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ABSTRACT

Template matching is concerned with measuring the similarity
between patterns of two objects. This paper proposes a mas-
sively parallel approach to pattern recognition with a large
template set. A class of image recognition problems inherently
needs large template sets, such as the recognition of Chinese
characters which needs thousands of templates. The proposed
algorithm is based on the SIMD-SM-R machine or the SIMD
machine with broadcasting abilities, which is the most popular
parallel machine to date, using a multiresolution method to
search for the matching template. The approach uses the
pyramid data structure for the multiresolution representation of
templates and the input image pattern. For a given image it
scans the template pyramid searching for the match. Imple-
mentation of the proposed scheme is described.

1. INTRODUCTION

Pattern recognition is concerned primarily with the
description and analysis of measurements taken from physical
or mental processes. Finding appropriate properties of the
object and matching the found properties are both computa-
tionally intensive and error-prone. Much work has been done
on this area [1, 2, 7, 19, 20]. However, few methods seem to
be satisfactory in real-time application, especially when there
is a large number of known classes. In this paper, we propose
a massively parallel algorithm for pattern recognition based on
the SIMD-SM-R machines or the SIMD machines with broad-
casting abilities.

An SIMD (Single-Instruction-Stream-Multiple-Data-
Stream) machine consists of an array of identical processors. In
the SIMD-SM model, reading and writing conflicts are not
allowed. In SIMD-SM-R, simultaneous reading (but not writ-
ing) is allowed. In SIMD-SM-RW, simultaneous reading and
writing is allowed [14]. If an SIMD machine has the broadcast-
ing abilities, then such an SIMD machine is functionally
equivalent to an SIMD-SM-R machine. Therefore, we present
our approach in terms of these two types of SIMD model inter-
changeably. By nature, the SIMD model is very suitable for
application in image processing. However, parallelization has
barely explored on the recognition level. In this paper, we pro-
pose an algorithm which matches an input image with a large
template set. Little work on dealing with large template sets
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can be found in literature.

Li, et al. [13] describe an experiment using Ramapriyan’s
[15] template tree approach and propose a tree generating pro-
cedure. Their experiment was not run on a parallel machine.
The tree search method compares an image with each of the
child nodes and selects the one with the greatest similarity to
continue the search and stops when a sufficient match is found
with a leaf node (true template). However, it is hardly a
scheme which can guarantee that every branch examined dur-
ing its search leads to the appropriate template leaf. Moreover,
the template tree takes up twice as much the memory space as
the templates themselves and the template tree is not easy to
update.

There is no general way to search memory for the best
match without examining every element of memory. Instead
of a brute force linear search through X templates in M, we
propose an algorithm on the SIMD-SM-R machine to match all
K templates using multiresolution techniques. Our approach
has O (log N) times comparisons where the image is composed
of N xN pixels. We will explain what "a comparison” means
shortly.

The SIMD machine in our focus has two types of com-
munication facilities: the processors are connected by a mesh
into a grid network, allowing rapid direct communication
between neighboring processors, and by the global broadcast-
ing mechanism which provides a SEND instruction that takes a
broadcasting cycle to reach any destination processor from a
source processor. A broadcasting cycle is considered as a time
unit. Some machines with these abilities are described in [4, 5,
8].

Based on the facilities of the SIMD-SM-R machine, the
primitive operation plus-scan can be defined [9, 21]. The
plus-scan operation can be implemented in microcode and it
takes log,K time units to scan a vector of length K. Figure 1
shows the plus-scan operation.

A =

1 21 B3] O (&) & O

plus-scan(A) =

Figure 1: An Example of Plus-Scan



Our approach makes use of the hierarchical pyramidal
data structure [19] to perform the multiresolution matching.
The pyramid of arrays described by Tanimoto [19] is a

sequence {M(L),M(L—l),._A,M(l) of arrays where ML)

represents an original image and M (i-1) is a version of M (i) at
half the resolution of M (i) with M(1) = 2 x 2 pixels. A
pyramid for an image is constructed from an image array using
an averaging rule:
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where p and ¢ denote the coordinates of the pixels and 1<i <L.
The whole array M (i) can be obtained by averaging all 2x2
components of M (i+1) simultaneously via neighbor communi-
cations in several time units. Theorem 1.1 follows immedi-
ately.

Theorem 1.1. M(i) can be computed from M (i+1) in con-
stant time.

