is capable of moving along 
a straight-line path in two- and three-dimensional terrains. Ad- 
ditionally, the circular R is capable of rotating around its center 
and also around a point on the circumference. R takes a finite 
amount of time to move through a finite amount of distance. 
Further, R is equipped with an algorithm B that plans a 
collision-free path (for R) through a known terrain. For cxam- 
ple, in two dimensions, we can use the O ( N  log N )  algorithm of 
O’Dunlaing and Yap [9] or Leven and Sharir [5] or Bhattacharya 
and Zorbas [l]  to plan a path from a source location to a 
destination location for a circular robot, where N is the total 
number of obstacles corners. In three dimensions, R can use the 
algorithms of Reif [14]. For a circular robot, we can also use the 
algorithm of Chew [ 2 ]  or Hershberger and Guibas [3], if shortest 
paths are required. 

We consider a finite-sized terrain populated by a finite set 
0 =(O,,O, ,  . . .  0,J. Each 0, is called an obstacle; 0, is a 
simple polygon in the two-dimensional ease and a polyhedron in 
the three dimensional case. In either case, 0, has a finite 
number of vertices. The terrain is completely unknown to R,  
i.e., the number of obstacles, and also the number and locations 
of vertices of each obstacle are unknown to R. The free-space is 
given by Cl = fir= ,Oy, where 0: is the complement of 0,. The 
closure of the free-spacc is denoted by R. Let N denote the 
total number of vertices of all obstacles. A vertex l ’ ,  of a 
polygon. is called conivx if the angle included by the obstacle 
edges that are incident at ( 3  is less than II. The vertex l ‘ ,  of an 
obstacle polygon, is called nonconwx if it is not convex. For 
two-dimensional terrains, let C be the number of nonconvex 
vertices. 

We imagine a logical point of reference x on R for the 
sensor. A point y E fi is said to be visible t o R  if the straight 
line joining x and y is entirely contained in 0. R is equipped 
with a sensor that detects the maximal set of points on the 
obstacle boundaries that are visible from x. Such an operation is 
termed as the scan operation. We assume that a scan operation 
is error-free. 

Two Narigational Problem 
Initially, R is located at the position d,, without intersecting 

any obstacle and at a finite distance from an obstacle. In the 
terrain model acquisition problem, R is required to acquire the 
model of the terrain to a degree such that it can navigate to any 
reachable destination location by planning a path using the 
known terrain algorithm B alone. In the case of a point robot 
this is tantamount to acquiring the entire model of the terrain. 
For a circular robot, an appropriate subset of the terrain bound- 
ary is to be identified depending on thc radius of R and the 
initial location d,,. Note that after the terrain model is com- 
pletely acquired, no sensor operations are needed for naviga- 
tional purposes. Second, in the iisit problem, R is required to 
visit the positions d , , d , ; .  .,d,,, in the specified order if there 
exists a path through these positions. If no such path exists, then 
R must report this fact in a finite amount of time. 

Basic Aigorithm 
Here, R performs a “graph exploration type” of navigation 

using a combinatorial graph called the nacigation course, ((01, 
of the terrain 0. A detailed treatment on this basic algorithm 
can be found in [ll]. ( (0) is a 1-skeleton embedded in 6. The 
nodes (edges) of [ ( O )  are called [-nodes ([-edges). In this 
paper, each [-node corresponds to an obstacle vertex, aEd 
specifies position for R such that it is entirely contained in R. 
For a point robot, a [-edge (u , ,c , )  specifies a line segment 
L I  + t ( c ,  - L. , ) ,  0 Q t < 1, that is entirely contained in R. Thus 
the edge provides a collision-free path to move from c ,  to U,. 
For a circular robot, the edge ( c , , c , )  specifies a collision-free 
path, of finite length, from c ,  to u, for R. The [ ( O )  is initially 
unknown and it is incrementally constructed using the data 
obtained through the sensor operations. The navigational course 
( (0)  has to satisfy a set of properties, in order to yield correct 
solutions to the visit problem and the terrain model acquisition 
problem. The property of local-constructibility, means that the 
adjacency list of a .$-vertex c can be computed from the infor- 
mation obtained by a scan operation performed from c. The 
finiteness property requires that [ ( O )  has a finite number of 
vertices. Also the graph connecticity property requires that any 
two [-vertices be connected by a path of [-edges. Now the fact 
that any graph exploration algorithm visits all the nodes of a 
finite connected graph in a finite amount of time, translates to 
the following observation: 

