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Abstract—Communication issues and problems in informa-
tion routing in distributed sensor networks (DSN’s) are consid-
ered in this paper. We identify two important communication
constraints, viz., the delay constraint and the reliability con-
straint: the impact of these on information routing are dis-
cussed. It is shown that the maximum end-to-end delay in a
network depends on the diameter of the network, and efficient
distributed algorithms are presented to determine the diameter
of asynchronous networks. We present a new distributed al-
gorithm to determine the diameter of an asynchronous tree net-
work, when an arbitrary node in the network initiates the al-
gorithm. It is shown that the start node determines the diameter
of the network in 24, units of time, using exactly 2(n—1) mes-
sages where 7 is the number of nodes in the tree. Another effi-
cient algorithm is presented to determine the diameter when
muttiple nodes initiate the algorithm. It is established that in
the worst case, each start node determines the diameter in less
than 2h,,,(S) + D units of time, using at most 4(n—1) mes-
sages, where k. (5) is the maximum height of a subtree rooted
at any start node, and D is the diameter of the tree. An algo-
rithm to determine the diameter of arbitrary networks is pre-
sented, and its message complexity is shown to be O (n, |E|)
where |E| is the number of edges in the network.

The effects of link/node failures on network delay are stud-
jed, and important network structure design criterion incor-
porating a specified degree of reliability, and maximum end-to-
end delay are discussed. Finally, the distributed, dynamic rout-
ing algorithms are reviewed, and their adaptations to the DSN
environments are discussed.

I. INTRODUCTION
A. Distributed Problem Solving

N recent years, many multiprocessor architectures have

been developed and studied for various applications.
These architectures differ mainly in whether the supported
processing is centralized or distributed. Advantages of-
fered by distributed computing have been extensively
studied and reported in the literature [4], [15], [22], [23],
[25]. The main advantages include task decomposition,
graceful degradation, reduced bandwidth requirements,
and that these architectures provide a natural way to effect
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the powerful ‘‘divide-and-conquer’’ paradigm by solving
the subproblems independently.

Based on a distributed processing domain, computa-
tions for solving a problem could be performed at various
abstraction levels. Each level has a different conceptual
content and generate a corresponding set of issues. Each
subproblem solution at some particular abstraction level
is called a knowledge source (KS). Distributed problem
solving (DPS) is the cooperative solution of problems by
a decentralized and loosely coupled collection of knowl-
edge sources, to achieve a global solution to a problem
[4], [22], [24]. The knowledge sources cooperate since
no single one of them has sufficient information and au-
thority to solve the entire problem; mutual sharing of in-
formation is necessary to enable the distributed system to
produce an answer as a whole. The major difference be-
tween distributed processing and distributed problem
solving is that in the former, we are mainly concerned
with the architecture issues, load balancing, scheduling,
processor interconnection, deadlock prevention, etc.,
while in the latter, we are faced with the problem of find-
ing problem solving methods involving task decomposi-
tion, hypothesis, testing and reduction, data fusion, etc.,
on a distributed system domain. In this paper, we focus
on the distributed problem solving techniques in the area
of distributed sensing.

B. Distributed Sensor Networks

The distributed sensor network (DSN) consists of a set
of diverse sensors geographically distributed, a commu-
nication network, and a set of processing elements trying
to achieve a common goal. Fig. 1 shows the schematic of
DSN. The purpose is to obtain an integrated picture of the
area covered by the sensors. Motivation for DSN comes
mainly from the need to increase the sophistication of sur-
veillance systems and tracking mechanisms. Such sys-
tems require new architectures and strategies for detecting
and tracking multiple targets using data from diverse sen-
SOTS.

Design of spatially distributed sensing and decision in-
volves the integration of solutions obtained by solving
subproblems in data association, hypothesis, and data fu- .
sion. It is assumed that the sensors could overlap, and
information at one sensor is not sufficient to solve the
problem. The major reason for distributing sensing, com-
munication, and processing is to achieve a high degree of
reliable coverage and survivability of the system.
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Fig. 1. A schematic of the distributed sensor networks.

~ One of the key issues in DSN is the communication
between processors [26]. The principal component of
DSN is the coordinated computation among the proces-
sors, which implies that communication among proces-
sors is the backbone of DSN. Each sensor acts as a knowl-
edge source and communicates to some or all other nodes
in the network, to initiate the inference process. The in-
teraction among KS’s is quite an expensive operation in
distributed systems. It is important to minimize the inter-
process communication and design efficient ways to route
the information in the network.

