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Abstract
Prasad, L. and S.S. Iyengar, An asymptotic equality for the number of necklaces in a shuffie-
exchange network, Theoretical Computer Science 102 (1992) 355-365.

The search for efficient bounds for VLSI problems has spawned an increasingly important
research area. In this paper, we derive an asymptotic equality for the number of necklaces in
a shuffle-exchange network, and provide a formula for the number of necklaces of a given length.
This symptotic equality for the number of necklaces is an extension to Ullman’s result reported
in [21.

1. Preliminaries

A shuffle-exchange network with n=2* nodes has its nodes numbered from
0 to 2F—1, where each number is expressed in binary. Thus, each node has a &-bit
address. The node i is connected to node j if 2i= j {mod (2¥-1)). (For details
see [2}.)

Ullman [2] proves that the number of necklaces in a shuffle-exchange of 2* nodes is
O(2*/k). In this paper, we prove that the number of necklaces in a shuffle-exchange of
2* nodes is in fact asymptotically equal to 2%/k.
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Lemma 1.1 If2i=j (mod (2*— 1)) then the binary representation of f is obtained from
that of i by a left-cyclie shift of one bit.

Proof. Let i=a,. s y-2...ay be the binary representation of i; then
i=ap. 25 Va2 .
Therefore,
Di=ap_ 24 225 g2t
= (2F— D 4a 2257+ a2 Fay.
Hence,

imay. 2% Lk +ag2) + ayy =j mod (25— 1),
Le.,
J=ap—s. . Aotr-1,

which is a one-bit left-cyclic rotation of g, ay_...ae. [

2. Structural properties of the shuffle-exchange network

In this section, we look at some structural properties of the shuffle-exchange
network useful for deriving the asymptotic equality for the number of necklaces in the
network.
Remark 2.1. Every k-bit number comes back to itself after k cyclic shifts.
Remark 2.2, A k-bit number may come back to itself after d cyclic shifts where d <k.
Definition 2.3. i~j if i differs from j by an r-fold cyclic rotation/shift for some r.

Remark 2.4. “~” is an equivalence relation,

Definition 2.5. Each equivalence class under the relation ~ is called a necklace, and
the number of nodes in each necklace is called the length of the necklace.

Lemma 2.6. A shuffle-exchange network of 2F nodes has a necklace of length d iff d is
a factor of k.

Proof. A node s with a k-bit address a; ...a, belongs to a necklace of length 4 iff d is the
smallest positive integer such that ay ...a, is identical to itself shifted cyclically d times,
ie., if i=j (modd} then a;=a,.
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Now let s be a node belonging to a neckiace of length d. Let the k-bit address of s be
ag.a, and k=qd+r, O<r<d.

Thus, J{/
1 2 g—1 q
S=dg = Ay...0g Ay oo Gyl @y...0g 1...4, 7

f g times . L/

Aeanllp=2¢ppp. .- A Ay, 0

Let

indicate a t-fold left-cyclic shift of the string.
Then

1 q 1 g—1

S= Ap...fy ... Aglg Q=34 830004 .00 dy...4, Ay @ity .y

Since a d-fold left-cyclic shift results in the original string, ie., s=s¢’, comparing the last
d bits of 5 and s', we have

Ay g—pp 1o g =Grp 1.0 0g01..0. 0,

ie., these two strings are identical.
That is,

A=ay..ay_,=a,,,...04

and
B=q,_.;)..00=a;...q,.
Now
AB=ay...a4_ 83 r11...0;,=01...0,0,11...05=BA.
So,
s=(AB)!B.
Now

s=(AB)1B=(BA)*B=BA(BA)"~'B
—, A(BA)*" ' BB=(4B)*B=s,

This implies that s is restored to itself after r left-cyclic shifts. But, r<4 and this
contradicts the fact that d is the smallest positive number such that s—;s.
Hence, =0 and, therefore, d is a factor of k. [

Remark 2.7. All shuffle-exchanges with necklaces of length d have the same number of
necklaces of length 4.
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Indeed, let one shuffle-exchange have 2% nodes and the other have 2 nodes. If b is
a d-bit string of O’s and 1's which is not made of repetitions of some smaller string, then
the string bb...b, b repeated [ times represents a necklace of length 4 in the shufile-
exchange of 2" nodes and the string bb...b repeated m times represents a necklace of
length d in the shuffie-exchange of 2™ nodes. Thus, there is a one-to-one correspond-
ence between the necklaces of length d of any two shuffle-exchanges having neckiaces
of length d.

Let C(d) denote the number of necklaces of length 4.

Notation, d|k denotes that “d is a factor of k™ or “d divides k completely.”

Lemma 2.8. The total number of necklaces in a shuffle-exchange of 2* nodes given by
Yaie C(d) is asymptotically equal to 2%/k.

