
EFFICIENT PARALLEL ALGORITHMS FOR FUNCTIONAL
DEPENDENCY MANIPULATIONS

Radhakrishnan Sridhar and Sitharama S. Iyengar

Department of Computer Science
Louisiana State University

Baton Rouge, LA 70903, USA.

ABSTRACT

Given a set of functional dependencies Z and a single
dependency cr, we show that the algorithm to test whether Z
implies ct is log-space complete in P. The functional depen-
dencies x are represented as a directed hypergraph H, [I].
We first present a parallel algorithm which solves the above
implication problem using P processors on a EREW-PRAh4
in 0 (e IP + n.logP) time and on a CRCW-PRAM in
0 (e/P + of) time, where e and II are the number of arcs and
nodes of the graph HE For graphs Hz with fixed degree and
diameter, we show that the closure Hz+ can be computed in
NC. We present NC algorithms to obtain a non-redundant and
a LR-Minimum cover for the set of functional dependencies
Z. All our algorithms on a n-node directed hypergraph with
fixed degree and diameter can be implemented to ruxi in
0 (log%) time with M(n) processors on a CREW-PRAM
model, where M(n) is the cost of multiplying two binary
matrices. The algorithms are efficient based on the transitive
closure bottleneck phenomenon [7] that is, any improvement
in the time and processor complexity of the transitive closure
algorithm will result in an improvement by the same amount
for the algorithms presented here.

Keywords and Phrases: relational databases, functional
dependency, non-redundant cover, minimal cover, minimum
cover, parallel algorithm, time complexity, processor com-
plexity, NC algorithm, log-space reduction, directed hyper-

graph

1. Introduction

Functional dependencies (FDs) and their manipulation
plays a decisive role in the design, use, and maintenance of
relational databases. The elimination of data redundancy and
the enhancement of data reliability can be done by imposing
restrictions on the data. Functional dependencies provide a
way to impose restrictions on data and prior knowledge about
them are useful in designing better relational databases [8,10].

Given a set of attributes T: A 1, A 2, Ak, a relation
scheme R (T 1) is a subset of attributes T 1 in T. A relation R
over the scheme R (T,) is the subset of the Cartesian product
DOM(A r) x DOM(A 2) x . . . x DGM(A,), where A 1, A, are
the attributes in T,. An element of the Cartesian product is
called a tuple. A finctional dependency X + Y (where X , Y
c T1) holds in R iff, given two tuples t 1 and t2 of R , t1.X =
t2.X implies t 1.Y = t,.Y. Given a set of FDs Z, it is important
to determine those functional dependencies which are not
explicitly expressed hut derived from those contained in x.
Such a derivation is possible using Armstrong’s sound and
complete set of axioms (see [8, lo]). The Armstrong’s axioms
are as follows.

Reflexivity: If Y 6 X, then X + Y.

Transitivity: If X 4 Y and Y + Z, then X + Z.

Union:IfX +Y andX +Z,thenX +YZ.

The manipulation of Z involves the following.

(i) (Membership-Test): Given a set of dependencies C and a
dependency o, find whether Z implies o using the
Armstrong’s axioms.

(ii) (Closure-Finding): Determine x’ the closure of x con-
sisting of all dependencies that can be derived from x
using the Armstrong’s axioms.

(iii) (Minimal Key-Finding):Finding a minimal set X c T of
attributes, such that X + T is a member of p. The attri-
bute set X is called the minimal key of the relational
scheme R(T).

(iv) (I-R-Minimal cover): Finding a set of dependencies Z,
from C such that &’ = C+ with the following properties.

(a) For any dependency o in &, (Zr - o)+ + x+.

(b) We say an attribute A in X of the dependency X +
Y as extraneous if X -A + Y is in J2’. No depen-
dency in & has extraneous attributes on its left side
as well as its right side.

The set C, is called the LR-Minimal cover for Z.

126
CH2895-1/90/0000/0126$01.00@1990lEEE

For discussion about LR-Minimum and the advantages of
manipulating the given set of dependencies C (see [S, lo]).

Several datastructures and sequential algorithms for
representation and manipulation of functional dependencies
have been proposed in the past [1,4,61. A new graph-
theoretic approach which leads to efficient algorithms for
manipulation and representation of FDs were introduced in
Ausiello et. al [l]. In this approach, the given Set of FDs
were represented as a directed hypergraph and known graph
algorithms like the transitive closure, transitive reduction, and
finding strong connected componentst were modified for
manipulating FDs. Using the algorithms of Maier [8] an LR-
Minimum is obtained and with the LR-Minimum set of ms,
the synthesis algorithm [8] can be applied to get the relational
schemes. Several theoretical issues based on directed hyper-
graphs were discussed in [Z]. The algorithms of Diederich
and Milton [4] for computing minimal covers and synthesiz-
ing relations into third normal form do not try to achieve a
reduction in the computational complexity of the algOrithmS
in [8]. They present interesting insights into the manipulation
algorithms of [8] and suggest techniques for enhancement of
those algorithms. For example, in standard methods for syn-
thesizing relations, most dependencies have to be checked a
second time for redundancy after grouping dependencies with
equivalent left-hand sides. Using the method of Diederich
and Milton the dependencies can be characterized in such a
way they are checked only once. At the present time we don’t

know of any parallel algorithm for manipulating functional
dependencies.