Obsercation 1: If [ ( O )  satisfies the properties of finiteness, 
connectivity and local-constructibility, then, R, executing graph 
search algorithm, visits all vertices of [ ( O )  in a finite amount of 
time. 

111. NAVIGATIONAL COURSES 

First, we present a [ ( O )  for a point robot, and in this case 
[ ( O )  is the visibility graph of 0 for three-dimensional terrains. 
For two-dimensional terrains, we consider the restricted visibil- 
i ty  graph. For circular robots ( 6  > 0) we present a [ ( O )  based 
on the restricted visibility graph. In each of the cases we show 
that the proposed structure satisfies the properties of finiteness, 
connectivity, and local-constructibility. We also consider an ad- 
ditional property, namely terrain-cisib+ty, which means that 
every point in the required subset of R, is visible from some 
[-vertex. 

A.  Point Robot 
For a point robot we consider finite-sized 3-D terrains popu- 

lated by polyhedral obstacles, i.e., 0, is a finite-sized polyhedron 
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(a) (b) ( c )  

Fig. I .  Navigation courses based on visibility graphs. (a) Obstacle terrain 0 = (0,,02). (h) V G ( 0 ) .  (c) VG*(O). 

with a finite number of vertices. The visibility graph, VG(O)= ' 1  

(V ,  follows E ) ,  of [6]: a terrain 1) V is populated the union by of the vertices obstacle of all set obstacle 0 is defined polyhe- as f rubkrband s2:sf rubberband 
dra, 2) A line joining the vertices e, and e, forms an edge 
(e, ,  I ; )  E E if and only if it is either an obstacle edge or it is not 
intersected by any obstacle. See Fig. 1 for an example. The 
visibility graph is connected [13],To show the terrain-visibility 

small polyhedron P at x which can be imagined as a point at x .  

nected. Let c be a vertex of some 0, E 0 to which a vertex of P 
is connected. Then x is visible from c. We shall now summarize 
the properties of VG(0): 

V U 1  

U 2  property, consider a point x E a. Consider an infinitesimally 

Consider the visibility graph of 0 u(P}. This graph is con- 

$ 2  

v 2  V l  

(a) (b) 

V I  

Properties I :  The visibility graph VG(0) satisfies the proper- 
ties of finiteness, connectivity, local-constructibility and terrain- 
visibility. 

We define the restricted risibility graph VG*(O) = (V ,  E )  of a 
2-D terrain 0 as follows: 1) V is the union of all convex vertices 
of obstacle polygons, 2) A line joining the vertices c, and c, 
forms an edge (c,, L;) E E if and only if it is either an obstacle 
edge of it is not intersected by any obstacle polygon. See Fig. 1 
for an example. The VG*(O) is a subgraph of VG(O), and it 
coincides with VG(0) if every 0, E 0 is a convex polygon. The 
number of oodes of VG*(O) is N - C, where C is the number 
of non-convex obstacle vertices. In a general case where 0 
contains non-convex vertices, the VG*(O) has a lesser number 
of nodes than VG(0) .  We now have the following properties of 
VG * ( 0 1. 

Lemma I :  The restricted visibility graph VG*(O) satisfies the 
properties of connectivity and terrain-visibility. 