Definition 2.9, If f(x) and g{x) are real-valued functions of a real variable x, then f(x)
is asymptotically equal to g(x) (written f(x)~g(x)) if lim ., ,, f(x}/g(x)=1.

Thus, the above lemma reads as follows.

2.1, Main lemma
Lemma 2.8,
2k
Cld)~—.
. )~

4Tk

Proof, Note that
(i) every node in a shuffle-exchange belongs to some neckiace;
{ii) no two necklaces share the same node;
(iii) a necklace of length d has d nodes in it.
By (1), (ii} and {iii) we have

Y dC(d)=2*
dik

Now, d<k; so,

3 kC(d)> 2%

4k
ie.,
2k
Cldy=—.
aTk k
Therefore,

2k

Cidy=01—1,.
% cw-a(%)
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Now, every node in a necklace of length d has its address obtained by repeated
concatenation of a string of length 4 which itself is not repetitions of a string of smaller
length. Thus, dC(d)<2 ie., C(d)<24d.

Therefore,

2 kC@)< Y (24a),
dik

Ik

1€,

Sacw<t 1y 2o {HZ s }

|k a‘|k
d<k

or

2k
d%w(d)s?{uk Y, = d}

Ak
d<k

H d<k then d<k/2 for all k> 1. That is,

k
—dz=,
k—d 7

So,
1 1
FAS

Thus,

k
y, <y {1+,

dlk
where d{k) is the number of divisors deconmpasition of k.
If k>1 and if k=p{ p3*...pt» then the number of divisors of k,
diky=(ory + L){ory + 1)+ {or,, + 1)
Now for all primes p’ and all o, >0,

piz2%ze+1,

So,
| k= pPpg e pir > 20 2% 252 (o + 1) (o + 1)+ (o + 1),
ie., ‘
k=d(k).
Therefore,

k 2
Y c@<>=(1 ( 2’2,2),

dik
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ie.,
k 2k kz
—< C(d)sm(l+ )
k {“Zk k 2ki2
ie.,
T ) 2
0< I 2k ~1 g?ﬁ
k
So,
50
. ik
=1
o =t
since
kz
lim —— =0,
o 2
Hence,
E C(d)rvw |
dk

Corollary 2.10. In particular,

y q@:@[zﬂ.

dik

3. An exact formula for the number of necklaces of a given length

We now obtain the formula for the number of necklaces of length 4. We do this by
two interesting methods,
The first method uses the theory of arithmetic functions to obtain a formula,
while the second method uses the combinatorial tool of counting known as the
“inclusion-exclusion principle.”

3.1, First method

3.1.1. Preliminaries

We will introduce some elementary ideas and tools from the theory of arithmetic
fanctions.
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Definition 3.1. An arithmetic function fis a mapping from the set of natural numbers
N into the set of complex numbers €. :

Remark 3.2. In particular, any function from N into N is also an arithmetic function.

3.1.2. Some important arithmetic functions

(i) Identity function I

I(n):[}::! VieN,

where [a] is the integer part of any real number a.
That is,
=1,

Im=0 Vvn>1,
() Unit function u:
un)=1 VYneN,

(iti) Mobius function: I n=pf p%:...pf is prime decomposition of a natural number
n, then define

u1)=1,
p)=(-1F ifoy=g,==e=1,
Him)=0 otherwise,

Remark 3.3. The Mébius function u of any number divisible by the square of a prime
is zero,

Lemma 3.4,

d; w(d)=1I(n).

Proof. If n=p§ p5*...pf*> 1 is the prime decomposition of n,o;>0,VI<i<k, then the
only divisors of n for which y is nonzero are of the form Pi o Dins I # 1, fOr r#s,
I<i <k and 1sr<k, and uip;,---p; )=(—1).

Now, there are *C, numbers of the form PP, 1<k, So,

k
> ud)=1+4 Y, (- 1y*C,=(1—1y =0,
dn r=1

If n=1 then ¥ 4, p(d)=pu(1)=1. Therefore, Yanpld}=In). 1O
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3.1.3. Dirichlei convolution of arithmetic functions

Definition 3.5, If fand g are arithmetic functions, their Dirichlet product (denoted as
f*g) is the arithmetic function defined by

(f))=), f(d)g(;—’).

din
(i) Writing it another way, (f+g)(m)=Yp-nf {@)g(b), where it is obvious that * is
commutative,
(ii) Since
L *g)=hl(m= ¥ (f+g)a)h(b)

ab=n

=Y X flg@d)hb)

ab=n cd=g

= Y flc)g(d)h(b)

bed=n

=2 & ¥ gdhnp)

cm=pn bd=m
=[S*(g=h)](m),

# i§ associative.
(iii) If fis any arithmetic function and ! is the identity function, then

(SEDm=Y f@)1 (”) —f (@),

dln
So,
fel=f

(hence, the name identity function).
(iv) If fand g are arithmetic functions such that

f)=7% g(d),

din

then

1= g(d)= > g(d)u( ) (g 1)(n),

dln

where u is the unit function.
Now

2 uld)=I(n).

