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ABSTRACT 

Given a set of functional dependencies Z and a single 
dependency cr, we show that the algorithm to test whether Z 
implies ct is log-space complete in P. The functional depen- 
dencies x are represented as a directed hypergraph H, [I]. 
We first present a parallel algorithm which solves the above 
implication problem using P processors on a EREW-PRAh4 
in 0 (e IP + n.logP ) time and on a CRCW-PRAM in 
0 (e/P + of ) time, where e and II are the number of arcs and 
nodes of the graph HE For graphs Hz with fixed degree and 
diameter, we show that the closure Hz+ can be computed in 
NC. We present NC algorithms to obtain a non-redundant and 
a LR-Minimum cover for the set of functional dependencies 
Z. All our algorithms on a n-node directed hypergraph with 
fixed degree and diameter can be implemented to ruxi in 
0 (log%) time with M(n) processors on a CREW-PRAM 
model, where M(n) is the cost of multiplying two binary 
matrices. The algorithms are efficient based on the transitive 
closure bottleneck phenomenon [7] that is, any improvement 
in the time and processor complexity of the transitive closure 
algorithm will result in an improvement by the same amount 
for the algorithms presented here. 

Keywords and Phrases: relational databases, functional 
dependency, non-redundant cover, minimal cover, minimum 
cover, parallel algorithm, time complexity, processor com- 
plexity, NC algorithm, log-space reduction, directed hyper- 

graph 

1. Introduction 

Functional dependencies (FDs) and their manipulation 
plays a decisive role in the design, use, and maintenance of 
relational databases. The elimination of data redundancy and 
the enhancement of data reliability can be done by imposing 
restrictions on the data. Functional dependencies provide a 
way to impose restrictions on data and prior knowledge about 
them are useful in designing better relational databases [8,10]. 

Given a set of attributes T: A 1, A 2, . . . . Ak, a relation 
scheme R (T 1) is a subset of attributes T 1 in T. A relation R 
over the scheme R (T,) is the subset of the Cartesian product 
DOM(A r) x DOM(A 2) x . . . x DGM(A,), where A 1, . . . . A, are 
the attributes in T,. An element of the Cartesian product is 
called a tuple. A finctional dependency X + Y (where X , Y 
c T1) holds in R iff, given two tuples t 1 and t2 of R , t1.X = 
t2.X implies t 1.Y = t,.Y. Given a set of FDs Z, it is important 
to determine those functional dependencies which are not 
explicitly expressed hut derived from those contained in x. 
Such a derivation is possible using Armstrong’s sound and 
complete set of axioms (see [8, lo]). The Armstrong’s axioms 
are as follows. 

Reflexivity: If Y 6 X, then X + Y. 

Transitivity: If X 4 Y and Y + Z, then X + Z. 

Union:IfX +Y andX +Z,thenX +YZ. 

The manipulation of Z involves the following. 

(i) (Membership-Test): Given a set of dependencies C and a 
dependency o, find whether Z implies o using the 
Armstrong’s axioms. 

(ii) (Closure-Finding): Determine x’ the closure of x con- 
sisting of all dependencies that can be derived from x 
using the Armstrong’s axioms. 

(iii) (Minimal Key-Finding):Finding a minimal set X c T of 
attributes, such that X + T is a member of p. The attri- 
bute set X is called the minimal key of the relational 
scheme R(T). 

(iv) (I-R-Minimal cover): Finding a set of dependencies Z, 
from C such that &’ = C+ with the following properties. 

(a) For any dependency o in &, (Zr - o)+ + x+. 

(b) We say an attribute A in X of the dependency X + 
Y as extraneous if X -A + Y is in J2’. No depen- 
dency in & has extraneous attributes on its left side 
as well as its right side. 

The set C, is called the LR-Minimal cover for Z. 
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For discussion about LR-Minimum and the advantages of 
manipulating the given set of dependencies C (see [S, lo]). 

Several datastructures and sequential algorithms for 
representation and manipulation of functional dependencies 
have been proposed in the past [1,4,61. A new graph- 
theoretic approach which leads to efficient algorithms for 
manipulation and representation of FDs were introduced in 
Ausiello et. al [l]. In this approach, the given Set of FDs 
were represented as a directed hypergraph and known graph 
algorithms like the transitive closure, transitive reduction, and 
finding strong connected componentst were modified for 
manipulating FDs. Using the algorithms of Maier [8] an LR- 
Minimum is obtained and with the LR-Minimum set of ms, 
the synthesis algorithm [8] can be applied to get the relational 
schemes. Several theoretical issues based on directed hyper- 
graphs were discussed in [Z]. The algorithms of Diederich 
and Milton [4] for computing minimal covers and synthesiz- 
ing relations into third normal form do not try to achieve a 
reduction in the computational complexity of the algOrithmS 
in [8]. They present interesting insights into the manipulation 
algorithms of [8] and suggest techniques for enhancement of 
those algorithms. For example, in standard methods for syn- 
thesizing relations, most dependencies have to be checked a 
second time for redundancy after grouping dependencies with 
equivalent left-hand sides. Using the method of Diederich 
and Milton the dependencies can be characterized in such a 
way they are checked only once. At the present time we don’t 

know of any parallel algorithm for manipulating functional 
dependencies. 