If the SIMD-SM-R machine has N’ xN’ processors, one
operation on every element of an N xN array can be done in

N XN ] steps {21]. Hereafter, we assume that the SIMD-SM-

N xN
R machine has N xN processors where N =2%, and the tem-
plates and image patterns are N xN arrays of pixels. We will
ease the assumption that the machine has N xN processors in
the end of Section 3.

For a template T and an image P of the same size mxm,
the comparison operation COMP(T,P) returns a measure s of
dissimilarity between T and P where the measure s is a numeri-
cal value, which is used to determine the confidence level of T
matching P. Obviously, there are many specific implementa-
tions of COMP operations according to the image recognition
tasks, and the time complexity O(f(m)) of such COMP’s is
dependent on the specific comparison scheme selected. In this
paper, we are concemned with neither what specific scheme
used in COMP’s nor what the complexity O (f (m)) of such an
operation is.

Definition 1. The execution of a parallel version of
COMP(T,P) on an SIMD machine is considered one com-
parison operation.

Assumption 1. Assume that the COMP is implemented
in such a way that if a region of the processor array is assigned
to execute COMP(T",P) and another region of the processor
array is assigned to execute COMP(T”,P), then COMP(T",P)
and COMP(T”,P) can be carried out under one single instruc-
tion stream, i.e., COMP(T’,P) and COMP(T”,P) can be exe-
cuted simultaneously if there are enough processors on the
SIMD machine to allocate the (T",P) pair and the (T”,P) pair at
the same time.

Assumption 1 is the basis of our algorithm. The assump-
tion is reasonable since some comparison schemes satisfy this
assumption. We will show one example in Section 4.

This paper is organized as follows. Section 2 describes

our approach and gives algorithms for constructing the tem-
plate database and recognizing an image. In Section 3, we dis-
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cuss the performance of our approach. Section 4 gives some
simulation results.

2. PROPOSED APPROACH

An SIMD-SM-R machine with massively parallel proces-
sors and high connectivity can be suitable for image recogni-
tion tasks [21]. In the proposed approach, a database M of
templates is constructed and the image recognition is carried
out using the facilities provided by the SIMD-SM-R machine.

For our system, the database is a set of pyramids of tem-
plates. Let N =2%, then each pyramid for a template is com-
posed of N xN, %N X %N,...,2x2 arrays.
denote the array of level i of the kth template pyramid and X to
denote the number of templates, i.e. | M | =K. The structure of
the database is also appropriate for learning new templates
after the recognition process is started since the database is a
set of pyramids. Learning is simply adding a pyramid to the
database.

Constructing a pyramid for template m; has a time com-

We use m(i) to

plexity of O(logN). A pyramid needs at most %Nz pixels of

memory [21]. The construction of the database of our
approach is simply to learn all templates in M. Constructing
the database has a computational complexity of O (X logN) to

construct the database and the database needs %N 2k pixels of
memory where K = [M|.

We also need to construct a pyramid for the input image
pattern before the recognition process proceeds. The pro-
cedure for constructing the input pattern pyramid is the same
as the one for constructing template pyramids.

After all pyramids of templates and the pattern are ready,
the multiresolution matching process can be started. The idea
of multiresolution matching method is the following. The sys-
tem has a set of thresholds, each of which is associated with
every level of pyramids. If COMP(m P) at level i is greater
than threshold(i), it does not necessarily compare template m
with the pattern at levels i +1, ..., L. We have the assumption
that COMP(m ,P) is a parallel procedure on an SIMD machine.
If the data array is smaller than the physical processor array,
then there will be some processors working on the data array
while the rest are left idle. On the other hand , if the data array
is larger, the SIMD-SM-R machine can work on the data array
portion by portion. Since the array size at level i of a pyramid
is 28 x2' and at level i+1 is 2°*' x 2'*! , at level i this comparison
needs only one-fourth processers as at level i+1 on the SIMD-
SM-R machine.

Under assumption 1, one can see that in one comparison
operation we can compare more templates at higher levels than
at lower levels of the pyramids if we can make use of all pro-
cessors. In order to maximize the utilization of processors and
speed up the matching process, we first construct a pixel plane
consisting of all top level arrays of K template pyramids and
another pixel plane consisting of K top level arrays of the input
pattern pyramid as shown in Figure 2.

Theorem 2.1. A pixel plane consisting of a set of smaller
arrays can be constructed in one operation.

