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Abstmt-This paper presents a new channel routing algorithm which 
assigns wires track by track in a greedy way. The simple underlying 
data structures and strategy used in this algorithm can be generalized 
to obtain a class of heuristic channel routing algorithms. The proposed 
new algorithm has a backtracking capability to increase the chance of 
completing the routing with a minimum number of tracks. Since the 
concepts described in this paper are general, they can be applied to 
other channel problems such as switchbox routing, three-layer rout- 
ing, and multilayer routing, or it can be even applied to the overlap 
model with only a few modifications. It successfully routes both the 
Burstein’s difficult switchbox problem and Deutsch’s difficult example 
with 19 tracks in the Manhattan model without any backtracking. The 
extensions of this algorithm are presented with examples. 

Keywords and Phrases-Channel routing algorithm, data structure, 
backtracking, Manhattan model. 

I. INTRODUCTION 
FFICIENT chip design reflects the capabilities of the semi- E conductor lithography in the areas of logic, circuit, layout, 

and processing. The routing portion of the VLSI layout prob- 
lems is to realize a particular interconnection among different 
modules in as small area as possible. In general, many routing 
strategies exist for efficient interconnections among different 
modules of the VLSI layout problem. 

One of the most important forms of routing strategies is called 
“channel routing.” This approach allows us to reduce the ex- 
tremely difficult VLSI layout problem to a collection of simpler 
subproblems. Typically a channel router is designed to assign 
wires that interconnect terminals on two opposite sides of a 
rectangular region called a “channel. ” Normally the virtual grid 
is assumed and the Manhattan model is adopted, i.e., all the 
horizontal wire segments are routed in one layer and all vertical 
wire segments in the other, and the connection between wires 
in these two layers is through some electrical contacts called 
vias. Since the interconnection area usually represents 65-80 % 
of the total area in a typical polycell integrated circuit design, 
the primary goal of a channel router is to minimize the above 
mentioned area by minimizing the number of tracks used. The 
number of vias and the length of wires are also important in 
evaluating the quality of the routing. 

In recent years we have witnessed a tremendous surge in the 
development of efficient channel routing algorithms for many 
types of problems. Normally, all the algorithms can be divided 
into two categories: those in the overlap model, which allow 
some wire segments in different conducting layers to be over- 
lapped, and those in the nonoverlap model, which do not allow 
the overlaps. Traditionally, the nonoverlap model can be fur- 
ther divided into the Manhattan model, which restricts all the 
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horizontal wire segments to run in one layer and all the vertical 
wire segments to run in the other, and the knock-knee model 
which is free of this restriction. Major past research on the 
channel routing includes [1]-[4], [6], [lo] in the Manhattan 
model [15], [16], [23], [24] in the knock-knee model, and [8], 
[12]-[14] in the overlap model. 

Unlike the above mentioned algorithms, most of which use 
some parameters derived from experiments, the algorithm pre- 
sented in this paper approaches the solution in the Manhattan 
model in a greedy way, systematically based on simple con- 
cepts. The advantages of this algorithm are its simplicity and 
genera!ity . The data structures used are vertical constraint 
graph, column density, and spans of nets which are the only 
information needed to assign wires for the nets. In addition, 
since the algorithm has a general nature, it treats cyclic and 
noncyclic constraints in the same way, and can be extended 
easily to the switchbox router, three-layer channel router, mul- 
tilayer channel router, or even be applied in the overlap routing 
environment without much modification. 

The algorithm proceeds in a track-by-track fashion. First, 
possible routings for each net in a certain track are calculated. 
Depending on channel density d,,, and structure of the vertical 
constraint graph, nets are then chosen to minimize the channel 
density d,,, or length of the directed longest path in the vertical 
constraint graph, and to maximize the total length of significant 
horizontal wires in a track through some priority. The perfor- 
mance of the algorithm is shown by experimental results. It suc- 
cessfully routes both Burstein’s difficult switchbox problem and 
Deutsch’s,difficult example in the Manhattan model without any 
backtracking. This algorithm can be easily extended to solve 
other routing problems. For details on the extension of this al- 
gorithm see [25]-[28]. 

The remainder of this paper is organized as follows: some 
terms and definition of the problem are given in Section 11; a 
framework for a class of heuristic algorithms is given in Section 
111; the description of our algorithm is given in Section IV, and 
its performance is given in Section V. In Section VI, we de- 
scribe several extensions of our algorithm. Finally, the con- 
cluding remarks are given in Section VII. 