The availability and the increase in the development of
parallel architectures have rekindled the efforts to design
efficient parallel algorithms for different problems which
make use of the parallel hardware. There has been a growing
interest in the development of parallel architectures and algo-
rithms in the area of database systems [3,9]. In fact, there is
no reason as to why the design, manipulation, and use of data-
bases has to be done sequentially given the availability of
parallel architectures. Such interests have motivated us in the
development of parallel algorithms for manipulation of func-
tional dependencies. Research in parallel algorithms have
focussed on developing algorithms which run in polynomial
of the logarithm of the input size with processors whose
number is bounded by a polynomiaI in the input size. Such
algorithms belong to the class of NC (Nick’s Class) [7]. An
algorithm in NC tells us that they can be executed at high
speeds using a ‘YeasonabIe” amount of hardware. It is not yet
known, whether all problems solvable in polynomial time
(p-time) can be solved in NC. If such is the case, it would

mean that every problem that is solvable in P-time can be
solved very fast in parallel, using a polynomial-bounded
number of processors. Certain difficult problems that can be
solved sequentially in P-time have been identified as they are
called as P-Complete problems [7]. Using reduction tech-
niques it was shown that a P-Complete problem is in NC if
and only if P = NC. Thus, P-complete problems can be
viewed as the problems in P most resistant to parallelization.

We will show by a simple reduction technique that the
FD-Membership problem is P-Complete (Section 2). Using
the directed hypergraphs [l] as the representation scheme for
the given set of FDs, we derive parallel manipulation algo-
rithms. Our algorithms unlike the algorithms of Ausiello et. al
[I], are highly suitable for parallelization. Our characteriza-
tion of the FIXmanipulations in terms of directed hypergraph
representing the FDs are simpler compared to the ones
presented in [l]. The algorithms for manipulating the func-
tional dependencies use algorithms for computing transitive

closure, transitive reduction, and strongly connected com-
ponents. In order to construct efficient parallel algorithms for
computing transitive reduction and strongly connected com-
ponents it will be necessary to avoid the use of matrix power-
ing or transitive closure as a subroutine; our inability to do so
is sometimes called the transitive closure bottleneck [7]. The
FD-manipulation algorithms have to necessarily use the tran-
sitive closure algorithm as a subroutine and hence, it is also
affected by the transitive closure bottleneck phenomenon. We
will show in this paper that our parallel FD-manipulation
algorithms are efficient based on the transitive closure
bottleneck phenomenon. This is done by showing that all
operations other than those involving the transitive closure as
a subroutine take 0 (logn) time with processors at most equal
to the size of the directed hypergraph Hz representing a set of
functional dependencies Z. First we present a parallel algo-
rithm to obtain the closure H+ of the directed hypergraph H.
We show that our closure algorithm is in NC for fixed degree
and diameter graph H (Section 3). Section 4. presents algo-
rithms to obtain a non-redundant and a LR-Minimum cover
and it is also in NC for fixed degree and diameter graph H.
From the LX-Minimal cover a minimal key can be easily
determined. Conclusions are presented in Section 5.

The model of computation used in this paper is the uni-
form parallel random access machine (PRAM) model. An
EREW-PRAM model the weakest of all models does not
allow neither concurrent reading or writing. A CREW-PRAM
model which is used in our algorithms allows concurrent read-
ing, but not concurrent writing. The CRCW-PRAM model
allows concurrent reading and writing. The variants of the

_L I CRCW-PRAM are based either on “priority”, where proces- t A set of nodes are in a strongly connected component if there are pams lrom every noae to
every other node in the strong component.

127

sors are assigned priorities and the processor with the highest
priority succeeds in writing, or “arbitrary” where among the
set of processors which try to write only one is chosen to
write. It is known that the CREW-PRAM and the CRCW-
PRAM model can be simulated by an EREW-PRAM in
0 (fogP) time with 0 (P) extra processors or with no extra
processors in 0 (log*P) time. [S]. It was shown in [ll], that
all PRAM models with P processors can be simulated by an
ultracomputer (bounded-degree network of processors with no

global memory) in 0 (lo@ (lo&@)*) time per step and with
no extra processors.