Proof. The SIMD-SM-R machine or the SIMD machine



Note: m' q(1) is the level | array of the pyramid of template m, which is selected for level |

q

comparison. k, is the number of selected templates for I th level comparison.

715818 1417
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Note: P (1) is level | of the input pattern pyramid.
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Figure 2: Pixel Planes for Matching

with broadcasting abilities allows any processor to communi-
cate directly with any other processor in unit time, while other
processors also communicate concurrently. The factor that the
pixel plane may be larger than the processor array is discussed
in the performance analysis in Section 3. (J
By assumption 1, the comparisons COMP(m,!(1),P(1)) for
1<i<k, can be simultaneously executed on the processor array
regions corresponding to m(1) and P(1). Therefore, the
machine compares all template m,'(1)’s with pattern P(1) in one
comparison operation. This results in a vector as shown in Fig-
ure 3 which is dissimilarity factors.
Sy = (s[11, 521, ..., slky])

Figure 3: Vector of the Regions Dissimilarities

Theorem 2.2. The dissimilarity vector S can be com-
puted in one operation.

Proof. The proof follows from the above illustration.

Suppose there are k, elements of the dissimilarity vector S
less than the threshold(1). Then we use level 2 arrays of these
k> pyramids to construct a template pixel plane and a pattern
pixel plane consisting of k, level 2 arrays of pattern pyramid.
Figure 4 shows the template and pattern pixel planes.

Repeat the process of constructing pixel planes and com-
paring pixel planes for level 2, level 3, and so on. On the bot-
tom level we will get all matchings whose dissimilarity meas-
ures are less than threshold(L). The idea is that when the array
size we need to compare increases, the number of templates
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Figure 4: Template and Pattern Pixel Planes for Level 2
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we need to compare probably decreases, if thresholds are
appropriate. We expect that the pixel plane size for com-
parison is at most several times that of the SIMD-SM-R
machine processor array size.

Theorem 2.3. Seclecting templates for next level com-
parison according to the dissimilarity vector S can be done in
one plus-scan operation with a time complexity of O (logk;.,)
where k;,, is the number of templates selected for next level
comparison.

Proof. Introduce 2 vectors model[1] and model[2] as indi-
cators. Model[2}[p] indicates the pyramid of the corresponding
template for comparison in region p where S;[p] is obtained.
Step(1). Set model{1){p] = 1 if S;[p] < threshold(i} , else
model[1][p] = 0.

If model[1](p] = 1 then the processor containing it
is set to active, else set to inactive.

k.1 = Plus-Scan(model{1]). After the plus-scan
operation , as shown in Figure 1, model{1] looks
likethis(1 2 3 4 5 ..k,)fororiginas (1 1
... 1), where the inactive processors are omitted
while their contents are remained as 0’s.

If model{1][p] # O, set model{2)[model(1][p]] =
maodel[2](p].

The time complcxity 0 (logk; ) is due to step 2. O

The formal description of the recognition procedure can
be given as algorithm 2. Algorithm 1 is to initialize the system
by constructing the database, initialize model[2] and setting up
the first template pixel plane MBP for the sake of efficiency.

Step(2).

Step(3).

Step(4).

Algorithm 1
Input: A template set M.

Output: A database as a set of pyramids of templates, a tem-
plate pixel plane for top level comparison, and vector
model[2] initialized pointing to all templates.

1 procedure INITIALIZATION(M);

2 begin

3 BASEM); /* construct the template database */

4 par 1<i<K, 0<p,q<l do

5 model[2]{i] = i; /* denotes the template needed to
be matched */

6 MBPIillpllq] = m()iplig); /* first template pixel
plane */

7 endpar

8 end

Algorithm 2

Input: A database of template pyramids, a vector model[2]
of pointers pointing to the template pyramids that
should be compared, a template pixel plane MBP for
the first level comparison, an input image pattern P,
and a set of thresholds.

Output: Matched templates with similarity confidences, or

the input pattern is learned if no matching is found.