11. PRELIMINARIES 
A rectangle channel C of length 1 and width w consists of 1) 

the set V of grid points (x, y )  such that x and y are integers, 0 
I x 5 1 + 1, and 0 I y 5 w + 1; and 2) the set E o f g r i d  
edges connecting points ( x ,  y )  and ( x ’ ,  y‘)  whenever these 
points are at distance 1 from each other. A vertical (horizontal) 
grid line is a line formed by the grid edges connecting grid points 
( x ,  y )  with x = i ( y = i ) ;  furthermore if i # 0 and i # 1 + 1 
( i  # w + 1 ), then we call such a grid line an ith columnftruck) 
of the channel C. The horizontal (vertical) lines formed by edges 
connecting grid points with y = 0 and y = w + 1 (x  = 0 and 
x = 1 + l ) ,  whose grid points are represented by ordered lists 
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T ( L )  and B ( R ) ,  are called the top (left) and bottom (right) 
boundary of C, respectively. 

N,) be a collection of mutually dis- 
joint subsets of boundary grid points (not including the comer 
points) of C. Each Ni is called a net i ,  and the grid points in Ni 
are called the terminals of net i .  A routing of nets for N is a 
collection W = ( W,, W,, * W,) of subgraphs of the channel 
grid such that all the terminals in Ni are connected by edges in 
Wi. Each Wi is called the wire for Ni. Given a channel grid C 
and a set N = (NI,  N2, * N,) of nets, the Manhattan mode 
channel routing problem (MCRP) is to find W = (W,, W,, 

* W,) in C such that two distinct wires Wi and Wj cannot 
share a grid edge, and moreover, they can only share a grid 
point by crossing each other. Generally, terminals can be lo- 
cated on any boundary side of C. Such a MCRP is called a 
switchbox MCRP. A simpler version of a MCRP restricts ter- 
minals to be located on two opposite boundary sides, say, the 
top and bottom boundary sides of C. Such a MCRP is called a 
two-shore MCRP. The objective of a two-shore MCRP is to 
find a routing W = ( W,, W,, * * W,) with a minimum number 
of tracks. In this paper, we first concentrate on the two-shore 
MCRP and then extend our algorithm to some related routing 
problems. 

Let l(Ni) ( r ( N i ) )  be the x coordinate value of the leftmost 
(rightmost) terminal of Ni. An obvious lower bound on the num- 
ber of tracks necessary for a routing solution W is: 

d,, = max { d i )  1 5 i 5 l }  

where di = the number of nets Nj such that 1 ( Nj) 5 i 5 r (  Nj). 
Here di is called the local density at column i ,  and d,,, is called 
the channel density. 

In addition to the channel density, another condition that any 
routing solution must satisfy is that if Ni contains a terminal at 
the top of column k ,  and Nj contains a terminal at the bottom of 
column k and i # j, then the horizontal wire segment of Wi 
which connects with the top-side terminal i through a vertical 
wire segment in column k should be above the horizontal wire 
segment of Wj which connects with the bottom-side terminal j 
through a vertical wire segment in column k.  This constraint 
can be characterized by a vertical constraint graph G,, = ( V,,, 
.Evc), where V,, = { v i  1 1 s i 5 n }  such that vi corresponds to 
.Vi, eij = vi + vj E E,, iff there is a column k such that Ni has 
,a terminal on the top of column k and Nj has a terminal on the 
bottom of column k.  Normally, we say that vi is an ancestor 
vertex of vi if there exists a directed path from vi to vj in G,,. 
In this case, we also say that vi is a descendant vertex of vi. 
In [ l l ] ,  it is shown that there exist MCRP instances with 
d,,, = 2 and the longest directed path of len th n - 1 in a 

an instance, almost every wire for each net i must be assigned 
to more than one track, which is referred to as a dogleg for net 
i .  This indicates that in some cases, the channel width is related 
to the structure of the vertical constraint graph. 

Let N = (NI,  N,, * 

vertical constraint graph that needs at least sg 2n tracks. In such 

111. A FRAMEWORK FOR A CLASS OF ALGORITHMS 
Since the channel routing problem is NP-complete [ 171-[ 191, 

it is necessary to develop heuristic algorithms for it. In this sec- 
tion we present a framework for a class of heuristic routing al- 
gorithms. An algorithm in this class is track oriented. Starting 
at the topmost track, it processes track after track downwards. 
The invariant part of this process is that once track t is pro- 
cessed, by treating track t as the top boundary of the channel, 

we have a new MCRP. Since the combination of the wires above 
track t + 1 and the routing solution for the new MCRP is a 
solution for the original MCRP, the operations for a single track, 
which defines the new MCRP, will critically determine the per- 
formance of the algorithm. The operations for the current top- 
most track t can be divided into three phases. 

i) Introduce a set W, of nonoverlapped horizontal wire seg- 
ments in track t such that after connecting the wire segments in 
W, with the related terminals on the top and bottom boundaries 
of the channel, the number of tracks required for the new MCRP 
is as small as possible. 

ii) Introduce a set W, of vertical wire segments for each wire 
segment in W, when possible, such that W, U W, and the rout- 
ing solution of the new MCRP form a routing solution of the 
original MCRP. 

iii) Define a new MCRP for the tracks below track t by iden- 
tifying a set of grid points in track t and the bottom boundary 
of the channel as new terminals, and the set of columns that are 
available. 