d|n
So,

HEu=],

Thus, 1 and u are inverses of each other with respect to Dirichlet convolution.
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3.1.4. Mobius inversion formula

If f and g are arithmetic functions such that f (M=Y4ix g{d) YneN, then we can
“invert” this expression and write g “in terms of” I

Jm=3 g(d).

din
We get f=g=*u. So,
Sru={g=uysp=gx(usp)=gxI=g.
Therefore, if f=g *u, then g=f« . That is, if
fi)=% gd),
din

then

g(n)=z f(d),u(g) Ynel.
din

This is called the Mébius inversion formufa,

Lemma 3.6.
1 m {d
CW)=7 D2 ,u(;).
m|d
Proof. Since 3,12 mC(m)=2¢ applying the Mébius inversion formula, we have

d
C(d)=§—z 2"71(;).

m|d

3.2. Second method: the inclusion—exclusion Drinciple
Lemma 3.7, If A, ..., A, are finite sets and # (4} is the cardinality of the set A, then
#lAovd)= Y #A4)- ¥ #(4in4))

1gign Igi<jgn

+ 2 #ANANA)— (=1 #(A A,

Igi<j<kgn

Proof, Let U=| J7_, 4;. For any set A4, define the characteristic function of A by

1 if xed

XA(X)z{O if x¢A VxeU.

Thus, y,4,: U—{0,1} is the characteristic function of the set A;.
Clearly,

rux)=1 ¥Yxel.

#ih
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Also if A® is the complement set of A4, i.e., A°=U\A4, then
asx)=1—y(x) VYxeU
and
ZanafX) =214 (X)14,(x) Vxel.
Now
yu-x}=0 ¥xel.
Since Us=A{n--n AL, we have

O=dain-naz®) =[] 1 —x4,0()) VxeU,
i=1

)
I= 3 Xy= Y gada, o+ 1559 Iy L T
1gign lgi<jgn

Summing the left-hand side and the right-hand side over all clements xe U, we have

Z I= Z Z Xai— Z Z XAtZAf+"'+(—1)n Z YT FISMLY O

xell xel 1<ign xeUlgi<jgn xell

and this yields
#U)= 3 #A)~ ¥ #(4ind)

1gign Igi<jgn

+ Y AAnAnA) — (=) #E Ay O A).

Igi<j<ksn

Since #(U)= #(A;u---UA,), the result follows. (]

This is called the inclusion-exclusion principle. Using this, we shall count the
number of necklaces of length d for any positive integer 4.

Definition 3.8, If a string of length d is not a concatenation of copics of a smaller
string, then it is called a pure string of length 4, otherwise it is called an impure string of
length d.,

Remark 3.9. Only pure strings of length d contribute to the formation of necklaces of
length d.

Let d=p} p$.--pi be the prime decomposition of d. Let A; be the set of all impure
strings of length d made of repetitions of strings of length d/p; or submultiples of it.
Then

# (Ai) = 2dim
and

#F(Ay v A )=29P00 1< < <h<m 1<r<m.




An asymptotic equality for the number of necklaces 365

The number of strings of length 4 is equal to 2°. The number of pure strings of length
d is equal to 29— #(4, U~ UA4,).
By the inclusion—exclusion principle, we have
#(A]_U"'UA,,)= Z #(Ai)ﬁ z #(AiﬁAj)

Igign 1gi<jgn

+ 0 FANANA) — -+ (1 #(A N " A,,).

Igi<f<kgn

Therefore, the number of pure strings of length d is given by

24— #lA U UA,)=29— Z 2dfpey .

1<i; <n

4 (_ l)r Z zd/Pr,'“Pr, Feee 4 (_ 1)”'29'/.171,"'%,,._

Lgi < <i,<n

So,
C(d)mé{zwmn Sey v gd/pf,---pr,}‘

Igij << gn
Note that this is the same as the formula derived using the Mébius inversion
formula, but written without the aid of the Mé&bius function.

4, Concluding remarks

In this paper, we have presented an asymptotic equality for the number of necklaces
in a shuffle-exchange network. Also, we present an exact formula for the number of
necklaces of a given length using the theory of arithmetic functions and by the
inclusion—exclusion principle. This asymptotic equality for the number of necklaces is
an extension to Ullman’s result reported in [2]. At the time of proof-reading this
paper, it was brought to our notice that exact formulae for the number of necklaces in
shufffe networks and De Bruijn networks have been obtained by Rowley and Bose
(3], also using arithmetic functions, independently. We thank Prof. Bose for his
comments on our paper.
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