Proof The key observation is that the shortest path be- 
tween any two points in free-space is a polygonal path that runs 
through the obstacle vertices. Additionally we can show that 
such a path passes through convex obstacle vertices only. We 
can show this as follows: Let us say that the shortest path passes 
through a non-convex vertex e. Let c l  and c, be the obstacles 
vertices adjacent tp 1' on a shortest path i.e., the shortest path 
passes along the edges (c l ,  1 3 )  and ( c ,  e*). Imagine a rubber band 
stretched (in the free-space) along the vertices c I , c  and e,, and 
then released. The action of the rubber band can be visualized 

nrbber band 

(C) 

Fig. 2. Shortest path runs through the convex vertices only. 

as follows: Imagine a long line segment (a ray) extending from 
c 1  through e. Rotate this ray around c l  into the concavity until 
it encounters e ,  or a convex vertex, say u l .  Now rotate the ray 
around u1  in a similar fashion. Note that each such rotation 
brings the line closer to U , ,  and there can be only a finite 
number of rotations. Thus the rubber band will touch the convex 
vertices, say U,, i = 1,2, . . . k ,  contained in the triangle formed 
by c , , c  and c2 (see Fig. 2). It is clear from Fig. 2(a) and Fig. 
2(b) that for cases k = 1,2 the path followed by rubber band is 
shorter that the original path. For k = 1, draw _ _ -  perpendiculars at 
u I  to segments c U and ~ ~ e , .  Here length of c l u l  ( ~ , e , )  is less 
than that of c l s l  (s,c,). Thus the path c , , u I , c ,  is shorter. If 
k = 2, the key idea is to note that the length of t h z i g i n a l  path 
contained in between the end perpendiculars of ulu,  is greater 
than or equal to the length of G. Thus the path C ~ , U ~ , U ~ , C ~  
is shorter than c I , c , ~ , .  For k 3 we use the same argument. 
Draw perpendiculars at the end of each line segment joining U ,  

- -  
11 
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and It is clear that the perpendiculars drawn at each 1 4 ,  

will include a positive angle. Now it is easy to see that for each 
segment u,u ,+  I ,  the length of this segment is less than or cqual 
to the length of the original path contained within the perpen- 
diculars at U ,  and u , + ~ .  Thus the path obtained by the rubber 
band is shorter than the original path. Thus the shortest path 
between any two points in the frcc-space is a polygonal path 
that runs exclusively through the convex obstacle vertices. 

Now consider the shortest path between any convcx obstacle 
vertices. By the above arguments these two vertices are con- 
nected by a polygonal path that runs exclusively through thc 
convex obstacle vertices. This is precisely a path on the re- 
stricted visibility graph VG*(O). This proves the connectivity 
property of VG*(O). The tcrrain-visibility property of VG*(O) 
follows along the lines of that of the visibility graph. Hence the 
Lemma. 

In summary we have the following properties. 

Properties 2: The restricted visibility graph VG*(O) satisfies 
the properties of finiteness, connectivity, terrain-visibility and 
local-constructibility. 

B. Circular Robot 
In this section, we define a family of graphs such that each of 

its members satisfies the required properties to be a naviga- 
tional course. Consider the set FP of free-placements in which 
R is entirely contained in R. Note that the free-space R is an 
open polygonal region and the boundary of its closure is the 
boundary of U :'= ,O,, the union of obstaclc polygons. The FP is 
composed of connected components, and let be the maximal 
connected component that contains the initial position x,) of R. 
Any position of R connected to x,) belongs to Vr. Consider 
r = Vr@R, where @ is the Minkowski sum, i.e., r = { x  + y / x  E Vr 
and y E RI. It is clear that r is an open connected set. The 
boundary of closure of r consists of intervals of edges of 0 , ' s  
and circular arcs (possibly zero in number). The circular ares are 
generated in the case when R is located in such a way that its 
closure intersects two distinct objects; an object is an obstacle 
vertex or an obstacle edge. Eaehsuch circular arc is formed by a 
unique pair of points at which R intersects boundary of obsta- 
cles; each such point is called the end-iwtex and the corre- 
sponding pair is called the end-pair. Note that an end-vertex is 
either an obstacle vertex or a point on an obstacle edge. 