The availability and the increase in the development of 
parallel architectures have rekindled the efforts to design 
efficient parallel algorithms for different problems which 
make use of the parallel hardware. There has been a growing 
interest in the development of parallel architectures and algo- 
rithms in the area of database systems [3,9]. In fact, there is 
no reason as to why the design, manipulation, and use of data- 
bases has to be done sequentially given the availability of 
parallel architectures. Such interests have motivated us in the 
development of parallel algorithms for manipulation of func- 
tional dependencies. Research in parallel algorithms have 
focussed on developing algorithms which run in polynomial 
of the logarithm of the input size with processors whose 
number is bounded by a polynomiaI in the input size. Such 
algorithms belong to the class of NC (Nick’s Class) [7]. An 
algorithm in NC tells us that they can be executed at high 
speeds using a ‘YeasonabIe” amount of hardware. It is not yet 
known, whether all problems solvable in polynomial time 
(p-time) can be solved in NC. If such is the case, it would 

mean that every problem that is solvable in P-time can be 
solved very fast in parallel, using a polynomial-bounded 
number of processors. Certain difficult problems that can be 
solved sequentially in P-time have been identified as they are 
called as P-Complete problems [7]. Using reduction tech- 
niques it was shown that a P-Complete problem is in NC if 
and only if P = NC. Thus, P-complete problems can be 
viewed as the problems in P most resistant to parallelization. 

We will show by a simple reduction technique that the 
FD-Membership problem is P-Complete (Section 2). Using 
the directed hypergraphs [l] as the representation scheme for 
the given set of FDs, we derive parallel manipulation algo- 
rithms. Our algorithms unlike the algorithms of Ausiello et. al 
[I], are highly suitable for parallelization. Our characteriza- 
tion of the FIXmanipulations in terms of directed hypergraph 
representing the FDs are simpler compared to the ones 
presented in [l]. The algorithms for manipulating the func- 
tional dependencies use algorithms for computing transitive 

closure, transitive reduction, and strongly connected com- 
ponents. In order to construct efficient parallel algorithms for 
computing transitive reduction and strongly connected com- 
ponents it will be necessary to avoid the use of matrix power- 
ing or transitive closure as a subroutine; our inability to do so 
is sometimes called the transitive closure bottleneck [7]. The 
FD-manipulation algorithms have to necessarily use the tran- 
sitive closure algorithm as a subroutine and hence, it is also 
affected by the transitive closure bottleneck phenomenon. We 
will show in this paper that our parallel FD-manipulation 
algorithms are efficient based on the transitive closure 
bottleneck phenomenon. This is done by showing that all 
operations other than those involving the transitive closure as 
a subroutine take 0 (logn) time with processors at most equal 
to the size of the directed hypergraph Hz representing a set of 
functional dependencies Z. First we present a parallel algo- 
rithm to obtain the closure H+ of the directed hypergraph H. 
We show that our closure algorithm is in NC for fixed degree 
and diameter graph H (Section 3). Section 4. presents algo- 
rithms to obtain a non-redundant and a LR-Minimum cover 
and it is also in NC for fixed degree and diameter graph H. 
From the LX-Minimal cover a minimal key can be easily 
determined. Conclusions are presented in Section 5. 

The model of computation used in this paper is the uni- 
form parallel random access machine (PRAM) model. An 
EREW-PRAM model the weakest of all models does not 
allow neither concurrent reading or writing. A CREW-PRAM 
model which is used in our algorithms allows concurrent read- 
ing, but not concurrent writing. The CRCW-PRAM model 
allows concurrent reading and writing. The variants of the 

_L I CRCW-PRAM are based either on “priority”, where proces- t A set of nodes are in a strongly connected component if there are pams lrom every noae to 
every other node in the strong component. 
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sors are assigned priorities and the processor with the highest 
priority succeeds in writing, or “arbitrary” where among the 
set of processors which try to write only one is chosen to 
write. It is known that the CREW-PRAM and the CRCW- 
PRAM model can be simulated by an EREW-PRAM in 
0 (fogP ) time with 0 (P) extra processors or with no extra 
processors in 0 (log*P ) time. [S]. It was shown in [ll], that 
all PRAM models with P processors can be simulated by an 
ultracomputer (bounded-degree network of processors with no 

global memory) in 0 (lo@ (lo&@ )*) time per step and with 
no extra processors. 