1 procedure RECOGNITION;

2 begin

3 PATTERN(P); /* construct the pattern pyramid */

4 size = 2; /* size indicates the region size for com-

parison */
5 m = |M]| /* mcontains the content of k; ,k, -*- kg
*/

6 for level=1 to L do /* matching the templates */

7 par 1<i<m, 0<p,qs size - 1 do /* construct pat-
tern pixel plane as shown in theorem 2.1 %/

8 PBP[i][pllq] = PQeveD(pllql;

9 endpar

10 par 1<p<m do

11 sfp) = COMP( PBP[p], MBP[p] ) /* PBP[p]

represents the pth region of the pattern pixel plane,
and MBP[p] represents the pth region of the template
pixel plane, refer to theorem 2.2 */

12 Select templates for next level comparison; Number
of selected templates is in m, i.e. m =k;,,; Pointers
pointing to selected templates are in model{2]; /*
refer to theorem 2.3 */

13 endpar

14 if level = L then exit endif;

15 size = 2 * size; /* increase the region size for next

level */

16 par 1<i<m,0 S p,qs size-1 do /* constructs

template pixel plane for next level */

17 MBP[il[pllq] = Mugupyilevei+Diplig]

18 endpar

19 endfor /* from statement 6 */

20 if m = 0 then LEARN(P(L))

21 else CONFIDENCE(m, model) /* assign confidence

level of matching */

22 endif

23 end { RECOGNITION }

3. PERFORMANCE ANALYSIS
The time complexity of the database construction for the
system is O (X log N), and space needed is %N’K 2* where K is

the number of templates, an image is composed of N xN pix-
els and each pixel needs 2° bits memory. The time complexity
and the space overhead is reasonable since the time lower
bound for the database construction is O(K) and the space
lower bound for the template set M is ON%K 2°). Since the
comparison operation COMP(T,P) is the dominant factor in
template matching process, we analyze our algorithm in terms
of times of comparisons.

Theorem 3.1. Algorithm 2 needs O(logN) comparison
operations in general while an image is composed of N xN pix-
els and is O (K) comparison operations in the worst case where



K=|M]|.

Proof. Statement 3 has a computation complexity
O(log N). Statements 6 to 19 form a loop of logN times com-
putation, by which the computational complexity is decided.
Let’s analyze statements 7 to 18.

Each statement from 7 to 18 except for 11 and 12 can be
done in one operation. Each plus-scan in Statement 12 takes
O (logk;) time units. Thus, in worst case the time complexity
for Statement 12 is O (logK) in each iteration. Since the dom-
inant factor in computation of template matching is the com-
parison in Statement 11, let’s focus on the analysis of State-
ment 11.

Since our approach is to select the m, € M such that
S(m(i),p(i)) < threshold(i) to continue matching on level i+1.
For 1 <i; <k, if S(m(i)p@)) < threshold(i), S(m,(i)p (i) <
threshold(i), ..., S(m; (i)p()) < threshold(i), only choose
m;,Mi,....im;,, for matching on level i+1. Therefore, |M | = k, >
ky 2 .2 kg 2k where L is the height of the pyramid, i.e. L
=logN.

If the SIMD-SM-R machine has N xN processors, state-

N xN
tions since the array size of template pyramid on level i is
2 x2' and there are k; templates needed to be compared. One
can see the worst case for statement 11 is that we still need to
match | M | templates on the bottom level, i.e. k,=k,=...=k,.
However, this case shouldn’t happen unless the thresholds
associated with each level are too high or the templates are all
too similar since if S(m,(i),p (i) < threshold(i) and S(m,().p ()

< threshold(i), then w < threshold(i). Thus, the
selection of thresholds is critical to the process {21].

ment 11 on level i will require[ w comparison opera-

Only the bottom level array of each template pyramid
needs one comparison operation if the image size is equal to
the machine processor array size. One comparison operation
can compare 4 template arrays on level (L-1), and one com-
parison operation can compare 4> template arrays on level (L-2)
and so on. On level 1, one comparison operation can compare
N XN

2x2

SIMD-SM-R machine, it can compare 16K template arrays on
level 1 in one comparison operation or compare 2'° template
arrays on level 2 in one comparison operation. Practically, the
number of templates is seldom that large. Thus one com-
parison operation can usually compare all the selected template
arrays on an upper level. By selecting the good thresholds,
statement 11 will only take more than one comparison opera-
tion on the several lowest levels. Suppose statement 11 needs
C; +1 comparison operations to compare the pixel planes on
level i Then statement 11 has
(Cr+1+4Cy+1+.. . +C +1+CL +1) =
(Ci+Cy+...+Cy+C.) + log N comparison operations in algo-
rithm 2. As discussed before, €, and C, are usually equal to
zero or no more than 1, and C;;, C;; and €, are usually small
numbers. Hence, on average the algorithm has 0 (log N) com-
parison operations

template arrays. If N = 256, ie. a 64K-processor

Theoretically, the worst case happens when we need to
compare all template arrays on every level. All template
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arrays on level L need | M | = K comparison operations to com-
pare and all template arrays on level (L-1) need %K com-

parison operations to compare and so on. Therefore, the algo-
rithm totally needs
K+—1—K+—1—K+...+ 1 Ksi