In the following subsections, we briefly describe the apera- 
tions needed to process the topmost track of a given channel C. 

A. Finding W, When W, Is Available 
Let T ( k )  and B ( k )  represent the grid points on the top and 

bottom sides of the current channel in column k ,  respectively. 
We call a column k an empty column if both of T(  k )  and B ( k )  
are not terminals of any net. When W, is available, to complete 
the routing for the topmost track t and construct the remaining 
MCRP, it is necessary to introduce a set W ,  = W,, U Wv2 of 
vertical wire segments, where W, , is a set of vertical segments 
from the current top boundary (track t - 1 ) to track t for those 
columns k with T (  k )  being terminals, and W,, is a set of ver- 
tical segments from track t to the bottom boundary of the chan- 
nel C. Finding W,, is trivial. We can simply introduce a unit 
vertical segment that is incident at every terminal on the current 
top boundary. W,, can be constructed in the following way: for 
a given column k, if B ( k )  is a terminal of Ni, T ( k )  is not a 
terminal of Nj other than Ni and ( k ,  t )  is in Wi,,, where Wi,, E 

W, denotes the horizontal wire segments of Wi in track t ,  then 
include a vertical wire segment from track t to the bottom 
boundary in column k into W,,, If Wv2 is constructed in this 
way, then it is impossible that some net can never be completely 
connected by a wire without overlapping with other wires. 

B. Finding W, for  the Current Topmost Track 
There are many ways of finding W,. As mentioned in the 

previous section, both the vertical constraint graph and channel 
density can be used to characterize the lower bound for the 
number of tracks needed for an MCRP instance. Hence, it is 
reasonable to use the vertical constraint graph and channel den- 
sity as heuristics in choosing the wire segments in the current 
topmost track. We propose some useful concepts which may be 
applied to devise different routing algorithms. In the next sec- 
tion, we present one algorithm based on these concepts. 

Generally, the vertical constraint graph corresponding to a 
problem instance may have cycles. Since among wires con- 
necting a set of nets whose corresponding vertices in G,, are in 
a cycle, at least, one dogleg must be introduced; determining 
where a dogleg is to be introduced is very important to the total 
number of tracks used in the routing solution. Of course, we 
prefer to introduce horizontal wires that form a dogleg among 
those columns with lower densities. That is, when we use ver- 



206 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. IO, NO. 2, FEBRUARY 1991 

tical constraint graph G,, to guide the selection of horizontal 
wires for the current topmost track, we need to select a subset 
of nets which we do not want to use wires forming doglegs to 
connect them. 

Such a selection can be based on an acyclic vertical con- 
straint graph G,,, obtained by deleting a minimal number of 
edges from Gvc. Clearly, there is a unique G,, for a given 
MCRP, and there can be more than one G,,,. Among these G,,,, 
we are particularly interested in a G,,, constructed as follows: 

procedure AVC-GRAPH (G,,, = (V,,,, E,,,)) 
Let colno be the total number of columns for a given 

Let c[ 11, c [ 2 ] ,  ,  colno no] be the sequence of columns 
MCRP instance. 

such that dc[k] 2 dcIk+ where 1 5 k 5 colno - 1. 
Vavc = Vvc, E a v c  = 0 
for k = 1 to colno do 

i = T(k) ,  j = B(k)  
if (i # 0 and j # 0 and i # j and vi is not a descen- 

dant vertex of v i )  then E,,, = E,,, U {vi  -, vj } 
endfor 

end AVC-GRAPH. 

The above process for constructing G,,, tends to reserve edges 
in G,, connecting two nets that share columns with higher col- 
umn densities. When W, is being constructed, we only consider 
those constraints which are present in G,,,. The missing con- 
straints will be considered in the subsequent steps, processing 
lower tracks. Consequently, doglegs will likely occur among 
columns with lower densities. In determining which net is to be 
connected (or partially connected) in the current topmost track, 
a parameter level for each net is computed where G,,, is avail- 
able. The level of Ni is defined as the length of the longest path 
from vi to its descendant vertices in G,,,. We identify a subset 
NF of N asfree nets, each of which is a net whose corresponding 
vertex in G,,, does not have incoming edges. 