1.1 Definitions and Notations 

Definition 1.1 (Directed Hypergraph): A directed hypergraph 
H = (V, E ) consists of nodes and arcs as follows. 
nodes: The node set V consists of simple and compound 
nodes. A compound node j has components jr, ja, . . . . j, , r > 
1 and each j, is a simple node. A simple node is a node with 
only one component. 
Arcs: The arc set E has the following arcs: 

(i) arcs (i , j ) from one simple node to another, 

(ii) arcs (j, jr), . . . . (j , j, ) from each compound node to its 
components. 

(iii) arcs (i , j ) from node i to compound node j if and only if 
there are arcs (i, j,), . . . . (i , j,), where j t, . . . . j, are the 
components of compound node j . If such an i exists we 
say that node j is satisfied by node i .W 

We say that there is a path from node i to node j, written 
ci, j,, if and only if there are paths -=i,k> and tk, j>. 

Also, there is a path from node i to a compound node j , if and 
only if there are paths ci, j 1>, . . . . ci, jr>, where, j,, . . . . j, 
are all the components of compound node j . 

Definition 1.2 (Hypergraph Accessibility Problem @IGAP)): 
Given a directed hypergraph H = (V, E), and two dis- 
tinguished nodes i , j E V, does them exists a path a’, j P in 

H.rn 

The above HGAP problem on a n-node directed graph con- 
taining only simple nodes, can be solved in 0 (log*n) time 
with M (n ) processors, where M(n) is the cost of multiplying 
two binary matrices 171. 

We will assume that the set Z is in reduced form as follows 

(a) there exist no two FDs X 4 Y and X’ + Y’ such that X 
= X’, and 

(b) forallFDsX +Y,X nY =0. 

Let the given set of FDs Z be in reduced form and represented 
by a directed hypergraph Hz as follows. For each FQX + Y 
create a compound node X and simple nodes X t , . . . X, and 

~cx (XI y>, (X , x 11, ‘.., (X,X,)inHr.ThenodesXr ,..., X, 
are components of nodeX. We will denote n = 1x1 = ] Cl ] + 
] Z$ ] the sum of the length of the strings of attributes appear- 
ing on the left (right) side of the dependencies. Also, e = 
] ] Z] ] will denote the number of FDs in Z. We will use the 
notation H instead of Hz when the context is clear and call H 

as a graph instead of a directed hypergraph. 

Proposition 1.0: Let the given set of functional dependencies 
(FDs) be represented by a directed hypcrgraph H = (V, E). 
The FD-Membership test on the dependency X + Y is 
equivalent to the HGAP instance from node X to node Y . n 

ExMtple 1: See Figure 1. for a set of FDs and its correspond- 
ing directed hypergraph. 

A+F 

A+C F 4-m-H 
A+B 

C-SD 

FBD +H 
A 

BD +I 

Figure 1: A set of FDs and the directed hypergraph corresponding to it (from Ausiello et. al [l]). 

128 



Definition 1.3: We say a directed hypergraph H = (V, E) 
generates a set of functional dependencies Z, when, for each 
arc (X , Y) in E a functional dependency X + Y is gen- 
erated.= 

2. The P-Completeness Result and a Parallel Algorithm 

In this section, we show that the monotone circuit value 

problem is log-space reducible to HGAP and thus establish 
HGAP is P-Complete. The monotone circuit value problem 
is P -Complete (see [7]). 

Definition 2.1 (Monotone Circuit Value Problem): 
Given a finite set of g gates; for 1 I j 5 g , gate j is either an 
input (0 or l), an AND-gate AND(ij,l, ij,z, . . . . ij,ku$, or an 
OR-gate OR(ij,t, ij,z, . . . . ij,kG)), where 1 I ij,l, ij.2, . . . . ij,kG) < 

j , what is the value of the expression represented by gate g . 

Lemma 2.1 (see [7] ): The monotone circuit value problem is 
log-space complete in P .M 

Theorem 2: The HGAP is log-space complete in P . 

Proof: We show by the following construction that the mono- 
tone circuit value problem is log-space reducible to the 
HGAP. Consider the case where all the gates have two inputs 

for the sake of ease in presentation. We construct the follow- 
ing directed hypergraph H. For an AND-gate gi = gj A gk, 
create a compound node gi with two components gi t and gip 
Add iUCS (8j, gi 1) and (gk, gi2)* For an OR-gate gi = gj V gk, 

add GUTS (gj, gilh (gj. gi2h kk, gi 1)~ and (gks gid- We can 
easily show by induction, that on an input 1 at gate gi , an out- 
put of 1 is obtained at gate g ; if and only if there exists a 
directed path from node gi to node g in H . The construction 
of H can be done in log-space. Hence the the0rem.H 

Coro 2.1: The FD-membership test is log-space complete in 
P. 