C. Information Routing Issues in DSN

A processing node receives a bulk of data from the sen-
sor it is associated with at regular intervals, generally at
a fixed rate. After some amount of processing at the node,
this information has to be sent to some or all other nodes
in the network, depending on the problem solving tech-
nique. It is imperative that the information is routed to the
destination nodes in an efficient manner since the data
generation is repetitive.

Generally, data are transmitted to the destination nodes
in packets. Some of the requirements in information rout-
ing in SDN are as follows.

1) It is desirable to have the entire information gener-
ated by a sensor, in one packet or in fewer packets; oth-
erwise, loss of a packet or delay in receiving it might lead
to discarding the entire data. This is a deviation from the
packet switching needs in any conventional communica-
tion network. The main idea behind such a requirement is
to speed up the inference process, and to reduce the queue
sizes.

2) In most of the SDN applications, the sensor data will
be generated and transmitted in each sensing cycle. Since
the data exchange is almost continuous, the communica-
tion protocols should be designed such that an explicit
ACKNOWLEDGE is not used for each packet. This saves
enormous traffic on the network considering the size of
DSN.

3) An immediate effect of not using acknowledge mes-
sages is with the old packets that have not yet been pro-
cessed when a new packet has arrived. A simple solution
to this problem is to ignore the old packets which could
be identified by using time stamps in the message proto-
cols. However, it is necessary to see that much data is not
lost by ignoring old packets, and hence it is necessary to
route the packets within a maximum allowable time.

4) DSN is envisaged to operate under hostile environ-
ments. It is therefore necessary to employ reliable point-
to-point communication protocols. This topic has been
well studied in the context of computer networks. These
should be adapted to the DSN domains.

D. Scope and Organization of the Paper

Communication among the cooperating processors is
the backbone of DSN, and in this paper we address the
issues relating to the interprocess communication. There
are two important questions that arise at each processing
node. One of them is ‘‘what to communicate’’ and the
other is ‘‘how to communicate.”” The former question is
complex, problem dependent, and has been discussed in
[16], [22]. In this paper, we focus on finding solutions to
the latter questions of how to communicate. We present
two important communication constraints, viz., the delay
constraint, and the reliability constraint. It is established
that delay in a network depends on the network diameter,
and we present a family of distributed algorithms to de-
termine the diameter. The failure of a node/link in the
network increases the network diameter. We present
bounds for node/link failures such that the increase in di-
ameter results in acceptable delays. These results aid in
the design of reliable structures for DSN.

In the next section, we review some DSN architectures
and their properties. The communication constraints are
studied in Section III and distributed algorithms are pre-
sented to determine the diameter of the graph underlying
the network. The key consideration in designing topo-
logical configurations for DSN are discussed. In Section
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Fig. 2. Sensor domain partition.

1V, we review the distributed routing algorithms, and dis-
cuss their adaptation to DSN. The paper concludes with
a summary and future research directions in Section V.

II. DSN ARCHITECTURE

A fundamental issue in DSN development is determin-
ing the topological network configuration that best fits the
application under consideration. This is a complex issue
[101, [23], [26] since the interrelated constraints due to
task decomposition, node interconnection, communica-
tion, fail safety, and integration problems need be consid-
ered while designing the network structure. In this sec-
tion, we briefly review some network architectures for
DSN.

A. Network Structures

Two types of topological configurations for DSN for
situation assessment purposes have been studied by Wes-
son et al. [25]. The first of these is the ‘‘anarchic com-
mittee’’ organization where each node is able to com-
municate with the other. This arrangement resembles the
‘“‘cooperating experts’’ paradigm in artificial intelligence
(AI). In such an organization, task decomposition and
communication issues are resolved dynamically and each
processing node coordinates with some or all other nodes
in the network and the solutions are arrived at, after some
iterations of information processing, information ex-
changing and abstractions. No priority is assigned to any
processor and all nodes operate autonomously.

The other topology studied in [25] is the hierarchial or-
ganization where the nodes are organized in strict hier-
archies of abstraction levels. Each level will refine the
information content of the data received from the lower
levels to facilitate global inferencing, and transmit the ab-
stracted information to the higher level nodes. Global in-
ference is the responsibility of the nodes in the highest
level which can exercise complete control over the net-

work. Task decomposition, authority, and control details
are resolved statically to.each of the levels. In [25], it is
shown that the performance of the anarchic committee is
superior to that of the hierarchial organization. However,
the same conclusion cannot be extended directly to DSN
domains due to the small size of their experiment. Also,
large bandwidth requirements of the committee structure
pose a major problem for large networks such as DSN.