T L Ks3K

comparison operations to compare all template arrays on all
levels, i.e. O (K) comparison operations. [J

One can see that the working space for the template pixel
plane and the pattern pixel plane also has a large overhead in
the algorithm above if the worst case occurs. In practice, we
can use some simple techniques to keep a pattern pixel plane
no large than the processor array since the SIMD-SM-R
machine actually operates on a large array as on several
smaller arrays. Similarly, we can construct the template pixel
plane as large as the pattern pixel plane for every comparison.
This revised implementation will not cause more overhead
than the algorithms above. On the other hand , it constructs
smaller pixel planes and hence decreases the overhead of com-
munications and the space. We keep our algorithms in Section
2 "inefficient” because they are more easily understood.

4. SIMULATION

A program has been implemented on the VAX 11/780 to
simulate the recognition of binary images. The comparison
operation COMP(T,P) is to return the sum of all elements of
the exclusive or of T and P. Since the purpose of the experi-
ment was to verify the time complexity, the program simply
uses an integer array to simulate the SIMD-SM-R machine
processor array. The program simulates an "SIMD-SM-R
machine” with N xN = 64x64 processors. Binary images of
size 64 x64 are used to run the program. English letters are
used to test the program in the experiments.

The number of levels of the pyramid representing an
image is six. All templates are upper case letters. Table 1
gives the number of nodes needed at each level, i.e. at state-
ment 11 of the RECOGNITION algorithm, for recognizing
each letter using the following values for thresholds

threshold =[1 2 4 8 32 64]7

Since ‘)’ and ‘I’ are very similar, they are discriminated at
the last level ( using full resolution ). This can be considered
the case of similar templates and distorted images of one input
pattern. Low values of thresholds would lose some distorted
input images and high values would cause redundant match-
ings and degrade the performance. A low threshold will let the
system treat some noises as the extra parts of the object so that
the system rejects some possible templates. On the other hand,
a high threshold will let the system treat some extra parts of the
object as noises so that the system selects too many unmatched
templates for higher-resolution matchings and thus degenerate
the performance, especially at the higher-resolution levels
where the processor array can not cover too many template
arrays. Thus, selection of threshold values always involves
tradeoffs.



Table_1:

Number of Nodes Needed at Each Level, i.e. number of elements of the pixel plane array need-