Proof: Follows directly from Proposition 1. and Theorem 2.U 

The negative result in Theorem 2. only tells us that 
HGAP is resistant to high-degree parallelisms. We present a 
simple sequential algorithm for the HGAP which runs in time 
0 (e + n ), where e and n are the number of edges and ver- 

tices of the graph H. A parallel version of the sequential 
algorithm runs in time 0 (e IP + n.logP ) with P processors on 
a EREW-PRAM and in time 0 (e IP + n ) with P processors 
on a CRCW-PRAM. The technique used in the following 
algorithm is similar in spirit to the one presented for the 
monotone circuit value problem by Vitter and Simmons [ 131. 

(* Initially all vertices are marked “not visited.” *) 

Algorithm HGAP (x , y ) 

Begin 

1. Starting from x determine all the k vertices that can be reached from x by using transitive closure; 
Mark all the k vertices “visited” including x . 

2. Ify is one of the k vertices, then, RETURN (‘Found’); STOP. 
3. If either k = 0 or there is no arc (x , p ) such that vertex p is a component of some 

compound node, then, RETURN (‘Nil’). 
4. For each “unvisited” compound node j , such that there is at least one arc (x, j,), where j, , 

is a component of the node j , Do 
Begin 

5. If node j is satisJied by n , then, 
Begin 

6. Am= 6.j) 
7. HGApo’,y) 

End 
End 

End. 
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It can be easily seen, that if there should exist a path CT, y 5 
and has not been determined at the end of Step 3., then, there 
exists at least one compound node in H which is satisfied by 
x . The algorithm HGAP presented above can be parallelized 
in several ways. Each of the steps l-7 can be parallelized. 
Step 4-7 is executed sequentially and the processors are 
assigned to keep track if node j is satisfied by node x. Each 
of the P processors are assigned to check the presence of the 
arc from x to the P th component of j. Once each processor 
determines the presence/absence of arcs assigned to it, the 
time taken to check if node j is satisfied by x is 0 (logP ) 

using binary-tree communication scheme among P, proces- 
sors. Essentially, we are computing AND of P binary values. 
On a CRCW-PRAM, we can determine the AND of P binary 
values using P processors in constant time. 

Theorem 3: The HGAP can be solved using P processors on 
a EREW-PRAM in 0 (e IP + n.logP) time or on a CRCW- 
PRAh4inO(e/P +n)time. 

Proof: Follows from the discussion ab0ve.m 

3. Closure of a Directed Hypergraph 

Computing the closure of a directed hypergraph H is 
finding all the possible arcs in the graph H. The closure of the 
graph H is the transitive closure on directed graphs when H 

contains only simple nodes. Since, finding whether there 
exists a path <x, Y > is P -Complete, determining the closure 
is also P-Complete. In this section, we present a parallel 
algorithm whose execution time is dependent on the diameter 
and the degree of the graph H . The diameter of the graph H 

is the maximum distance between any two nodes in H. The 
degree of the graph H is the degree of a node having max- 
imum number of arcs going out. For graphs with fixed diame- 
ter and degree algorithm, we show that the closure citn be 
computed in NC. Having determined the closure the HGAP 
problem can be solved in constant time. In terms of the the 
functional dependencies Z, the degree of a node X in Hz is the 
number of FDs in E whose left hand side is in X or equal to X . 
The distance between two nodes X and Y in Hz is the number 

of dependencies in E which have to be applied before X deter- 
mines Y. In the worst case the maximum distance and degree 
can both be equal to the number of FDs in E. 

Theorem 4: The algorithm H-Graph-Closure correctly deter- 
mines the closure of directed hypergraph H in 
0 (log2n + MAX (diameter(H), degree (H ))*logn) with 
0 (M (n )) processors on a CREW-PRAM. 

Proof: It is straightforward to understand Steps 1-6 of the 
algorithm H-Graph-Closure. Step 8. performs the closure 
operation with respect to a node i. Let us assume that there 
should exists an arc (i, j) in the closure of H and not in H 

Algorithm H-Graph-Closure 

Begin 

1. Perform transitive closure on H . Here we find all simple nodes that can be reached from node i 
and add arcs to nodes reachable from i . 