Let S(i,) denote the angle subtended by an obstacle at its 
vertex 1 ' .  Let the quidistarice line of a convex vertex L ,  denoted 
by EL([.) ,  be a portion of the bisector of that extends from 
I '  to the outwards of the obstacle. N_ow we have the property 
that any obstacle vertex contained in r is a convex vertex. These 
convex vertices can belong to one of the two categories. First 
category consists of all the convex vertices that form an end-pair. 
And second category consists_of all free vertices which arc 
convex vertices contained in r and do not form an end-pair. 
Note that by definition, we can place R so t h e t  touches a free 
vertex 1 '  and we can rotate it around r .  Let L ' , L .  and L ' I ' ~  be the 
segments of obstacle edges contained in r. We can slide R 
along r I r  to 1' (at least through infinitesimally small distance) 
and rotate it around 1' and then slide it along the edge to 1 ~ ' ~ .  

Then during the rotation the center of R meets E L ( [ , )  at one 
position. This shows that all points g n  E L ( t , )  within a distance 
of 26 (from a free vertex 1 . )  are in R. 

Let V be the union of the free vertices contained in T. 
Consider a function f :  V +  U,  E ,,EL((.) called the sensing 
function. This function assigns a unique point on EL([ . )  for each 
I '  E V ,  i.e. f (  1 . )  E EL( 11). The modified Lisihility graph (MVG) of 
the obstacle terrain 0 with respect to a sensing function f, 
dcnoted by VG,(O), is a graph (V ,  E )  such that there exists an 
edge ( I . , w ) E  E if and only if the line joining w and f(i.1 lies 

(a) 

(b) 
Fig. 3. Example of VG,(O). (a) Definition of .f' and the positions of  H at 

the free vertices. (b) The graph VG,tO) for f and 0 of (a).  

entirely in r, and does not cross the boundary of r. For a given 
obstacle terrain 0, there exists a family of modified visibility 
graphs, denoted by {VGf (0 ) )  corresponding to all possible f s .  
See Fig. 3 for an example of V G f ( 0 ) .  We have the following 
lemma: 

Lemma 2: The modified visibility graph V G f ( 0 )  E {VGf(0)}  
satisfies the connectivity, and terrain-visibility properties for all 
f such that I\[, - f<v ) l l  < 26, for all r E V .  

Proof We first discuss the connectivity property. Consider 
1) two free vertices c I ,  r 2  E V. Consider a shortest path from c ,  
to ( s 2  that ruEs through r such that the path does not cross the 
boundary of r. Such a path exists because r is a connected set. 
This path runs through only convex vertices of r. Using the 
arguments similar to those in the proof of Lemma 1 (using 
rubber band) we can show that the path runs through only the 
free vertices of r. Here the convex vertices that form an 
end-pair can be essentially treated as concave corners, and it the 
shortest path can be shown not to pass through them. Consider 
an edge of such shortest path. Now consider a rubber 
band stretched from to ( s 2 .  Then move the r I  end of the 
rubber band along E L ( [ , , )  to f ( ~ , ~ ) .  In this state the rubber 
band might touch some other free vertices. Let the rubber band 
run through the free vertices u I , u 2 ; .  ' , u r .  Here u1 is visible 
from f ( ~ . ~ ) .  Hence ( ~ ~ l , u l )  is an edge of VG,(O). Apply the 
same technique from each of u t ' s .  It  is elear-that there is a path 
from 

Now consider the terrain-vlslblllty property. Consider x E R. 
Now consider a shortest path from x to a free vertex such that 
the path lies entirely in l- as described above. Move on this path 
from x to the first free vertex U .  Then imagine a rubber band 
stretched from x to U ,  and move its U end along E L ( u )  to f ( u ) .  
If the line from x to f ( u )  is not intercepted by any obstacle then 
we are done. Otherwise move from x along the stretched rubber 
band to the first free vertex, and apply the same procedure. The 

to l ' ? .  Thus the VC,(,q>,is connected. 
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repeated application of the procedure results in free vertex u I  
such that x is visible from f(uI) .  Hence the Lemma. 

It is clear that V G f ( 0 )  has at most N - C vertices and O ( N ’ )  
edges. Note that all free vertices that are visible from f(c)  can 
be obtained from the information from a single scan. Thus 
VG,(O) satisfies the local-constructibility property. We summa- 
rize all these properties as follows. 