In the Manhattan routing model, it is easy to see that for each 
wire segment in Wi,r, both endpoints should locate in columns 
k such that T (  k )  is not a terminal of Nj other than Ni .  Let 

E, = { k I either T ( k )  is a terminal of Ni or a nonterminal } . 

Let the horizontal wire segment for Ni in the top-most track with 
two endpoints located in column k, where k E Ei,  be the feasible 
wire for N i ,  denoted as fi. The set of nonoverlapped feasible 
wires is denoted as H,. For an fi E H,, it is possible that there 
exists a column k such that B (  k )  is a terminal of N i ,  T (  k )  is a 
terminal of Nj other than Ni ,  and the left and right endpoints of 
fi are to the left and right of column k, respectively. In such a 
case, one cannot introduce a vertical wire segment in column k 
into Wv2. Let C(fi) denote the set of columns passed byA. For 
a given feasible wirefi, if there exists no column k E C ( J )  such 
that T (  k )  is a terminal other than a terminal of Ni and B (  k )  is 
a terminal of Ni, then we call such a feasible wireJ a safe wire 
for N i ,  denoted as si. Let H, be the set of nonoverlapped safe 
wires. Clearly, for each si E H,, all the bottom-side terminals 
of Ni in column k, where k E C(s,), can be connected with si 
through a vertical wire segment in column k without causing 
any congestion problem in the new MCRP. 

We may insist on finding an H,s such that after processing the 
current topmost track, the remaining MCRP can be simplified 
so that the operations on subsequent tracks result in a routing 

solution with a number as small as possible of tracks. Some 
heuristics can be used to choose the H,. 

Let E: = E,! n E! n E: ,  where 

E! = { k 1 k E E,, B ( k )  is a terminal of N, other than N I  and 

level (N,) > level (N,)} U { k ( k  E E,, B ( k )  

is a terminal of N, or B ( k )  = 0 }  

E ! =  { k ~ k E E , , k = l ( N l ) o r k = r ( N , ) o r d k < d , , , }  

E:  = { k l k  E E,, l ( N , )  5 k 5 r - ( N , ) } .  

For each safe wire s,, if both endpoints of s, are located in the 
columns in E: ,  then such a safe wire is called an optimal wire 
for N I ,  denoted as 0,. A set of nonoverlapped optimal wires is 
denoted as Ho. Now consider the relationship between the orig- 
inal MCRP and the new MCRP constructed by introducing an 
Ho. Since for each wire segment 0, in Ho both endpoints of 0, 
are located in the columns in E ; ,  it is easy to verify that the 
following property holds. 

P1) The longest path of G,,, of the new MCRP will be less 
than or equal to that of the original MCRP if no cycle exists in 

Since for each wire segment 0, in Ho both endpoints of 0, are 
located in the columns in E:, it is easy to verify that the follow- 
ing property holds. 

P2) The value of max { d ;  I k E C (  Wl. f ) ,  W,f  E H,}  of the new 
MCRP is less than the d,,, of the original MCRP. 

Since for each wire segment 0, in H, both endpoints of 0, are in 
E?, it is easy to verify that the following property holds. 

P3) The total span of the new MCRP is less than that of the 
original MCRP, where the total span is defined as Cy=, ( r (  N I )  
- l ( N , ) ) .  

It is desirable to choose an nonoverlapped H,* such that it is 
a set of safe wires satisfying properties Pl) ,  P2), and P3), and 
satisfying the following additional condition. 

H1) When HZ is chosen, the channel density d,,, of the new 
MCRP is less than that of the original MCRP. 

To enforce ( H l ) ,  in addition to the restrictions of choosing end- 
points of each 0, from E,*, it is necessary that for each column 
k such that dk = d,,,, there exists an 0, passing through or end- 
ing at column k. 

After H,* is selected, it is possible that there is still some 
space available for the routing in the topmost track. A degen- 
erated case is that H,* = 9, that is, there does not exist a set 
of wire segments that satisfy the conditions for H,*. To fully 
use the current topmost track, one needs to introduce a set of 
wire segments into the unused gaps. There are two possibilities: 
either introducing a set Hf* of feasible wires or introducing a 
set H,* of safe wires. The criterion for choosing an H,* or Hf* 
is to simplify the remaining MCRP as much as possible. Since 
feasible wires have less restrictions than safe wires, more flex- 
ibilities can be provided by feasible wires when simplifying the 
problem is concerned. There are many possible ways of choos- 
ing H;.  Here we discuss one way of introducing Hf* . 