2. Do Steps 3-9 Until no new arcs are added 
3. For each node i In-Parallel 
4. If there are arcs (i, j I), . . . . (i , jr), where j 1, .., j, are all 

the components of compound node j , then 
Begin 

5. Addthearc(i,j)inH 
6. Forallarcs(j,k)addarcs(i,k) 

End 
7. For each node i In-Parallel 

Begin 
8. LetJ={j’ , . . . . jk} be the compound nodes such that there is an arc (i, j,), 

where, jp is a component of node j E J AND for all components p of j , 
there are arcs only from compound nodes in J. 

9. Add arcs (i , j) for each j E J and arcs (i, k) such that node k is adjacent 
to some compound node in J 

End 

End. 
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after the execution of Step 6. The absence of the arc (i, j) 
implies that there exists a compound node k in the directed 
path between node i to node j . Assume there is an arc (k , j ), 
if it is absent, we have the case described above. The arc (i, 

k) is absent, otherwise, we would have the arc (i , j). For the 
arc (i, k) to be present, there should be arcs from node i to 
every component of k. In Steps 7-9 determines the arcs from 
node i to the components of k. It can be easily shown, that if 
there should exists an arc (i , j ) in the closure and has not been 
determined at the end of Step 6., then, there exists at least one 
compound node k in J of Step 8. 

In Figure 2. and Figure. 3. we have depicted the worst- 
case scenario in terms of the number of iterations of Steps 3-9 
before the arc (i , j) is determined. We can easily show that at 
most MAX(diameter(H), degree(N)) iterations of Steps 3-9 
would be necessary to determine the closure. Step 1. takes 
0 (log2n) time to determine the closure with 0 (M(n)) pro- 
cessors (see [7]). Each of the Steps 3-9 can be executed in 
0 (fogn ) time with 0 (n + e ) processors using suitable matrix 
structures on a CRCW-PRAMM 

Figure 2: The number of iterations of steps 3-9 in algorithm H-Graph-Closure to 
determine the arc (i, j) is at most equal to the degree of the above graph. The 
graph above consists of compound nodes with two components each. 

Figure 3: The number of iterations of steps 3-9 needed by algorithm H-Graph- 
Closure to determine the arc (i, j) is at most equal to the diameter of the above 

fmph. 
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Example 2: The dosure of the graph in Figure 1. is given 
in Figure 4. 

Figure 4: The closure of the graph in Figure 1. 

4. Non-Redundant and Minimum Directed Hypergraphs 

Given a set of functional dependencies Z, we present 
algorithms to obtain a non-redundant and a minimum cover as 
defined by Maier [8]. Since, the FD-membership test is P- 

Complete, algorithms for determining a non-redundant and 
minimum cover are also P -Complete. In the previous section 
we presented the closure algorithm which was shown to be in 
NC for fixed diameter and degree graph H. We will now 
deline several terminologies. 

ikft reducrz’on involves removal of “extraneous” attributes 
from X in each of the dependencies X + Y in I;. Given the 
setZ,anattributeB isextraneourinX +Y ifX =ZB,X # 
Z , and A E Z z’. There rue two kinds of extraneous attributes. 
If X = ZB , X # Z, and B E Zx+, then B is called an impfied 

extraneous attribute and all other extraneous attributes are 
non-implied extraneous attributes. 

We say two attribute sets P and Q are equivalent in Z written 
P =Q,ifP +Q andQ +P areinp. LetX +-Y bca 
dependency with X A Y = 0 and let X1, Xa, . . . X, be some 

subsets of X such that (X r E Y r), (X2 3 Yz). . . . . (Xr E Y,,,) with 
Yl u Y* v ..* v Y,,, = Y. The dependency X + Y above is 
trivial and Y is textually contained in X . 

A non-redundant cover for Z is the set & in which all depen- 
dencies CJ in C, , when removed is not in the closure Cr. If we 
assume that the right hand side of each dependency in C, is a 
single attribute, then, a minimal cover for E, can be obtained 
by removing both the implied and non-implied extraneous 
attributes from the Ieft hand side of each dependency in C, 
[lo]. A minimum cover is a minimal cover with a minimum 
number of functional dependencies than any other equivalent 

set. A minimal cover is a minimum cover which does not 
contain some two dependencies X + A and Y + B , such that 
X and Y are equivalent. 

We will give definitions for non-redundant, minimal, and 
minimum directed hypergraph H . 

A hypergraph H is non-redundant if it does not contain any 
redunabu arcs. An arc (i , j ) is redundant in H if, 

(i) there are arcs (i, k) and (k, j) in H+, or 

(ii) the node j is textually contained in node i . 