A novel approach for structuring distributed processing
system is described by Lesser and Corkill [15]. The func-
tionally accurate, cooperative (FA/C) organization differs
from the conventional ones in its emphasis on handling
distribution- caused uncertainty and errors as an integral
part of the network problem solving process.

Iyengar and Sharma [10] developed a variation of the
hierarchial organization which is a compromise between
the hierarchial and the anarchic committee organization.
In this hybrid structure, the sensor domain is partitioned
into blocks of sensors called sensor cluster units (SCU)
as shown in Fig. 2. Each SCU is organized internally in
a hierarchial manner as shown in Fig. 3. SCU’s are formed
in such a way that integration of information from each
sensor in an SCU is performed in the respective hierar-
chial system. Each ‘‘commander’’ node (the node at the
highest level in SCU) of an SCU is connected to all other
peer nodes in the sensor domain. In other words, an an-
archic committee of SCU commander nodes is formed.
Such an organization could be effectively used for situa-
tion assessment in a known problem domain. The hybrid
network organization thus incorporates the advantages of
both hierarchial and committee organizations and pro-
vides a natural way to implement the divide-and-conquer
strategy.

III. CoMMUNICATION CONSTRAINTS

Performance of any coordinated computing system de-
pends on the communication and computational speeds.
Communication poses a major problem since the time




IYENGAR et al.: INFORMATION ROUTING

Multiple

|
|
|
|
| units
|
|
|
|

Fig. 3. Sensor cluster unit organization.

needed for communication is large in large networks. In
DSN, the sensors generate data repetitively at regular in-
tervals. It is therefore essential to ensure that each datum
is delivered to the destination node in finite time, before
the data of the next cycle arrived at the node. Hence there
is an upper bound on the maximum allowable transmis-
sion time in the network. Also, considering the environ-
ment that DSN operates in, it is necessary to examine fail-
safety requirements. In this section, we investigate mainly
two constraints for communication, viz., the delay con-
straint and the reliability constraints. We present distrib-
uted algorithms for determining the maximum transmis-
sion delay in the network and study the connectivity
requirements to achieve reliable communication in DSN.
We also study the impact of node/link failures on the de-
lay.

A. Delay Constraints

When a node in DSN needs to transmit information to
other nodes in the network, the communication should be
completed before another (set of) data on the next cycle
arrives at the node. The problem could be stated slightly
differently. A node »; needs to transmit to other nodes, a
unit of information, within time 7z, where #, is the maxi-
mum permissible transmission delay. The question is
whether this is possible in the present configuration of the
network. From time to time this check needs to be done
in the network for proper functioning of DSN.

The factors that affect transmission delay in DSN in-
clude the capacity of the channel, number of lines on the
route, propagation delay, and the packet size. From
queuing theory results [3], we have an approximation for
the mean total delay 7,

T=L/{CAQ-p)} +1
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where

L = mean length of frames,
C = channel capacity,

p = load on the line,

t, = propagation delay.

For a network, the parameters L,C, and p are generally
known to an acceptable degree of approximation. For a
dynamic network, it is necessary to determine #,. The
propagation delay is dependent mainly on the length of
the route, and hence the maximum end-to-end distance in
the worst case measure of the propagation delay.

A network could be represented as a graph G(V(G),
E(G)) where V(G) is the set of vertices in the graph de-
noting the nodes in the network, and E(G) is the set of
edges in the graph denoting the communication links of
the network. We assume that the links are bidirectional,
and the network does not experience any failure during
the execution of the algorithm. It is assumed that the mes-
sages are delivered to the other nodes in finite time and
that there is no loss of messages.

We use the following notations, with respect to a graph
GV, E).

d(u, v) = the length of the shortest path between « and
v, u, veV@G).

Definition 1: The diameter D(G) of a connected graph
G is the length of the longest d(u,v), for all u, v € V(G),
ie.,

D(G) = max d(u, v).

uveV(G)

Thus, the diameter of the graph underlying the network
gives a measure of the maximum end-to-end transmission
delay. We now present distributed algorithms to deter-
mine the diameter of the graph underlying a network.