1.1 Definitions and Notations

Definition 1.1 (Directed Hypergraph): A directed hypergraph
H = (V, E) consists of nodes and arcs as follows.
nodes: The node set V consists of simple and compound
nodes. A compound node j has components jr, ja, j, , r >
1 and each j, is a simple node. A simple node is a node with
only one component.
Arcs: The arc set E has the following arcs:

(i) arcs (i , j) from one simple node to another,

(ii) arcs (j, jr), (j , j,) from each compound node to its
components.

(iii) arcs (i , j) from node i to compound node j if and only if
there are arcs (i, j,), (i , j,), where j t, j, are the
components of compound node j . If such an i exists we
say that node j is satisfied by node i .W

We say that there is a path from node i to node j, written
ci, j,, if and only if there are paths -=i,k> and tk, j>.

Also, there is a path from node i to a compound node j , if and
only if there are paths ci, j 1>, ci, jr>, where, j,, j,
are all the components of compound node j .

Definition 1.2 (Hypergraph Accessibility Problem @IGAP)):
Given a directed hypergraph H = (V, E), and two dis-
tinguished nodes i , j E V, does them exists a path a’, j P in

H.rn

The above HGAP problem on a n-node directed graph con-
taining only simple nodes, can be solved in 0 (log*n) time
with M (n) processors, where M(n) is the cost of multiplying
two binary matrices 171.

We will assume that the set Z is in reduced form as follows

(a) there exist no two FDs X 4 Y and X’ + Y’ such that X
= X’, and

(b) forallFDsX +Y,X nY =0.

Let the given set of FDs Z be in reduced form and represented
by a directed hypergraph Hz as follows. For each FQX + Y
create a compound node X and simple nodes X t , . . . X, and

~cx (XI y>, (X , x 11, ‘.., (X,X,)inHr.ThenodesXr ,..., X,
are components of nodeX. We will denote n = 1x1 =] Cl] +
] Z$] the sum of the length of the strings of attributes appear-
ing on the left (right) side of the dependencies. Also, e =
]] Z]] will denote the number of FDs in Z. We will use the
notation H instead of Hz when the context is clear and call H

as a graph instead of a directed hypergraph.

Proposition 1.0: Let the given set of functional dependencies
(FDs) be represented by a directed hypcrgraph H = (V, E).
The FD-Membership test on the dependency X + Y is
equivalent to the HGAP instance from node X to node Y . n

ExMtple 1: See Figure 1. for a set of FDs and its correspond-
ing directed hypergraph.

A+F

A+C F 4-m-H
A+B

C-SD

FBD +H
A

BD +I

Figure 1: A set of FDs and the directed hypergraph corresponding to it (from Ausiello et. al [l]).

128

Definition 1.3: We say a directed hypergraph H = (V, E)
generates a set of functional dependencies Z, when, for each
arc (X , Y) in E a functional dependency X + Y is gen-
erated.=

2. The P-Completeness Result and a Parallel Algorithm

In this section, we show that the monotone circuit value

problem is log-space reducible to HGAP and thus establish
HGAP is P-Complete. The monotone circuit value problem
is P -Complete (see [7]).

Definition 2.1 (Monotone Circuit Value Problem):
Given a finite set of g gates; for 1 I j 5 g , gate j is either an
input (0 or l), an AND-gate AND(ij,l, ij,z, ij,ku$, or an
OR-gate OR(ij,t, ij,z, ij,kG)), where 1 I ij,l, ij.2, ij,kG) <

j , what is the value of the expression represented by gate g .

Lemma 2.1 (see [7]): The monotone circuit value problem is
log-space complete in P .M

Theorem 2: The HGAP is log-space complete in P .

Proof: We show by the following construction that the mono-
tone circuit value problem is log-space reducible to the
HGAP. Consider the case where all the gates have two inputs

for the sake of ease in presentation. We construct the follow-
ing directed hypergraph H. For an AND-gate gi = gj A gk,
create a compound node gi with two components gi t and gip
Add iUCS (8j, gi 1) and (gk, gi2)* For an OR-gate gi = gj V gk,

add GUTS (gj, gilh (gj. gi2h kk, gi 1)~ and (gks gid- We can
easily show by induction, that on an input 1 at gate gi , an out-
put of 1 is obtained at gate g ; if and only if there exists a
directed path from node gi to node g in H . The construction
of H can be done in log-space. Hence the the0rem.H

Coro 2.1: The FD-membership test is log-space complete in
P.

Proof: Follows directly from Proposition 1. and Theorem 2.U

The negative result in Theorem 2. only tells us that
HGAP is resistant to high-degree parallelisms. We present a
simple sequential algorithm for the HGAP which runs in time
0 (e + n), where e and n are the number of edges and ver-

tices of the graph H. A parallel version of the sequential
algorithm runs in time 0 (e IP + n.logP) with P processors on
a EREW-PRAM and in time 0 (e IP + n) with P processors
on a CRCW-PRAM. The technique used in the following
algorithm is similar in spirit to the one presented for the
monotone circuit value problem by Vitter and Simmons [131.