Condition (ii) identifies arcs which generate trivial dependen- 
cies. A non-redundant hypergraph is minimal if each com- 
pound node does not contain any implied extraneous attri- 
butes. The non-implied extraneous attributes are removed 
when redundant arcs satisfying condition (i) is removed. A 
minimal hypergraph is a minimum one if there are no two arcs 
(II, .I) and (Ia, K) in H, where II and I2 are nodes in the 
same strongly connected component I with J and K in dif- 
ferent strong components. From a minimum hypergraph a 
minimum set of FDs can be easily generated. 

The following algorithm obtains a minimum directed hyper- 
graph H,,, from the graph Hz for a given set of dependencies 
x. 
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Algorithm Minimize 

Begin 

1. Let H 1 be the graph Hz with arcs to compound nodes present in Hz++. 

2. Compute the strongly connected components of the graph H 1. 

3. For each component i do in parallel 
Begin 

4. If more than two arcs from the component i to the component j , 
then, REMOVE all except one from H 1. 

5. Choose a node X as a representative of component i . 
6. Forallarcs(Y,Z),suchthatY isini andZnotini,REMOVE(Y,Z)andadd(X,Z). 
7. Remove nodes j from component i which is textually contained to some node k in component i . 

End. 
8. Process the acyclic graph formed by the strong components as follows: 

Mark the arc (I, J) from strong component Z to component .Z for deletion when 
representative node j of .Z is textually contained in representative node i of Z . 

9. Transitively reduce the acyclic graph formed by the strong components and mark arcs to be deleted. 
10. Remove implied extraneous attributes from each compound node i . 
11. Remove arcs marked for deletion in Step 8 and Step 9. 
12. For each one of the strong-components form a Hamiltonian-Circuit with the nodes in the component. 
13. Remove redundant arcs formed due to the Hamiltonian-Circuits by Transitively reducing the graph H 1. 

14. For each arc (i , j ), where j is a compound node, do in paraIIe1 
Begin 

16. Add arcs (i, jr), . . . . (i, j,), where jt, . . . . j, are components of compound node j . 
17. Add arcs (j, j l), . . . . (j , . . . . j, ). 

End 
18. Transitively reduce the resulting graph and remove the arcs to the compound nodes. 

End. 

The Steps l-6 are easy to understand. In Step 7 node j is 
removed from strong component Z if it is textually contained 
in node k in the same component I. Since j and k are in the 
same strong component, if j is textually contained in k, then 
k is also textually contained in j. Hence, to avoid deleting 
both j and k from component I, ranks are assigned to each 
node in component Z and j is deleted from component 1 iff j 

is textually contained in k and rank(j) < rank(k). The textual 
containment of two nodes in the same component can be 
tested as follows. Let j and k be two nodes in the component 
I with rank(j) < rank(k ). Let (I, I 1), . . . . (I, 1, ) be the arcs 
from strong component Z to strong components Z r, . . . . I,, 
respectively. For all strong components Z,, 1 I m 5 1, we do 
the following. If k,,, c k is in ncde I,,, , then for all nodes j,,, 
in Z, with j, c j remove j, from j. If j becomes empty 
then, j is textually contained in k , otherwise it is not. 

In Step 8 we delete the arc from strong component Z to 

strong component J when some node j in J is textually con- 
tained in some node i in I. In fact, if j and i are representa- 
tive nodes chosen in Step 5, am (I, J) can be removed if j is 
textually contained in i. Now, the test is carried out as fol- 
lows. Let I r, . . . . I, be the components such that there are arcs 

(1, IlIP . . . . (I, II), 15 m 2 I, and the arcs from strong com- 
ponent .Z are to only the strong components Z r, . . . . I[. We per- 
form the operation described previously on the node j E .Z, if 
j becomes empty, the arc (I, J) is redundant, i.e., j is textu- 
ally contained in node i E I, otherwise, arc (I, J) is not 
redundant. The arcs which are found redundant in this step 
are removed in Step 11 as they are required to determine and 
remove implied extraneous attributes. 

The removal of implied extraneous attribute from every 
compound node i in component Z is done as follows. Let I,, 

12, **a, Zl be the strong components which have arcs from com- 
pound node I containing i with no Zk having an arc from any 
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OfIj, llj 51 andeachlk containsanodez ci. IfeachZk, 
1 I k < 1 is reduced, i.e., no compound node z c i in Zk con- 
tains extraneous attributes, then, pick a node z from each one 
of the Z, ‘s. The union of all z ‘s gives the compound node i 

without any implied extraneous attributes. The arcs to the 
compound nodes are redundant and Steps 14-18 performs the 
right reduction operation. 

The minimal key for a set of dependencies X by taking 
the union of representatives of the strong components with 
indegree zero in the minimum hypergraph Z-Z, of the graph 

HE 

Exumple 3: For an illustration of the algorithm Minimize. see Figures 5(a) - 5(d). 