First we consider asynchronous tree network and pres-
ent diameter finding algorithms considering two cases:
when one node starts the algorithm, and when multiple
nodes start the algorithm. We discuss the extension of
these algorithms to general networks. Diameter could also
be determined using the center finding algorithm in [13].
However, the algorithm in [13] does not support multiple
nodes starting, and these algorithms are not optimal for
finding the diameter.

1) Distributed Diameter Finding Algorithms: We now
present two algorithms, SDIA and MDIA, which deter-
mine the diameter of asynchronous tree networks when an
arbitrary node starts the algorithm, and when an arbitrary
number of nodes start the algorithm, respectively. The
main idea behind these algorithms is to determine two
largest heights, k, and h,, say, of each node, and the node
with the largest h, + h,, determines the diameter of the
tree. If the start node lies on the diameter path, then it
computes the diameter, otherwise it receives the diameter
information from a node that computed it. Following are
the two messages used in these algorithms.
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Messages:

Find: A message with only the message header.

Return (d, pd): Each return message is received with
two parameters, the first, d, being the maximum height of
the subtree rooted at the sender; the second, pd, being the
maximum end-to-end distance at the sender.

a) Algorithm SDIA: Let T (V(T), E(T)) be the tree
of order n, (i.e., |V(T)| = n). We assume that only one
node starts the algorithm. Suppose a node s starts the al-
gorithm. The tree T can now be viewed as a tree rooted
at s with subtrees 7y, Tp, - - - , T, 1 <l <n— 1;ie.,
T, ={T,, Tp, - - - , T}}. Itis clear that V(T)) N V(T}) =
{s}, i # j. The algorithm is as follows. All nodes are
initially in IDLE state. The start node s broadcasts the
FIND message to its neighbors and changes to the WAIT
state.

When an IDLE node receives the FIND message,

a) If it is a leaf node, then it sends the RETURN (d,

pd) where d is 0 and pd is 0. It then quits the algo-
rithm.

b) An internal node broadcasts the message to all its

neighbors except the one from where it received the

message and transits to the WAIT state.

When a node in WAIT state receives the RETURN (d,
pd) message from a neighbor,

a) it increments the count d of the message and com-
putes two largest d’s, h; and h,, (say) received so far.
It computes the maximum of the pd’s received.
and
b) if it has received the RETURN message from all
its neighbors in response to the FIND message, then
it sends RETURN (max (h,, hy), max (pd, h; + hy))
to the neighbor from where it had received the FIND
message. It then exits the algorithm. Otherwise, it re-
mains in the same state.

The algorithm terminates when the start node s has
received the RETURN message over all its neighbor
nodes. Formal version of the algorithm is given in the
Appendix A.

Properties: Suppose a node s starts the algorithm.
Then,

P1) A node changes its state exactly once. Once from
IDLE state to WAIT state and from WAIT state, it exits
the algorithm. O

P2) A node (# s) in WAIT state does not receive a
FIND message from any of its neighbors.

Proof: Suppose a node n; in WAIT state receives a
FIND message from its neighbor n;n,neV(),i+j.
Let n, be the node that sent FIND message to an IDLE
n;. Since s is the only initiator of the algorithm, there exist
two paths from s to »;: one path via »; and the other via
n,. A contradiction to the assumption that T is a tree. O

Lemma 3A.1: The algorithm SDIA correctly deter-
mines the diameter of the tree, and terminates in finite
time.

Proof: The FIND message, initiated at some start
node s traverses down all the subtrees rooted at s, to each

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 12, DECEMBER 1992

leaf. Each internal node n; computes the maximum end-
to-end distance of the subtree rooted at n; in T, (pd of the
return message). Since the diameter of the graph is the
maximum end-to-end distance, some internal node com-
putes it. If 5 is on the diameter path, then s computes it,
otherwise s receives the computed diameter information
from a node on the diameter path, through its neighbor.

Since the RETURN message moves up the tree starting
from the leaf, the start node receives the return message
from all its neighbors, thus terminating the algorithm in
finite time. O

Let A (T;) denote the height of the tree T}, and h,,, =
max {h(T})| for all T; € T,}.

Theorem 3A.1: Suppose a node s starts the algorithm
SDIA. Then, s determines the diameter of the tree T in at
most 2k, units of time, if each message is delivered over
a link in at most one unit of time.

Proof: The message FIND moves down the tree
rooted at s and the RETURN message retraces the path of
FIND message. Since each internal node broadcasts the
FIND message, the maximum time it takes for the FIND
message to reach a leaf is to the one at the farthest dis-
tance from s. Hence, the total time taken for finding di-
ameter is 2k (T;) where T, is the subtree at s which has the
maximum height. 0

Theorem 3A.2: The algorithm SDIA finds the diameter
of the tree T using exactly 2(n—1) messages and is opti-
mal in message complexity.