Properties 3: The graph V G f ( 0 )  for an f that satisfies the 
condition stated in Lemma 2, satisfies the properties of finite- 
ness, connectivity, terrain-visibility and local-constructibility. 

Chew [2] proposed the path graph that is an extension of the 
visibility graph. This path graph is used to plan an optimal path 
between two points through a two-dimensional terrain, and this 
graph has O ( N z )  vertices and O ( N 4 )  edges. This path graph 
can be used as a t (O)  for a circular robot. The modified 
visibility graph contains at most N vertices, which is important 
because the required number of scan operations in the solution 
to terrain model acquisition problem and the visit problem (in a 
worst-case) is equal to the number of vertices of t(0). 

Iv. NAVIGATION ALGORITHMS 
A. Circular Robot 

A vertex of V G f ( 0 )  is a convex obstacle vertex c contained in 
r such that it does not form an end-pair. Cznsequently, we can 
place R such that it touches c since c E r. Since c does not 
form an end-pair, we can rotate R around c such that its center 
moves along a circular arc of radius 6. This arc extends between 
the perpendiculars to the obstacle edges incident on e. The 
Minkowski sum of R and this arc is free of obstacles. A vertex L’ 
of VGf(0 )  defines a position for R as follows. It is clear that R 
can be located such that its center lies on E L ( c )  at a distance of 
exactly S from e. Then f(c)  precisely defines the ‘logical’ 
position of sensor corresponding to vertex e. First, R locates its 
center on EL(c )  at a distance of 6 from e. Then R rotates 
around its center until the reference point of the sensor lies on 
EL(c) .  The R can rotate either clockwise or anti-clockwise to 
achieve this and in either case the logical position of the sensor 
corresponding to f (c)  that satisfies the condition in Lemma 2, 
i.e., I I L ’  - f(c)ll < 26. Thus a vertex e of V G f ( 0 )  specifies a 
position for R and for the sensor. Further, we use the depth-first 
graph search for R,  which chooses a [-vertex that is closest to 
the present location of R. Subsequently, we establish the follow- 
ing aspects: (a) the information stored along the edges of V G f ( 0 )  
suffices for the intermediate navigation that is required to move 
R from one vertex to the other, and (b) the appropriate vertices 
and adjacency lists of V G f ( 0 )  can be correctly computed from 
the scan information. 

1) Nacigation Along Edges: Consider the navigation of R 
from U to L’, u,c  E V .  Now EL(u) is known, and E L ( c )  may or 
may not be known. When e is detected, the portions (that are 
close to c )  of the edges that are incident at c will be visible in a 
scan operation. If both the edges incident on c are visible during 
an earlier scan operation then EL(c)  can be computed. Note 
that at least an infinitesimally small portion of one of the edges 
incident at c will be seen in the scan operation in which c is 
detected. If the EL(c) is known then, the navigation from U to 
e is carried out as follows: The subset of that corresponds to 
the free-space visible from f (u)  is computed (as subsequently 
described). Let c l  ( U , )  be a point on E L ( c )  (EL(u))  at a 
distance 6 from e (U). Consider u lc l  the line joining u 1  and c l .  
This line intersects the boundary of thEomputed  part of V 
zero or more times. R moves along the u I c l  in the portions that 
lie in the free-space, and follows computed boundary of 
free-suace in the other uortions of u.c.. There are onlv a finite 

number of detours during which R follows the boundary of 
free-space, and each detour specifies only a finite number of 
translational and rotational motions for R. If E L ( [ * )  is not 
known, then R moves from u I  to a point at a distance 6 
from c and lies on the perpendicular to the known edge of 1 3 .  

The motion of R from u I  to L ’ ~  can be handlcd similar to the 
above case. From c2, R rotates around I ’  until it can not rotate 
further. Then EL(c )  is computed and R rotates back it its 
position on EL(c) .  The path corresponding to the navigation 
along an edge of VG,(O) is computed the first time R moves 
along this edge. This path is stored and used in subsequent 
traversals along this edge. In summary we have the following 
lemma. 

Lemma 3: R can compute a path of finite number of transla- 
tions and rotations to navigate along an edge of VG,(O). 