As mentioned in the previous section, both the vertical con- 
straint graph and the channel density characterize the complex- 

G", . 
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ity of an MCRP instance. Again, we use both of G,,, and d,,, 
as heuristics in choosing HT . If we cannot decrease d,,, of the 
MCRP through the current topmost track, we choose to change 
the structure of the vertical constraint graph. From [ 111, we 
know that the length of the longest path of G,,, is an important 
factor for determining the lower bound of the channel width for 
a given MCRP; on the other hand, from [ l ]  we also know that 
for a given MCRP, if there are no vertical constraints (i.e., 
every net is a free net), then the optimal routing solution can 
be easily achieved. Subject to possible existence of H,*, we can 
select H; in the following way: if the length of the longest path 
in G,,, is greater than or equal to d,,,,,, then introduce a set 
HT of wire segments to minimize the length of the longest path 
of G,,,; otherwise a set H; of wire segments is introduced to 
maximize the number of free nets that can be created. Thus the 
set WH of nonoverlapped horizontal wire segments in the cur- 
rent topmost track is H,* U H; . 
C. Dejining the New MCRP 

After the W, and W ,  are introduced, the next step is to iden- 
tify a set of grid points in track t and on the bottom boundary 
of the channel as terminals of the new MCRP below track t. 
For each NI such that there is no corresponding wire in W,, all 
terminals of NI located in track t-1 are shifted downward to track 
t i is the terminals of N, in the new MCRP and the terminals of 
net NI located at the bottom boundary of channel remain as the 
terminals of NI in the new MCRP. If all terminals of NI are 
completely connected by the wires in W,,: U W,, then N, will 
not be considered in the operations for the tracks below. For 
each W,,: in W, such that N, is not completely connected by the 
wires in e,: U W,, we need to identify a set of new nets with 
terminals in track t and on the bottom boundary of the channel. 
In such a case, net N, may be split into at most 1 W,:I + 1 new 
nets in the new MCRP, where I W, I 1 is the number of horizontal 
wire segments in W,,:. The basic idea for net splitting is as fol- 
lows: all the terminals of NI in the gap between each pair of 
adjacent wire segments in Wi,, can be treated as a new net in the 
new MCRP. The objective of the net splitting is to generate a 
new MCRP with minimum total span and minimum channel 
density d,,,. It is possible that there are more nets in the new 
MCRP than the nets in the original MCRP; however, if we de- 
fine the new nets carefully, as the use of concept of net splitting, 
then the new MCRP problem will have a much simpler struc- 
ture. 

There are several additional issues which must be considered 
in  defining a new MCRP. For example, a wire segment in Wl%l 
can be a feasible wire, a safe wire, or an optimal wire. Wires 
of different types may need different treatments. Another aspect 
we must consider is that a column cannot always be available 
in the process of routing. Once a vertical wire segment in a 
column k is introduced into W,, to connect a bottom-side ter- 
minal of NI, the section of column k from track t downward is 
fully occupied. Thus column k must be marked unavailable for 
the use by wires connecting the terminals of N, other than N,. 
For simplicity, we will not go into details on these issues. 

1). Designing a Channel Routing Algorithm 

Based on the framework of a class of track oriented greedy 
channel routing algorithms discussed so far, we can design dif- 
ferent heuristic algorithms. Among the three phases, the oper- 
aiions corresponding to the constructions of W,, W,, and a new 

MCRP, for the current topmost track, the way of selecting a set 
W, of horizontal wire segments is a determining factor in ob- 
taining a routing solution with a smaller number of tracks. There 
are not many choices for the selection of W ,  that exist. Also, 
options for defining a new MCRP, when WH and W ,  are pre- 
sent, are limited. 

It is important to note that the feasible wires, safe wires, and 
optimal wires form an interesting hierarchy. Since an optimal 
wire is also a safe wire and a safe wire is also a feasible wire, 
it seems that by setting optimal wires with a priority higher than 
safe wires and safe wires a priority higher than that of feasible 
wires, better routing solutions can be always possible. Unfor- 
tunately, this is not always true. Since a MCRP instance can be 
extremely complex, global information about an MCRP in- 
stance must be examined when operations for a single track are 
considered. The vertical constraint graph and the channel den- 
sity capture some of these global information and that is why 
they can be used for selecting WH. However, there are other 
factors to be considered in determining how these pieces of in- 
formation are used to guide the operations for a single track so 
that a better solution can be achieved. The notions that may be 
useful are not limited to those given in this section. Concepts 
similar to feasible wires, safe wires, and optimal wires can be 
defined by adding or dropping some conditions. Our proposed 
framework for the channel routing algorithms is general and 
powerful enough to allow us to obtain algorithms for the MCRP 
problem and several related routing problems, as shown in the 
remaining sections of this paper. 