Figure S(a): The graph HI formed in Step I of the algorithm Minimize. The arcs 
to the compound nodes have been added after the closure of the original graph is 
determined. The arcs from a compound node to its simple components have been 
removed to lessen the clustering of the Figure. 

Figure S(b): The graph HI after the execution of steps l-6 of the algorithm 
Minimize on the graph in Figure 5(a). The strong components can be clearly seen 
and the reprentatives are marked with circles around them. In Step 7, node G.Z 
would be determined to be textually contained in BD and would be removed. 
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Figure 5(c): The graph Hi at the end of Step 13. of the algorithm Minimize. 

Figure 5(d): The minimum directed hypergraph of the graph H 1 in Figure 5(a) 
after the completion of the algorithm Minimize. 

Lemma 4.1: Given directed hypergraph H the algorithm 
Minimize correctly obtains the minimum directed hypergraph 
H F?&’ 

Proof: We will first show that the graph H,,, does not contain 
any redundant arcs. 

Case (i): Let (i, j) be the redundant arc and let i and j be in 
different strong components determined in Step 2. Since (i, 
j ) is redundant there can exists a node k such that there are 
arcs (i, k) and (k , j), If node k is in a different strong com- 
ponent, then, the transitive reduction of the acyclic graph 
formed by the strong components would delete the arc (i, j) 
in Step 9. If node k is in the component of i or j , then, Steps 
3-6 would delete the arc (i , j). Also the arc (i , j) is redundant 
if node j is textually contained in node i and it is removed in 
step 8. Hence the arc (i , j) is not redundant. 

Case (ii): Let the arc (i , j) be redundant and let nodes i and j 
be in the same strong component determined in Step 2. Since 
(i, j) is redundant there can exists a node k and arcs (i, k) 
and (k, j). Node k cannot be in a different component, since 
all nodes reachable by the node i are reachable by k using 
arcs (i, k) and (k, j). If node k is in the same component as 
nodes i and j, then, the Hamiltonian circuit formed for each 
strong-component would delete arc (i , j ) in Step 12. The arc 
(i, j) is redundant if node j is textually contained in node i. 
In Step 7. node j is removed. Hence the arc (i, j) is not 
redundant. 

Case (iii): The construction of an Hamiltonian circuit in Step 
12, creates redundant arcs as shown in Fig. 4.2(a). A tmnsi- 
tive reduction on the entire graph H, in Step 13, removes 
redundant arcs. 
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Case (iv): The axe (i, j), where j is a compound node is 
redundant when there are arcs (i , jl), . . . . (i , jt ), where jl, . . . . 
jl are some or all of the components of compound node j and 
each arc (i , j,.), where, 1 I k I I, is redundant. In Steps 14-18 
the arc (i, j) is removed and arcs (i, j,), . . . . (i, j,) are added, 
where j,, . . . . j, are all of the components of j. The resulting 
graph is reduced using transitive reduction. 

From the above we can clearly infer that Zf,,, is non-redundant. 
It is minimal since in Step 10 the implied extrmeous attributes 
are removed from each compound node and there are.no arcs 
to compound nodes. Also, for two equivalent nodes X and Y 
there is only one arc from the component containing both X 
and Y and hence H, is a minimum one.U 

The presence of the arcs to compound nodes helps to 
treat the graph H as a directed digraph which makes the appli- 
cation of parallel transitive closure algorithms possible. 
Given H 1 all the steps in the algorithm except for the Steps 
7.8 and 10 can be implemented using parallel transitive clo- 
sure algorithms in 0 (M(n)) time with 0 (n + e ) processors 
on a CREW-PRAM. 

The implementations of Steps 7, 8, and 10 are given in 
the following. We would first present a method to determine 
textual containment of two nodes in H 1. We will assume that 
Steps l-6 have been executed on the graph HI. We will show 
how to test the textual containment of two nodes in the same 
strong component first. We construct the following data struc- 
ture for the graph H 1. For each compound node J, let j,, j, 
. . . . jJ be the nodes such that each jp c J . The set S(J) con- 
sists of ordered pairs (j, , c), where j, is the union of all jp ‘s 
in strong component c . Keep all the S (J) sets sorted first on 
the component number containing J and next the rank com- 
pound node J within the component. For each ordered pair 
(i, , c ) in S(J) we have a list of pointers L (j, , c). Each 
pointer ljc E L (j,, c ) points to an ordered pair in the set 
S(K) and K is in the same component as J with rank(K) > 
tank(J). In order to check the textual containment of node J 
in node K collect the pointers lj 1, lj2, . . . . lj,, where, each [ii 
pointstoanorderedpairinS(K). Nowifjluj2u...uj,a 

J , then J is textually contained in node K. 