ed to be mapped onto the 64 x 64 physical processor array

Level
Template 7 3 3 y 3 3
A’ 26x(2%x2) | 13x(@x4) | 13x@x8) | 1x(16x16) | 1x(32x32) | 1x(64x64)
’B’ 26x(2%x2) 6x(4x4) 4x(8x8) | 2x(16x16) | 1x(32x32) | 1x(64 x64)
C 26x(2x2) | 3x@x4) | 13x8x8) | 2x(16x16) | 1x(32x32) | 1 x(64%x64)
'D’ 26x(2x2) 6x(4x4) 4x8x8) | 2x(16%x16) | 1x(32x32) | 1x(64x64)
B’ 26x(2x2) 6x(4x4) Sx(8x8) | 2x(16x16) | 1x(32x32) | 1x(64x64)
P 26x (2%2) 9Ix(4x4) Sx(8x8) | 2x(16x16) | 1x(32%x32) | 1x (64 x64)
G’ 26x(2x2) | 13x@x4) | 13x(8x8) [ 1x(16%x16) | 1x(32x32) | 1X(64%x64)
'H’ 26x(2%x2) | 3x(@x4) [ 13x@x8) | 1x(16x16) | 1x(32x32) | 1X(64x64)
T 26x(2x2) | B3x@x4) | 13x@x8) | 2x(16x16) | 2x(32%x32) | 2x (64 X 64)
T 26x(2x2) | 3x(@x4) [ 13x(8x8) | 2x(16x16) | 2x(32x32) | 2% (64 X 64)
X’ 26x(2x2) | 13x(@x4) | 13x(8x8) | 1x(16x16) | 1x(32x32) | 1X(64%X64)
» 26%(2%x2) 2x(@4x4) 2x(8x8) | 1x(16x16) | 1x(32x32) | 1x (64 x64)
™M’ 26x(2%x2) 2x(4x4) 2x(8x8) | 2x(16x16) | 1x(32x32) | 1x (64 x64)
N’ 26% (2%2) 2x(@4x4) 2x(8x8) | 2x(16x16) | 1x(32%x32) | 1x (64 x64)
o) 26x(2%x2) | 13x(@4x4) | 13x@x8) | 3x(16x16) | 1x(32x32) | 1x (64 x64)
P’ 26x(2%x2) 4 x(4x4) 3x(8x8) | 1x(16x16) | 1x(32x32) | 1x(64x64)
Q’ 26x(2x2) 2x(4x4) 2x(8x8) | 1x(16x16) | 1x(32x32) | 1x(64x64)
R’ 26X (2%x2) | 4x(4x4) 4x(8x8) | 1x(16x16) [ 1x(32x32) | 1x(64x64)
'S’ 26x(2x2) | 13x@x4) | 13x(8x8) | 2x(16x16) | 1x(32x32) | 1x(64%64)
T 26 x(2x2) 4x(4x4) 4xB8x8) | 1x(16x16) | 1x(32x32) | 1x(64x64)
U’ 26x(2x2) | 3x@x4) | 13x(Bx8) | 1x(16x16) | 1x(32x32) | 1x(64x64)
%A 26x(2x2) | 13x(@4x4) | 13x8x8) | 1x(16x16) [ 1x(32x32) | 1x (64 x64)
W 26x(2x2) 6x(4x4) Ix@8x8) | 1x(16x16) | 1x(32x32) | 1x(64x64)
X’ 26x(2x2) | 13x(@dx4) | 13x(8x8) | 1x(16x16) | 1x(32x32) | 1x(64x64)
'Y’ 26x(2x2) | 13x(@x4) | 13x@8x8) | 1x(16x16) | 1x(32x32) [ 1x(64x64)
'z 26x(2%2) | 6x(@x4) | 5x@8x8) | 1x(16x16) | 1x(32x32) | 1x (64 x64)
Note Each element k X (s X s) means k templates are selected to compare with the input pattern

level needs kx(sxs)

comparison operations.

and the size of each ten\Tate array at current level is (s X 5 ). Thus, the comparison at each

64 x 64

5. CONCLUSION

Recognition is one of the tasks a machine vision system
must accomplish, i.e. the system needs some scheme to assign
an object to one of a number of known classes. The main con-
tributions of this paper are summarized as follows.

The approach uses a multiresolution method to search for
the matching template. The pyramid data structure is used for
the multiresolution representation of templates and the input
image pattern. In many cases, the correct template can be
found in a medium level of the pyramid. The number of
templates, K, is usually not more than thousands and the image
size N x N is generally greater than 128 x 128. That is , at levels
1 and 2, we usually can compare all templates in one com-
parison operation. Thus, to recognize an image of size N xN
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using a set of reasonable thresholds has O(logN) times com-
parison according to theorem 3.1. On the SIMD-SM-R
Machine with N’ xN’ processors, a comparison to an N xN
N XN

N xN T

case, recognizing an image would have O (c logN) comparison
operations using our approach. A linear search through K tem-
plates requires O (c K) comparison operations. If templates are
organized into a balanced binary tree, recognition of an image
on the SIMD-SM-R machine has 0 (c log X) comparison opera-
tions. On the other hand, the template tree method has
difficulty in deciding the thresholds for different branching
points and balancing the tree.

image needs = ¢ comparison operations. In that

Furthermore, since the time complexity of the comparison
operation depends on the region size which it operates on, in




our algorithm one comparison operation on a high pyramid
level has much less time than on a low pyramid level. The
linear search method or the tree search method has the same
complexity for every comparison operation which is the func-
tion of image size. Our approach needs only log N thresholds.
When compared to other methods published in the literature {6,
13, 19], the thresholds used in our approach are not necessarily
very accurate. In addition, the template tree needs (2K — )N?2"

bits of memory but our database needs only %K N22' bits.
Moreover, our database is very easy to update.

This method can be useful for that class of applications
that need large template sets. One such problem is that of
Chinese characters recognition. Matching the five to seven
thousand Chinese characters in daily use requires not only a
large template set but also a great amount of time, depending
on the algorithm used. By using the method described in this
paper, the problem can be solved quickly and precisely with
little overhead in database updates as the matching progresses.
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