IV. AN ALGORITHM FOR MCRP 
In this section we present an algorithm for the MCRP prob- 

lem. The design of this algorithm directly follows the frame- 
work given in the previous section. Since finding the W, is the 
major issue in the framework, the presentation of our algorithm 
will focus on constructing the WH for each track. Our algorithm 
constructs WH in the following way: if there exists more than 
one H,*, then we choose a H,* which minimizes the total span 
of the new MCRP; if a H,* cannot be found, then we choose a 
nonoverlapped H *  as discussed in the previous section; if more 
than one such Hfexists, the one which minimizes the total span 
of the new MCRP is selected. 

Algorithm MCRP-ROUT 

sign the level of each net. 

til all nets are routed. 

1) Construct the G,,, using procedure AVC-GRAPH, and as- 

2) Do the following operations track by track downwards un- 

a) Find the longest optimal wire Wi,, for each net i .  
b) Select the set Ho of nonoverlapped optimal wires q,,:, 

from the high density columns to lower density columns ac- 
cording to the following priorities: whenever possible a) the 
wire of free net is selected; otherwise b) the wire of maximal 
span is selected. 

c) If the selected Ho is not a H,* and an alternative Ho ex- 
ists, then go to step b) and rechoose the H,; if the selected H, 
is a H,* then go to step d); if none of Ho is an H,* then let H,* 
= Q and go to step d). 

d) Select HT. 
e) Let W, = H,* U HF. Construct W ,  from W,. Define 

the new MCRP. If there exists a net in the new MCRP that is 
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Fig. 1 .  Acyclic vertical constraint graph. 

not completely connected, then update G,,, and densities; ad- 
vance to next track, and go to step a). 

3) Minor adjustment to reduce the numbers of bends (vias) 
and the wirelength of the routing solution. 
end MCRP-ROUT. 

Let us use a simple example to demonstrate the above algo- 
rithm MCRP-ROUT. For a given MCRP in Fig. 2, in step l ) ,  
we apply the procedure AVC-GRAPH to construct the G,,, as 
shown in Fig. 1 ,  where numbers inside the circles and rectan- 
gles represent the net numbers and related levels, respectively; 
solid lines represent acyclic vertical constraints, and dotted lines 
represent the cyclic vertical constraints, which are ignored in 
G,", . 

In step 2.a), all longest optimal wire segments W,,, con- 
structed from the candidate endpoints located in ET are shown 
in Fig. 2, where dots represent the candidate endpoints in E,*. 

In step 2.b), we select an H,* from all possible optimal wire 
segments constructed in step 2.a). The details are shown as fol- 
lows: in Fig. 2, we check the left highest density column 9, 
where d9 = d,,,,,, and find four wires ( Wl,,, W,,,, W,,,, and 
W,,,) pass this column. From Fig. 1 ,  we know only N2 and N3 
are in NF. Since the span of W3,, is greater than that of W2,r, 
W3,, is selected. After wire W3,, is selected, the wires (W,,,, 
W,,,, W.,, WE.,, and WIO,,) are ignored, and wires (Wl,rT W,,,, 
and W9.,) are partially chopped off. Then we check the left high- 
est density column 16 ( d 1 6  = 6 )  which is passed by the re- 
maining candidate wire segments. Since only the wire segment 
of W,,, passes this column, the wire segment of W,,, from col- 
umn 16 to column 18 is selected. Since the wire segments of 
W,,t and W9,1 overlap with the selected wire segment of W4,,, 
both wire segments can also be ignored. Hence, Ho, which is 
also an H,* in this case, selected in track t will include the wire 
segment of W3,, from column 4 to column 15 and the wire seg- 
ment of W,,, from column 16 to column 18. 

Since the selected Ho is an H,* and no feasible wires exist in 
the unused space, it is easy to see that H,* = 0 and W, is an 

The consideration for the limited backtracking in step 2.c) is 
obvious. Since if a column has the highest density and is not 
used for some optimal wire, it is very likely that the total num- 
ber of tracks in the final solution is larger than it should be just 
because an H,* is not used. Thus the backtracking in step 2.c) 
for finding an H,* is necessary for obtaining better solutions, 
although considerable running time may be required to search 
for an H,*. Since the algorithm always routes the nets which 
pass the high density columns first, in most cases, it is very 
unlikely that backtracking capability is needed in this step. For 
example, when our algorithm is applied to both Burstein's dif- 
ficult switchbox and Deutsch's difficult example, no backtrack- 
ing occurs. However, when the given problem is more difficult, 
the backtracking capability is a powerful tool to reach a good 
solution. 