2)  Processing Scan Information: The scan information is to be 
processed so that the portion of V G f ( 0 )  corresponding to the 
“seen part” is constructed. We can use a variation of the 
algorithm of [SI to compute this part. More specifically, we 
compute the vertices of local non-convexity corresponding to the 
Minkowski sum of the disc corresponding to R and the visibility 
polygon returned by the sensor. Here the Minkowski sum is 
bounded by line segments and the circular arcs. The vertices 
corresponding to the arcs that do not correspond to points of 
non-convexity are the nodes of VGf(0) .  Conservatively, the 
complexity of this operation is O ( N  log N I .  

B. Terrain Model Acquisition 
The algorithm ACQUIRE, for terrain model acquisition, is a 

direct implementation of a graph search algorithm. From the 
observation 1, R will visit all the [-vertices in a finite amount of 
time. And by the terrain visibility property t(O), R would have 
seen the required portions of the free-space, after visiting all 
&vertices. For completeness we state the following theorem 
which can be proved along the lines of [13]. 

Theorem 1: The algorithm ACQUIRE solves the terrain 
model acquisition problem in a finite amount of time such that 
for a point robot and a circular robot, the number of scan 
operations performed is N - C  in 3-D terrains. For a point 
robot the number of scan operations is N in 3-D terrains. The 
complexities of various tasks carried out by ACQUIRE are as 
follows: 1) the storage complexity is O ( N 2 ) ,  2) the cost of 
construction of [ ( O )  is O ( N 2  log N )  and O ( N 2 )  for circular 
robot and point robot respectively, 3) the total cost of path 
planning is O ( N 3 ) .  

C. Vi i t  Problem 
The algorithm LNAV, the navigates R from d, to d l + l ,  is 

obtained by simulating the graph search algorithm. Initially a 
scan operation is performed from d, and if d , + l  is found 
reachable, then R moves to d,+ l .  If d ,+ I is not found reachable 
then R computes a [-vertex L ’ , ~  and moves to e(,. From cg, the 
graph search algorithm NAV is invoked. Let R be located at c. 
After a scan is performed from e,  R checks if d,, I is reachable. 
If d , + l  is reachable, then R moves to d,+ l  and terminates 
NAV. If not, R continues to execute NAV until the d , + l  is 
found reachable or until completion. The following theorem can 
be established by specializing the result in [ll]. 

Theorem 2: Algorithm LNAV navigates R from d, to d , + l  in 
a finite amount of time if the latter is reachable. If d , + l  is not 
reachable then R declares so in a finite amount of time. In 
executing the algorithm LNAV by a point R ,  the number of 
scan ouerations is at most N - C and N resDectivelv for two- 
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and three-dimensional tcrrains. For a circular R,  the numbcr of 
scan operations is at most N - C in two-dimensional tcrrains. 

Thc computational complcxity of LNAV is similar to that of 
ACQUIRE. We obtain the algorithm GNAV by cxtcnding LNAV 
as follows: Wc store the adjaccncy lists computed by R during 
carlier travcrsals. Further we store S, which is the set of all 
vertices that have been dctected but not visited yet. Considcr 
the navigation from d ,  to d,, I .  Then GNAV computes a (-vertex 
that is reachablc from d,  and moves to this vertex. Thcn R 
computes a [-vertex d* that is closest to d,,  I according to some 
criterion such as distance. Then R moves along a path on < ( O )  
to d * .  From d * ,  R uses LNAV to navigate to d,,  I. It is direct to 
sec that GNAV correctly solves the visit problem. Morcover, R 
checks the set S after every scan operation. After S becomes 
empty, R switches-off its scnsor and navigates using the algo- 
rithm B alone. At this stage R has acquircd thc terrain modcl 
that is sufficient to navigate to any rcachablc point [ l l ] .  Thus wc 
havc the following thcorcm. 

Theorem 3: The terrain model will be completely built by R 
in at most N + M - C and N + M scans respectively for 2-D 
and 3-D terrains for a point R,  thcn the execution of each 
travcrsal involves no scan operations. For a circular R the 
performancc is same as that of a point robot in 2-D tcrrains. 