The sum of the sizes of the S (J)‘s and the pointers in 

Ltic, c )‘s are both at most 0 (n + e ). The S(J) sets can be 
ordered as required above in time 0 (logn ) time using 0 (n ) 
processors on a CREW-PRAM. We will show that the S(J) 
sets can be constructed in 0 (logn ) time using 0 (n + e ) 

processors. The sets S(J)‘s can be constructed by sorting the 
ji’s c J based on the strong component number they are in 
and then taking a union of ji’s which are in the same com- 
ponent c to form the ordered pair &, c ). The sorting and 
union operation using recursive doubling techniques can be 
done in 0 (logn ) time with 0 (n + e ) processors on a CREW- 
PRAM. Note that the ji’s c J can be obtained during the 
construction of the graph H 1. The collecting of pointers 
which point to the ordered pair in S(K) can all be done by 
sorting the pointers based on the list they point to and the test 
of textual containment can all be done in O(logn) total time 
for all compound nodes in the graph H 1 using 0 (n + e ) pro- 
cessors on a CREW-PRAM, 

The Step 8 of the algorithm can be implemented as 
described above. The most time consuming step in the entire 
algorithm is the Step 10. Removal of implied extraneous attri- 
butes can be compared with the problem of finding the 
minimal key. In fact, given a minimum directed hypergraph 
H,,,, the minimal key is the union of the representatives con- 
tained in the strong components whose indegree is zero. The 
problem of left-reducing a dependency X + Y is finding a 
minimal key in the graph H, (X ), where H, (X) is the graph 
induced by nodes Z c X in H,,, . Now, the removal of implied 
extraneous attributes from a compound node X is done by 
finding all strong components containing a node Z c X and 
assuming all such Z’s do not have implied extraneous athi- 
butes we pick Z’s from components which do not have an 
incoming arc. The union of all such Z‘s gives the node X 
without any implied extraneous attributes. The time taken to 
do this is dependent on the diameter of the graph H 1 and can 
be easily done in 0 (logn) time for a constant diameter graph 
H 1 with 0 (n + e) processors on a CREW-PRAM. nodes. 

Theorem 5: A minimum directed graph H,,, of the directed 
hypergraph HZ for a given set of functional dependencies Z 
can be obtained using algorithm Minimize in 
0 (log% + MAX(&gree (Hz), diameter (H-&)*logn) using 
0 (M (n )) processors on a CREW-PRAM. 

Proof: The correctness of the algorithm Minimize follows 
from Lemma 4.1. Step 1 takes 
0 (log2n +MAX (degree (H-& diameter (H-&)*logn) using 
O(M(n)) processors (Theorem 4). Steps 7 and 8 take 
0 (logn ) time and uses 0 (n + e ) processors from the above 
discussion. Also, Step 10 can be implemented in 
0 (diameter (H&.logn ) with 0 (n + e ) processors as dis- 
cussed above. All other steps can be done in 0 (log2n) time 
using O(M(n)) processors, since they al1 use transitive clo- 
sure algorithms as a subroutine. All the steps require the 
CREW-PRAM model. n 
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From Theorem 5 we can see that for fixed degree and 
diameter graphs HZ the complexity of the algorithm Minimize 
is 0 (log2n) and uses 0 (M(n)) processors. Hence it is 
optimal based on the transitive closure bottleneck 
phenomenon. 

5. CONCLUSION 

We have presented parallel algorithms for the manipula- 
tion of functional dependencies which arise in relational data- 
bases. The functional dependencies were. represented as a 
directed hypergraph and parallel graph algorithms for finding 
transitive closure, transitive reduction and to compute strongly 
connected components were used for manipulating the 
directed hypergraph. The complexity of manipulating the 
given set of FDs is shown to be P-Complete in the general 
case. This implies that manipulation of FDs is resistant to 
high-degree parallelism. We have shown that efficient paral- 
lel manipulations can be derived for directed hypergraphs with 
fixed degree and diameter. From the LR-Minimum directed 
graph the design of relational schemes can be easily carried 
out. For more details (see [ 11). 

Manipulating functional dependencies were thought of a 
one-time-process, that is, the dependencies are manipulated 
during the design stage and never again processed. This was 
shown to be no longer true as dependencies could he intro- 
duced as the database system is being used and maintained 
Such dependencies were called as dynamic data dependencies 
[ 121. It would be interesting to see how the directed hyper- 
graphs can be maintained in the context of dynamic data 
dependencies i.e., perform updates on the directed hypergraph 
in parallel. 
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