H,*. 

Column k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 7  18 19 20 

Since the main idea of this algorithm is to fully utilize one 
track before going to the next one, it is not always desirable to 
assign wires passing through high density columns as soon as 
possible. In fact, in some cases delaying assigning wire seg- 
ments through high density columns may result in better overall 
routing performance in terms of wirelength and number of vias. 
That is why, in the final step, adjustment operations are nec- 
essary to improve the routing result. For simplicity, we omit 
the details of these operations. 

V. PERFORMANCE 
We applied our algorithm MCRP-ROUT to many problem in- 

stances. It turns out that our algorithm generates optimal rout- 
ing solutions in most cases. For example, for the Deutsch's 
difficult example [3], we achieved a routing solution with 19 
tracks, which is equal to the lower bound, as shown in Fig. 3. 
It is worth mentioning that although minimizing the wirelength 
and via number is not as important as minimizing the number 
of tracks emphasized in designing our algorithm, the total wire- 
length of 5004 and via number of 333 in this solution are better 
than those achieved by hierarchical wire routing [lo], which is 
the only known algorithm that achieves the lower bound of 
channel width for this problem instance in the Manhattan model. 
We also applied our algorithm to the Burstein's difficult channel 
[7]. As shown in Fig. 4, the solution by our algorithm uses 6 
tracks without allowing wires to go beyond the leftmost and 
rightmost nonempty columns. We believe this is the optimal 
solution in terms of tracks used in the Manhattan model. 

It is easy to see that the running time of the algorithm is dom- 
inated by the operations for choosing H,* and H,* in each track. 
Let c be the number of columns and n be the number of nets. 
Clearly, sorting the columns in the order of nondecreasing col- 
umn density can be done in O( c log c )  time. To obtain H,*, we 
need to find the longest optimal wire for each net. Finding the 
longest optimal wire Wl., for net N I  takes O( c)  by a linear scan- 
ning of the columns from left to right. Thus finding the longest 
optimal wires for all the nets requires O ( n c )  time. Choosing 
the H,* from these optimal wires can be done in O(cd,,,,,) time 
since in each column at most d,,, wires need to be considered. 
Therefore, the total time for choosing H,* takes O( (log c + n 
+ d,,,,,)~). For the purpose of deleting a certain vertical con- 
straint, each wire in H,? incident at the top boundary of the 
channel should find a column to dogleg. So choosing H,* takes 
O ( c 2 ) .  Normally, after H,* is chosen, only a small portion of 
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Fig. 3. Deutsch’s difficult example. 

9 6 7 3  

columns need to be considered for HT . In this case, the constant 
factor for O ( c 2 )  will be small. The resulted time complexity 
fix the whole procedure is O( (log c + n + dmax)cd,,,,, + c2k) ,  
where k is the extra track needed for the final routing beyond 
the d,,,,,. In above analysis, we did not consider backtracking 
which takes O(ncd, , , )  for each track, when finding @ from 
high density columns to low density columns always finds the 
€€,* satisfying (H1 ) at the first time if it exists. Since not enough 
evidence shows that such a mechanism is sufficient to find such 
H,*, the backtracking routine is included. 

VI. EXTENSIONS OF THE ALGORITHM MCRP-ROUT TO 
OTHER PROBLEMS 

In this section, we briefly discuss several extensions of our 
algorithm MCRP-ROUT. The detailed results will be reported 
in subsequent papers. 
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A.  Manhattan Switchbox Problem 

Our algorithm MCRP-ROUT can be extended to the switch- 
box problem easily. Since that is a switchbox problem, termi- 
nals can be located on any of four boundaries of the rectangular 
channel; the definitions of vertical constraint graph G,,, acyclic 
vertical constraint graph G,,,, feasible wires, safe wires, and 
optimal wires need to be slightly modified. Then a modified 
version of algorithm MCRP-ROUT for the switchbox problem 
can be designed. The modified MCRP-ROUT connects nets in 
a track-by-track fashion. By its greedy feature of fully utilizing 
a track before proceeding to the next track, terminals on the left 
and right sides of the channel should be connected as soon as 
possible so that more of the space in the remaining tracks can 
be available. Consequently, a higher success rate of routing in- 
side the given channel area can be expected. 

We have modified algorithm MCRP-ROUT to obtain an al- 
gorithm for the switchbox problem. We applied the modified 
version of MCRP-ROUT to Burstein’s difficult switchbox [ 101 
and successfully found a solution without backtracking. The re- 
sult is shown in Fig. 5 .  