(* Initially all vertices are marked “not visited.” *)

Algorithm HGAP (x , y)

Begin

1. Starting from x determine all the k vertices that can be reached from x by using transitive closure;
Mark all the k vertices “visited” including x .

2. Ify is one of the k vertices, then, RETURN (‘Found’); STOP.
3. If either k = 0 or there is no arc (x , p) such that vertex p is a component of some

compound node, then, RETURN (‘Nil’).
4. For each “unvisited” compound node j , such that there is at least one arc (x, j,), where j, ,

is a component of the node j , Do
Begin

5. If node j is satisJied by n , then,
Begin

6. Am= 6.j)
7. HGApo’,y)

End
End

End.

129

It can be easily seen, that if there should exist a path CT, y 5
and has not been determined at the end of Step 3., then, there
exists at least one compound node in H which is satisfied by
x . The algorithm HGAP presented above can be parallelized
in several ways. Each of the steps l-7 can be parallelized.
Step 4-7 is executed sequentially and the processors are
assigned to keep track if node j is satisfied by node x. Each
of the P processors are assigned to check the presence of the
arc from x to the P th component of j. Once each processor
determines the presence/absence of arcs assigned to it, the
time taken to check if node j is satisfied by x is 0 (logP)

using binary-tree communication scheme among P, proces-
sors. Essentially, we are computing AND of P binary values.
On a CRCW-PRAM, we can determine the AND of P binary
values using P processors in constant time.

Theorem 3: The HGAP can be solved using P processors on
a EREW-PRAM in 0 (e IP + n.logP) time or on a CRCW-
PRAh4inO(e/P +n)time.

Proof: Follows from the discussion ab0ve.m

3. Closure of a Directed Hypergraph

Computing the closure of a directed hypergraph H is
finding all the possible arcs in the graph H. The closure of the
graph H is the transitive closure on directed graphs when H

contains only simple nodes. Since, finding whether there
exists a path <x, Y > is P -Complete, determining the closure
is also P-Complete. In this section, we present a parallel
algorithm whose execution time is dependent on the diameter
and the degree of the graph H . The diameter of the graph H

is the maximum distance between any two nodes in H. The
degree of the graph H is the degree of a node having max-
imum number of arcs going out. For graphs with fixed diame-
ter and degree algorithm, we show that the closure citn be
computed in NC. Having determined the closure the HGAP
problem can be solved in constant time. In terms of the the
functional dependencies Z, the degree of a node X in Hz is the
number of FDs in E whose left hand side is in X or equal to X .
The distance between two nodes X and Y in Hz is the number

of dependencies in E which have to be applied before X deter-
mines Y. In the worst case the maximum distance and degree
can both be equal to the number of FDs in E.

Theorem 4: The algorithm H-Graph-Closure correctly deter-
mines the closure of directed hypergraph H in
0 (log2n + MAX (diameter(H), degree (H))*logn) with
0 (M (n)) processors on a CREW-PRAM.

Proof: It is straightforward to understand Steps 1-6 of the
algorithm H-Graph-Closure. Step 8. performs the closure
operation with respect to a node i. Let us assume that there
should exists an arc (i, j) in the closure of H and not in H

Algorithm H-Graph-Closure

Begin

1. Perform transitive closure on H . Here we find all simple nodes that can be reached from node i
and add arcs to nodes reachable from i .

2. Do Steps 3-9 Until no new arcs are added
3. For each node i In-Parallel
4. If there are arcs (i, j I), (i , jr), where j 1, .., j, are all

the components of compound node j , then
Begin

5. Addthearc(i,j)inH
6. Forallarcs(j,k)addarcs(i,k)

End
7. For each node i In-Parallel

Begin
8. LetJ={j’ , jk} be the compound nodes such that there is an arc (i, j,),

where, jp is a component of node j E J AND for all components p of j ,
there are arcs only from compound nodes in J.

9. Add arcs (i , j) for each j E J and arcs (i, k) such that node k is adjacent
to some compound node in J

End

End.

130

after the execution of Step 6. The absence of the arc (i, j)
implies that there exists a compound node k in the directed
path between node i to node j . Assume there is an arc (k , j),
if it is absent, we have the case described above. The arc (i,

k) is absent, otherwise, we would have the arc (i , j). For the
arc (i, k) to be present, there should be arcs from node i to
every component of k. In Steps 7-9 determines the arcs from
node i to the components of k. It can be easily shown, that if
there should exists an arc (i , j) in the closure and has not been
determined at the end of Step 6., then, there exists at least one
compound node k in J of Step 8.