Proof: 1t is clear from the algorithm SDIA that the
FIND message travels on all the edges of the tree, and the
RETURN message retraces the FIND message. Thus,
there are two messages on each edge, and hence the al-
gorithm uses exactly 2(n— 1) messages.

For any diameter finding algorithm, the message has to
be sent over each link of the tree and hence the problem
of finding diameter has an obvious message complexity
lower bound of O(n). The algorithm is hence message
optimal. O

b) Algorithm MDIA: We described a simple distrib-
uted algorithm to determine the diameter of a tree when a
single node starts the algorithm. We now describe the
generalization of this algorithm when multiple nodes start
the process of finding the diameter.

Suppose a set of nodes S = {s;, 55, " -, 5}, S S
V(T), start the process of finding the diameter. The al-
gorithm proceeds as follows.

Each start node s; sends the FIND message to all its
neighbors. If s; is a leaf, it behaves as if it has received a
FIND message and sends the RETURN message to its
neighbor.

When a node n; in IDLE state receives a FIND mes-
sage,

a) if n; is a leaf, then it changes its state to ACTIVE
and sends RETURN (d, pd) withd = pd = 0;
otherwise,

b) it changes the state to ACTIVE and broadcasts
FIND message to all its other neighbors.
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When a node n; in IDLE state, receives a RETURN (d,
pd) message;

{can happen when some leaf starts the algorithm}

a) if it has received RETURN from all its neighbors

except one n;, say, then it computes (d, pd) from the

received messages and sends the RETURN (d, pd) to

n;. The node is set to ACTIVE state.

b) if it has received RETURN from all its neighbors,

then the node transits to the TERMINAL state; com-

putes pd from all the received messages and broad-
casts the SETDIA (pd) message to all its neighbors
and exits the algorithm.

otherwise

¢) computes d;, d, as the two largest d’s received and

the maximum of the received pd’s.; changes to AC-

TIVE state; and broadcasts FIND message to all other

neighbors.

When a node in ACTIVE state receives a FIND mes-
sage, the message is ignored.

{implies that some other node /s started the algorithm

in the subtree}

When a node n; in ACTIVE state receives RETURN
(d, pd) from a neighbor,

a) if the RETURN message is received from all its

neighbors, it changes its state to TERMINAL and

broadcasts the SETDIA (max (d, + d4,), max (pd)),
message to all its neighbors and exits the algorithm.

b) if the RETURN message is received from all

neighbors except one, n;, then RETURN (d, pd) id

sent to n;.

Otherwise, computes d,, d, and pd.

When a start node s; receives a SETDIA(dia) message,
it records the diameter and broadcasts the received mes-
sage to other neighbors, and exits the algorithm.

The algorithm terminates after each node receives the
SETDIA message. Formal version of the algorithm is
given in Appendix B.

Lemma 3B.1: Suppose a set of nodes § = {s;, 55, * = * ,
5}, § € V(T), start the algorithm. There will be exactly
one node or two adjacent nodes that reach the TERMI-
NAL state, in finite time.

Proof: A node reaches TERMINAL state whenever
it has received the RETURN message from all its neigh-
bors. Also, a node sends RETURN message to its neigh-
bor if and only if it has received RETURN from all its
neighbors except one or if it is a leaf. So, if a node n; that
receives RETURN from a neighbor n;, it is implied that
the necessary computations are completed with the sub-
tree rooted at n;.

Suppose there are three nodes n;, n;and ny, i # j # k
(not necessarily adjacent) that reach the TERMINAL
state. This implies that RETURN message was sent by n;
to the subtrees that include n; and n;; and by n; to n; and
ny; and by ny to n; and n;. A contradiction to the facts
stated above.

It is clear that there could be one node that reaches the
TERMINAL state. If two nodes n; and #; then both reach
the TERMINAL state, both of them must have sent the
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RETURN message to each other, and hence must be
adjacent. O

Theorem 3B.1: The algorithm MDIA correctly finds
the diameter of the tree in finite time and terminates in
finite time.