B. Channel Routing in Two-layer Overlap Model 
Currently, our algorithm is implemented under the Manhat- 

tan model, i.e., all the horizontal wire segments run in one 
layer, and all the vertical wire segments run in the other. To 
adapt our algorithm to the overlap model, we must allow hori- 
zontal wire segments or vertical wire segments to run in differ- 
ent layers with overlaps. We can simply modify the definitions 
of feasible wires, safe wires, and optimal wires in a way that 
nonoverlap restrictions are released, with all other features re- 



- 

210 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10, NO. 2, FEBRUARY 1991 

1 0 2 4 1 7 6 9 5 8 1 1 1 1 0 2 2 1 2 1 1 1 0  
5 2 3 5 4 5  1 0  9 8 

0 15 
0 3 
14 19 
13 2 4  
11 0 
24 20 
1 18 
9 20 
2 1 1  

17 21 
12 18 
16 23 
4 2 

10 22 
3 18 

2 1 1 4 7 6 5 9 8 0 9 1 1 2 1 1 2 1 0 0 2 1 0  
4 7 6  2 5 4 5 0 3  2 8  

Fig. 5. Burstein’s difficult switchbox. 
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Fig. 6 .  Burstein’s difficult channel in overlap model. 

maining unchanged. In the Burstein’s difficult channel [7], all 
previous works either add one or two empty columns in the 
middle to achieve the routing with five or six tracks [7], [8], or 
allow wire overlaps to achieve the routing with four tracks [ 121. 
Applying our preliminary modified algorithm to this problem, 
the routing solution with only three tracks is achieved. The re- 
sult is shown in Fig. 6. 

C. Channel Routing with More Than Two Layers 
As a two-layer channel routing problem, there are two ver- 

sions of the problem of routing with more than two layers. The 
first version does not allow wire segments in different layers to 
overlap. Thus two wire segments can only share a grid point 
only by crossing each other or by forming a knock-knee. Usu- 
ally, this version of multilayer channel routing is called knock- 
knee mode channel routing. Typically, knock-knee mode chan- 
nel routing algorithms consist of two phases. In the first phase, 
a layout W = ( W,, W,, * * , W,,) is constructed, where Wi is 
a subgraph of the channel grid that connects all terminals of Ni 
and no two distinct Wi and Wj share a grid line segment. Such 
a layout is also called aplanar layout. In the second phase, each 
wire segment in a planar layout W is assigned to a layer such 
that any two wire segments belonging to the wires connecting 
different nets do not share a grid point in the same layer. It is 
well kno vn that any planar layout W can be wired in four layers 
[20] anL *he problem of determining whether W is three-layer 
wirable is NP-complete [2 11. The necessary and sufficient con- 
ditions for constructing a three-layer wiring of Ware given in 

[22]. The only modification needed to adapt our algorithm 
MCRP-ROUT to the knock-knee mode channel routing is to al- 
low wires sharing a grid point by knock-knees. The second ver- 
sion of problem of routing with more than two layers is the one 
that allows wires in different layers to overlap not only by cross- 
ings and knock-knees. Techniques developed for (27) can be 
generalized to cope with layers more than two. For details of 
this section, see [26]-[28]. 

VII. CONCLUDING REMARKS 
In this paper, as a framework for a class of heuristic routing 

algorithms, a general approach for the channel routing problem 
is presented. As an example, we showed how to follow this 
approach to design a particular routing algorithm MCRP-ROUT 
for the two-shore Manhattan channel routing problem. The per- 
formance of this algorithm has been tested on many problem 
instances and good results have been obtained. Applying our 
algorithm MCRP-ROUT to the benchmark Deutsch’s difficult 
problem and Burstein’s difficult problem, we obtained routing 
solutions of 19 tracks and 6 tracks, respectively. These solu- 
tions are either optimal or believed optimal. It should be men- 
tioned that algorithms similar to MCRP-ROUT can be easily 
developed by following the same lines and using different heu- 
ristics. For example, for the current topmost track, there are 
many ways to select W,. Instead of vertical constraint graph 
and channel density, other heuristics may be used. 

We also showed that track oriented greedy algorithms can be 
modified to solve other channel routing problems. As examples, 
we described how to modify algorithm MCRP-ROUT to solve 
the Manhattan switch-box problem and channel routing prob- 
lems in the overlap and knock-knee models. By our preliminary 
experiments, the modified algorithms have good performance 
and show strong potential to out perform the existing algo- 
rithms. 

Many refinements can be incorporated into our framework 
and algorithm MCRP-ROUT, There is a tradeoff between the 
quality of the routing solutions and the computing resources re- 
quired for the more complicated algorithms. Our framework 
provides the flexibility for running an algorithm to achieve bet- 
ter routing performance. 
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