In Figure 2. and Figure. 3. we have depicted the worst-
case scenario in terms of the number of iterations of Steps 3-9
before the arc (i , j) is determined. We can easily show that at
most MAX(diameter(H), degree(N)) iterations of Steps 3-9
would be necessary to determine the closure. Step 1. takes
0 (log2n) time to determine the closure with 0 (M(n)) pro-
cessors (see [7]). Each of the Steps 3-9 can be executed in
0 (fogn) time with 0 (n + e) processors using suitable matrix
structures on a CRCW-PRAMM

Figure 2: The number of iterations of steps 3-9 in algorithm H-Graph-Closure to
determine the arc (i, j) is at most equal to the degree of the above graph. The
graph above consists of compound nodes with two components each.

Figure 3: The number of iterations of steps 3-9 needed by algorithm H-Graph-
Closure to determine the arc (i, j) is at most equal to the diameter of the above

fmph.

131

Example 2: The dosure of the graph in Figure 1. is given
in Figure 4.

Figure 4: The closure of the graph in Figure 1.

4. Non-Redundant and Minimum Directed Hypergraphs

Given a set of functional dependencies Z, we present
algorithms to obtain a non-redundant and a minimum cover as
defined by Maier [8]. Since, the FD-membership test is P-

Complete, algorithms for determining a non-redundant and
minimum cover are also P -Complete. In the previous section
we presented the closure algorithm which was shown to be in
NC for fixed diameter and degree graph H. We will now
deline several terminologies.

ikft reducrz’on involves removal of “extraneous” attributes
from X in each of the dependencies X + Y in I;. Given the
setZ,anattributeB isextraneourinX +Y ifX =ZB,X #
Z , and A E Z z’. There rue two kinds of extraneous attributes.
If X = ZB , X # Z, and B E Zx+, then B is called an impfied

extraneous attribute and all other extraneous attributes are
non-implied extraneous attributes.

We say two attribute sets P and Q are equivalent in Z written
P =Q,ifP +Q andQ +P areinp. LetX +-Y bca
dependency with X A Y = 0 and let X1, Xa, . . . X, be some

subsets of X such that (X r E Y r), (X2 3 Yz). (Xr E Y,,,) with
Yl u Y* v ..* v Y,,, = Y. The dependency X + Y above is
trivial and Y is textually contained in X .

A non-redundant cover for Z is the set & in which all depen-
dencies CJ in C, , when removed is not in the closure Cr. If we
assume that the right hand side of each dependency in C, is a
single attribute, then, a minimal cover for E, can be obtained
by removing both the implied and non-implied extraneous
attributes from the Ieft hand side of each dependency in C,
[lo]. A minimum cover is a minimal cover with a minimum
number of functional dependencies than any other equivalent

set. A minimal cover is a minimum cover which does not
contain some two dependencies X + A and Y + B , such that
X and Y are equivalent.

We will give definitions for non-redundant, minimal, and
minimum directed hypergraph H .

A hypergraph H is non-redundant if it does not contain any
redunabu arcs. An arc (i , j) is redundant in H if,

(i) there are arcs (i, k) and (k, j) in H+, or

(ii) the node j is textually contained in node i .

Condition (ii) identifies arcs which generate trivial dependen-
cies. A non-redundant hypergraph is minimal if each com-
pound node does not contain any implied extraneous attri-
butes. The non-implied extraneous attributes are removed
when redundant arcs satisfying condition (i) is removed. A
minimal hypergraph is a minimum one if there are no two arcs
(II, .I) and (Ia, K) in H, where II and I2 are nodes in the
same strongly connected component I with J and K in dif-
ferent strong components. From a minimum hypergraph a
minimum set of FDs can be easily generated.

The following algorithm obtains a minimum directed hyper-
graph H,,, from the graph Hz for a given set of dependencies
x.

132

Algorithm Minimize

Begin

1. Let H 1 be the graph Hz with arcs to compound nodes present in Hz++.

2. Compute the strongly connected components of the graph H 1.

3. For each component i do in parallel
Begin

4. If more than two arcs from the component i to the component j ,
then, REMOVE all except one from H 1.

5. Choose a node X as a representative of component i .
6. Forallarcs(Y,Z),suchthatY isini andZnotini,REMOVE(Y,Z)andadd(X,Z).
7. Remove nodes j from component i which is textually contained to some node k in component i .

End.
8. Process the acyclic graph formed by the strong components as follows:

Mark the arc (I, J) from strong component Z to component .Z for deletion when
representative node j of .Z is textually contained in representative node i of Z .

9. Transitively reduce the acyclic graph formed by the strong components and mark arcs to be deleted.
10. Remove implied extraneous attributes from each compound node i .
11. Remove arcs marked for deletion in Step 8 and Step 9.
12. For each one of the strong-components form a Hamiltonian-Circuit with the nodes in the component.
13. Remove redundant arcs formed due to the Hamiltonian-Circuits by Transitively reducing the graph H 1.