Here thc process by which R acquires the terrain is inciden- 
tal ,  i.c., the present model of the terrain depends on thc 
previous traversals. Let p i ,  1' E V ,  ( ( (0)  = ( V ,  E ) )  be the proba- 

hidden region 

Fig. 5 .  Vertices can not  he randomly \kippcd. ( a )  Two-dimensional CII\C. 

( h )  Three-dinienaional ca\e. 

bility that R visits 1' during a travcrsal. In  this casc, we can show 
that for M 2 l/min, L, ( p ,  }, the expected number of scan opcr- 
ations performed by GNAV is strictly lcss than thc cxpcctcd 
number of scan operations performed by LNAV [ l l ] .  Now 
consider that R has successfully navigated to d ,  and i t  is now 
rcquired to navigate to d,  + , .  Let sl. and sc; be the random 
variables that denote the number of scan opcrations pcrformed 
by R in cases of using LNAV and GNAV rcspcctivcly in 
navigating from d,  to d,, I .  Lct E [ x ]  denote the expected valuc 
of thc random variablc x .  It  is direct to sec the following results: 
1 ) E [ s , ; ] / E [ s , ]  < I ,  for p ,  < 1. for I '  t V ,  2) E[.s,;] + 0, for i + z. 

E. Lower Bound on Number of Scan Operations 
We discuss the case of a point robot in two and three-dimcn- 

sional tcrrains. Wc obtain a lower bound on the numbcr of scan 
operations that arc occasionally ncccssary. These algorithms are 
rcquircd to ensure that at the time of termination cvcry point in 
thc frcc spacc is "scnsed." Considcr a terrain of onc obstacle. 
Now during exccution of thc algorithm, no morc than one ( two)  
vertices per obstacle can bc lcft uncxplored in a 2-D (3-D) 
tcrrains. If R starts at a vertex it dctccts one new vertex with 
one scan opcration (except when the first vcrtcx is explored) as 
the robot moves along the circumfercncc of the obstaclc. In  
other words at no point of timc the terrain acquisition could bc 
dcclarcd complete if there arc two unexplored vcrticcs say 
and L ' ? .  This is bccausc the robot docs not, in general, know 
what lies on the hinder (uncxplored) side of the line joining 
and (3:. For thc three-dimensional terrain, if thrce vertices say 

r 2  and L ' ~  are left uncxplored then thc information on the 
hinder side of the planc formed by thc vertices 1 ' :  and r 3  is 
not known in general. 

Theorem 4: In  the execution of ACQUIRE or LNAV, for a 
givcn positive integer IZ thcre cxists a tcrrain {O, ,O2;  . .,O,,} of 
polygonal and polyhedral obstacles such that the ncccssary 
number of scan operations is N - I I  and N -211 for two and 
three dimcnsional terrains rcspcctivcly. 

Proof We use induction on thc numbcr of obstacles in the 
terrain. For I I  = 1 thc claim is true as explained above. Now, 
assume that the claim is true for n = k .  Let the set of obstaclcs 
in this case be (O,,O,; . ., OL}. Now construct a terrain of k + 1 
obstacles as follows: In two dimensions add a big polygon 0, + I 

outside the circle inscribing the terrain of k obstacles (that 
satisfics thc induction hypothesis) as shown in Fig. 4(a). The 
k + lth polygon has a long edge joining and 1' :  that obscures 
thc rcmaining edges of the polygon from the scan opcrations 
carried out in thc terrain of k obstacle. Thus thc scan opcra- 
tions needcd during the exploration of the k + lth obstacle is 
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TABLE I 
COMPUTATIONAL COMPLEXITY 

Quantity Restricted Modified Retraction 
for Comparison Visibility Graph Visibility Graph Method 

___ 

Storage O ( N * )  O ( N 2 )  O ( N )  
Construction O ( N 2 )  O ( N ’ l o g N )  O ( N ’ l o g N )  
Path planning O ( N ~  O(N ’ )  O ( N ’ W )  
Overall time complexity O( N’ )  O(N’ )  O(N2  log N )  

N(ok+,)-  1, where N ( O k + l )  is the number of vertices of Ok+l. 
For three-dimensional terrains the obstacle O k + l  is such that 
the plane formed by three vertices c1 ,  L 2  and c j  obscures the 
rest of the obstacle from the scan operations performed in the 
terrain of k obstacles as in Fig. 4(b). The 0, + I lies outside the 
sphere the encloses the terrain of k obstacles. Thus the neces- 
sary number of scan operations to acquire 0, + I is N ( 0 ,  + I ) - 2. 
Thus the theorem follows by induction. 