14. For each arc (i , j), where j is a compound node, do in paraIIe1
Begin

16. Add arcs (i, jr), (i, j,), where jt, j, are components of compound node j .
17. Add arcs (j, j l), (j , j,).

End
18. Transitively reduce the resulting graph and remove the arcs to the compound nodes.

End.

The Steps l-6 are easy to understand. In Step 7 node j is
removed from strong component Z if it is textually contained
in node k in the same component I. Since j and k are in the
same strong component, if j is textually contained in k, then
k is also textually contained in j. Hence, to avoid deleting
both j and k from component I, ranks are assigned to each
node in component Z and j is deleted from component 1 iff j

is textually contained in k and rank(j) < rank(k). The textual
containment of two nodes in the same component can be
tested as follows. Let j and k be two nodes in the component
I with rank(j) < rank(k). Let (I, I 1), (I, 1,) be the arcs
from strong component Z to strong components Z r, I,,
respectively. For all strong components Z,, 1 I m 5 1, we do
the following. If k,,, c k is in ncde I,,, , then for all nodes j,,,
in Z, with j, c j remove j, from j. If j becomes empty
then, j is textually contained in k , otherwise it is not.

In Step 8 we delete the arc from strong component Z to

strong component J when some node j in J is textually con-
tained in some node i in I. In fact, if j and i are representa-
tive nodes chosen in Step 5, am (I, J) can be removed if j is
textually contained in i. Now, the test is carried out as fol-
lows. Let I r, I, be the components such that there are arcs

(1, IlIP (I, II), 15 m 2 I, and the arcs from strong com-
ponent .Z are to only the strong components Z r, I[. We per-
form the operation described previously on the node j E .Z, if
j becomes empty, the arc (I, J) is redundant, i.e., j is textu-
ally contained in node i E I, otherwise, arc (I, J) is not
redundant. The arcs which are found redundant in this step
are removed in Step 11 as they are required to determine and
remove implied extraneous attributes.

The removal of implied extraneous attribute from every
compound node i in component Z is done as follows. Let I,,

12, **a, Zl be the strong components which have arcs from com-
pound node I containing i with no Zk having an arc from any

133

OfIj, llj 51 andeachlk containsanodez ci. IfeachZk,
1 I k < 1 is reduced, i.e., no compound node z c i in Zk con-
tains extraneous attributes, then, pick a node z from each one
of the Z, ‘s. The union of all z ‘s gives the compound node i

without any implied extraneous attributes. The arcs to the
compound nodes are redundant and Steps 14-18 performs the
right reduction operation.

The minimal key for a set of dependencies X by taking
the union of representatives of the strong components with
indegree zero in the minimum hypergraph Z-Z, of the graph

HE

Exumple 3: For an illustration of the algorithm Minimize. see Figures 5(a) - 5(d).

Figure S(a): The graph HI formed in Step I of the algorithm Minimize. The arcs
to the compound nodes have been added after the closure of the original graph is
determined. The arcs from a compound node to its simple components have been
removed to lessen the clustering of the Figure.

Figure S(b): The graph HI after the execution of steps l-6 of the algorithm
Minimize on the graph in Figure 5(a). The strong components can be clearly seen
and the reprentatives are marked with circles around them. In Step 7, node G.Z
would be determined to be textually contained in BD and would be removed.

134

Figure 5(c): The graph Hi at the end of Step 13. of the algorithm Minimize.

Figure 5(d): The minimum directed hypergraph of the graph H 1 in Figure 5(a)
after the completion of the algorithm Minimize.

Lemma 4.1: Given directed hypergraph H the algorithm
Minimize correctly obtains the minimum directed hypergraph
H F?&’

Proof: We will first show that the graph H,,, does not contain
any redundant arcs.

Case (i): Let (i, j) be the redundant arc and let i and j be in
different strong components determined in Step 2. Since (i,
j) is redundant there can exists a node k such that there are
arcs (i, k) and (k , j), If node k is in a different strong com-
ponent, then, the transitive reduction of the acyclic graph
formed by the strong components would delete the arc (i, j)
in Step 9. If node k is in the component of i or j , then, Steps
3-6 would delete the arc (i , j). Also the arc (i , j) is redundant
if node j is textually contained in node i and it is removed in
step 8. Hence the arc (i , j) is not redundant.

Case (ii): Let the arc (i , j) be redundant and let nodes i and j
be in the same strong component determined in Step 2. Since
(i, j) is redundant there can exists a node k and arcs (i, k)
and (k, j). Node k cannot be in a different component, since
all nodes reachable by the node i are reachable by k using
arcs (i, k) and (k, j). If node k is in the same component as
nodes i and j, then, the Hamiltonian circuit formed for each
strong-component would delete arc (i , j) in Step 12. The arc
(i, j) is redundant if node j is textually contained in node i.
In Step 7. node j is removed. Hence the arc (i, j) is not
redundant.