In the above theorem wc have seen that no more than one 
(two) verticcs per obstacle can be left unexplored in two (three) 
dimensional terrain. The natural question is to ask if we can 
always skip one (two) vertices per obstacle for two (three) 
dimensional terrains. The answer is no if the vertices are to be 
arbitrarily skipped. This is illustrated in Fig. 5(a). In two dimen- 
sions, if the robot skips the vertices r , ,  r 2  and t ’ 7  then the 
obstacle 0, will not be detected. Fig. 5(b) shows a 3-D example. 

V. COMPARISON OF PERFORMANCE 
Wc use the worst-case exccution of the algorithm LNAV or 

equivalently an invocation of algorithm ACQUIRE as a basis for 
comparison. We consider two-dimensional terrains. We com- 
pare the visibility graph methods with the retraction methods of 
[12] (based on the Voronoi diagram of 0). R using the visibility 
graph methods, may be required to navigate along the bound- 
aries of the obstacles. The paths based on the retraction method 
always keep R as far away from the obstacle boundaries as 
possible. In general, the paths generated by the retraction 
methods tend to be longer than those generated by the visibility 
graph methods. Using the visibility graph methods, a point robot 
always navigates along line segments. A circular robot using the 
visibility graph method will be required to rotate around a 
vertex. Whereas a point robot or a circular robot will be re- 
quired to navigate along line segments and second order curves 
(the parabolic Voronoi edges) in the retraction method. In our 
methods, for point circular robots, the number of scan opera- 
tions is at most N -C. In the retraction method, the upper 
bound on the number of scan operations is 4N - n - C - 2.  

A summary of the computational complexities is presented in 
Table I .  Consider point robots. It is clear that the adjacency list 
of the restricted visibility graph can be directly obtained from 
the scan information. Thus the construction cost for this case is 
O ( N 2 )  as opposed to the construction cost of O( N’ log N )  of 
the retraction based method. Similarly the retraction method 
has a better complexity for the path planning operations. In 
terms of the total computational complexity the retraction 
method has better complexity of O ( N 2  log N )  compared to 
O( N’)  of the visibility graph method. Note that the overall time 
complexity of the visibility graph based method is dominated by 
the path planning part whereas that of the retraction method is 
dominated by the construction cost. Further more the storage 
complexity in case of retraction methods is O ( N )  as opposed to 
O( N ’) of the visibility graph method. For circular robots, the 

situation remains more or less the same, except that the con- 
struction cost of the modified visibility graph is O ( N 2  log N ) .  
Thus, in both the cases, the retraction method has better overall 
time complexity compared to that of visibility graph method. 

VI. CONCLUSION 
We presented a framework that solves both the visit problem 

and the terrain model acquisition problem using a single ap- 
proach of implementing a graph search on an incrementally 
constructed geometric structure called the navigational course. 
A point robot employs the restricted visibility graph and the 
visibility graph in two and three dimensions respectively. The 
restricted visibility graph extends the existing solution of [ 101 to 
non-convex obstacles for the visit problem. Further, i t  is better 
in terms of the bound on the number of scan operations if the 
terrain contains non-convex corners. A circular robot employs a 
modified visibility graph in two dimensions. We analyze the 
algorithms that solve both the visit problem and the terrain 
model acquisition problem. The proposed framework could be 
extended to consider more detailed models for the mobile 
robots in terms of geometric shape, and motion primitives. It 
would also be interesting to see if there exist general principles 
to design navigational courses in more detailed cases. 
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