Case (iii): The construction of an Hamiltonian circuit in Step
12, creates redundant arcs as shown in Fig. 4.2(a). A tmnsi-
tive reduction on the entire graph H, in Step 13, removes
redundant arcs.

135

Case (iv): The axe (i, j), where j is a compound node is
redundant when there are arcs (i , jl), (i , jt), where jl,
jl are some or all of the components of compound node j and
each arc (i , j,.), where, 1 I k I I, is redundant. In Steps 14-18
the arc (i, j) is removed and arcs (i, j,), (i, j,) are added,
where j,, j, are all of the components of j. The resulting
graph is reduced using transitive reduction.

From the above we can clearly infer that Zf,,, is non-redundant.
It is minimal since in Step 10 the implied extrmeous attributes
are removed from each compound node and there are.no arcs
to compound nodes. Also, for two equivalent nodes X and Y
there is only one arc from the component containing both X
and Y and hence H, is a minimum one.U

The presence of the arcs to compound nodes helps to
treat the graph H as a directed digraph which makes the appli-
cation of parallel transitive closure algorithms possible.
Given H 1 all the steps in the algorithm except for the Steps
7.8 and 10 can be implemented using parallel transitive clo-
sure algorithms in 0 (M(n)) time with 0 (n + e) processors
on a CREW-PRAM.

The implementations of Steps 7, 8, and 10 are given in
the following. We would first present a method to determine
textual containment of two nodes in H 1. We will assume that
Steps l-6 have been executed on the graph HI. We will show
how to test the textual containment of two nodes in the same
strong component first. We construct the following data struc-
ture for the graph H 1. For each compound node J, let j,, j,
. . . . jJ be the nodes such that each jp c J . The set S(J) con-
sists of ordered pairs (j, , c), where j, is the union of all jp ‘s
in strong component c . Keep all the S (J) sets sorted first on
the component number containing J and next the rank com-
pound node J within the component. For each ordered pair
(i, , c) in S(J) we have a list of pointers L (j, , c). Each
pointer ljc E L (j,, c) points to an ordered pair in the set
S(K) and K is in the same component as J with rank(K) >
tank(J). In order to check the textual containment of node J
in node K collect the pointers lj 1, lj2, lj,, where, each [ii
pointstoanorderedpairinS(K). Nowifjluj2u...uj,a

J , then J is textually contained in node K.

The sum of the sizes of the S (J)‘s and the pointers in

Ltic, c)‘s are both at most 0 (n + e). The S(J) sets can be
ordered as required above in time 0 (logn) time using 0 (n)
processors on a CREW-PRAM. We will show that the S(J)
sets can be constructed in 0 (logn) time using 0 (n + e)

processors. The sets S(J)‘s can be constructed by sorting the
ji’s c J based on the strong component number they are in
and then taking a union of ji’s which are in the same com-
ponent c to form the ordered pair &, c). The sorting and
union operation using recursive doubling techniques can be
done in 0 (logn) time with 0 (n + e) processors on a CREW-
PRAM. Note that the ji’s c J can be obtained during the
construction of the graph H 1. The collecting of pointers
which point to the ordered pair in S(K) can all be done by
sorting the pointers based on the list they point to and the test
of textual containment can all be done in O(logn) total time
for all compound nodes in the graph H 1 using 0 (n + e) pro-
cessors on a CREW-PRAM,

The Step 8 of the algorithm can be implemented as
described above. The most time consuming step in the entire
algorithm is the Step 10. Removal of implied extraneous attri-
butes can be compared with the problem of finding the
minimal key. In fact, given a minimum directed hypergraph
H,,,, the minimal key is the union of the representatives con-
tained in the strong components whose indegree is zero. The
problem of left-reducing a dependency X + Y is finding a
minimal key in the graph H, (X), where H, (X) is the graph
induced by nodes Z c X in H,,, . Now, the removal of implied
extraneous attributes from a compound node X is done by
finding all strong components containing a node Z c X and
assuming all such Z’s do not have implied extraneous athi-
butes we pick Z’s from components which do not have an
incoming arc. The union of all such Z‘s gives the node X
without any implied extraneous attributes. The time taken to
do this is dependent on the diameter of the graph H 1 and can
be easily done in 0 (logn) time for a constant diameter graph
H 1 with 0 (n + e) processors on a CREW-PRAM. nodes.

Theorem 5: A minimum directed graph H,,, of the directed
hypergraph HZ for a given set of functional dependencies Z
can be obtained using algorithm Minimize in
0 (log% + MAX(&gree (Hz), diameter (H-&)*logn) using
0 (M (n)) processors on a CREW-PRAM.

Proof: The correctness of the algorithm Minimize follows
from Lemma 4.1. Step 1 takes
0 (log2n +MAX (degree (H-& diameter (H-&)*logn) using
O(M(n)) processors (Theorem 4). Steps 7 and 8 take
0 (logn) time and uses 0 (n + e) processors from the above
discussion. Also, Step 10 can be implemented in
0 (diameter (H&.logn) with 0 (n + e) processors as dis-
cussed above. All other steps can be done in 0 (log2n) time
using O(M(n)) processors, since they al1 use transitive clo-
sure algorithms as a subroutine. All the steps require the
CREW-PRAM model. n

136

From Theorem 5 we can see that for fixed degree and
diameter graphs HZ the complexity of the algorithm Minimize
is 0 (log2n) and uses 0 (M(n)) processors. Hence it is
optimal based on the transitive closure bottleneck
phenomenon.

5. CONCLUSION

We have presented parallel algorithms for the manipula-
tion of functional dependencies which arise in relational data-
bases. The functional dependencies were. represented as a
directed hypergraph and parallel graph algorithms for finding
transitive closure, transitive reduction and to compute strongly
connected components were used for manipulating the
directed hypergraph. The complexity of manipulating the
given set of FDs is shown to be P-Complete in the general
case. This implies that manipulation of FDs is resistant to
high-degree parallelism. We have shown that efficient paral-
lel manipulations can be derived for directed hypergraphs with
fixed degree and diameter. From the LR-Minimum directed
graph the design of relational schemes can be easily carried
out. For more details (see [11).

Manipulating functional dependencies were thought of a
one-time-process, that is, the dependencies are manipulated
during the design stage and never again processed. This was
shown to be no longer true as dependencies could he intro-
duced as the database system is being used and maintained
Such dependencies were called as dynamic data dependencies
[121. It would be interesting to see how the directed hyper-
graphs can be maintained in the context of dynamic data
dependencies i.e., perform updates on the directed hypergraph
in parallel.

ACKNOWLEDGEMENTS

We thank the anonymous refrees for their comments and Dr.
Rakesh Agarwal for the prompt communications with respect
to our submission to this conference.

References

PI

AusIELLo, GIORGIO, A-I-RI, ALESSANDRO D',
AND SACCA, DOMENICO, “Graph Algorithms for
Functional Dependency Manipulation,” JACM,
vol. 30, no. 4, pp. 752-766, October 1983.

AUSDXLO, GIORGIO, ATRI, ALESSANDRO D',
AND SACCA, DOMENICO, “Minimal Representa-
tion of Directed Hypergraphs,” SIAM J. COM-
PUT., vol. 15,110. 2,pp. 418-431, May 1986.

r31

141

r.51

[61

171

PI

r91

[lOI

1111

r121

r131

BARU, C. K. AND FRIEDER, O., “Database opera-
tions on Cube-Connected Multicomputer Sys-
tem,” IEEE Trans. on Computers, vol. 38, no. 6,
pp. 920-927, June 1989.

DIEDERICH JIM. AND MILTON JACK., “New
Methods and Fast Algorithms for Database Nor-
malization,” ACM TODS, vol. 13, no. 3, pp.
339-365, September 1988.

ECKSTEIN, D.M., “Simultaneous Memory
Access,” Dept. Comput. Sci., Iowa State Univ.,
Iowa City, Tech. Rep. TR-79-6, 1979.

GALIL z., “An almost linear time algorithm for
computing dependency basis in a relational data-
base,” JACM, vol. 29, no. 1, pp. 96-102, January
1982.

KARP,R.M. ANDRAMACHANDRAN,V.,“A SUF
vey of Parallel Algorithms for Shared-Memory
Machines,” Rept. No. UCBICSD 881408, Comp.,
Sci., Division, Berkeley, California, 1988.

MADZRDAVID., “The Theory of Relational Data-
bases," Computer Science Press, Rockville, Md.,

1983..

OMIECINSKI, E. AND TIEN, E., “A Hash-Based
Join Algorithm for a Cube-Connected Parallel
Computer,” IPL, vol. 30, pp. 269-275, March
1989.

ULLMAN, J.D., “Principles of Database Sys-
tems,” Computer Science Press, Rockville, Md.,

1983..

UPFAL,E.ANDWIGDERSON, A., “Howto Share
Memory in a Distributed Environment,” Proc.
25th Annu. IEEE Symp. Foundations Comput.

Sci., West Palm Beach, FL, pp. 171-180, October
1984.

VIANIJ, v., “Dynamic Functional Dependencies
and Database Aging,” JACM, vol. 34, no. 1, pp.
28-59, January 1987.

VIlTER, J.S. AND SIMONS, R-A., “New Classes
for Parallel Complexity: A Study of Unification
and Other Complete Problems in P,” IEEE.

Trans. On Comput., vol. c-35, no. 5, pp. 403-417,
May 1986.

137