Proof: The FIND message is initiated by all the start
nodes S = {s;, 85, - - -, 5}, S € V(T). Each node s; €
S functions as it if is the only start node. A node sends
the RETURN message only when it has received RE-
TURN from all its neighbors except one. Hence, when a
node receives the RETURN message from its neighbor,
it is implied that all the necessary computations are com-
pleted in the subtree rooted at the neighbor. Each internal
node determines the maximum end-to-end distance in the
subtree. Some node n; will eventually receive the RE-
TURN message from all its neighbors and hence com-
putes the diameter of the tree. All the nodes terminate the
algorithm after receiving the SETDIA message, and hence
the algorithm terminates in finite time. O

Let h(T) denote the height of the tree T and D(T) the
diameter of the tree. Let hy,, = max{h(T)): forall i € §}.

Theorem 3B.2: Suppose nodes S = {s|, $2, * * * , 8},
1 <! < n,and § € V(T) start the algorithm MDIA.
Then, each of them will determine the diameter of the tree
in less than 2h,,, + D(T) units of time if each message
is delivered in one unit of time.

Proof: The maximum distance traversed by the
FIND message originating at a start node s; is equal to the
maximum height of the subtree rooted at s;. The RE-
TURN message retraces this path, and these two mes-
sages together account for the first term in the time com-
plexity. Once a node reaches the TERMINAL state, it
broadcasts the SETDIA message to all other nodes in the
network, which traverses less than the diameter path
length which accounts for the second term in time com-
plexity relation. O

Theorem 3B.3: The algorithm MDIA finds the diame-
ter of the tree using at most 4(n — 1) messages.

Proof: In the worst case, all nodes in the tree might
start the algorithm simultaneously and each will send the
FIND message to their neighbors, except the leaf nodes
which send the RETURN message. This amounts to
2(n — 1) messages. There will be (n — 1) RETURN mes-
sages before a node can get to the TERMINAL state. A
node in TERMINAL state broadcasts the SETDIA mes-
sage which amounts for (n — 1) messages, and hence the
message complexity of the algorithm MDIA is at most
4(n — 1). O

Finding diameter distributively of an arbitrary graph is
expensive in terms of communication complexity. The al-
gorithm to determine the center of a graph in [13] could
be employed to determine the diameter of an arbitrary
graph. The algorithm is outlined as follows.

i) Construct a spanning tree of the graph rooted at a
node s, using any of the existing algorithms [20].

ii) Each node in the tree then initiates a shortest path
finding algorithm [14] and determines its eccentricity.
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iii) Each node then computes its maximum end-to-end
distance, and sends this information to the root.

iv) The root node upon receiving the end-to-end dis-
tance information from each of the nodes in the network
computes the largest of these, which is the diameter of the
graph. Then the diameter information is broadcast to all
other nodes in the network.

The communication complexity of the algorithm is
computed as follows. The first step requires O(|E|) mes-
sages, and the shortest path finding algorithm initiated at
each node requires O(|E|) messages. Thus, the total
number of messages required to compute the shortest paths
by all nodes is O(n.|E|). It needs o messages to per-
form step iii, and the last step of the algorithm requires
O(n) messages. Hence, the message complexity is
O(n.|E|), which in the worst case is O (r%).

B. Reliability Constraints

A vital consideration for automatic routing and proper
functioning of DSN is the survivability of the network.
Nodes and links in DSN may fail due to several reasons,
considering the fact that DSN works in hostile environ-
ments. It is therefore necessary to maintain the message
flow in the network. In this section, we describe the con-
nectivity requirements that need to be taken into account
while designing the topological structure for DSN that will
achieve fail-safety. We also discuss the importance of
these failures on the end-to-end delay in the network.

When a node/link fails, it is necessary to find alternate
routes to route messages. Distributed protocols for such
dynamic routing are discussed in the next section. How-
ever, it is necessary that the topological configuration of
the network has sufficient connectivity such that when
some links and/or nodes fail, the network remains con-
nected. This requirement should be taken into considera-
tion while designing network topologies. Suppose at most
L links fail in the network. Then the graph underlying the
network must be (L + 1) edge connected for the network
to remain connected despite the failure of L links. Simi-
larly, for the network to remain connected if k nodes fail,
the graph must be (k + 1)-connected. Thus, it is possible
to keep the network connected despite link/node failures
by increasing the connectivity of the graph. However, a
node/link failure can increase the diameter of the graph,
thus increasing the end-to-end delay in the network.

Suppose D(G) is the diameter of the graph G underly-
ing a network. We assume that we are given a k-con-
nected graph of order n, and that there will be at most m
node failures at any instant of time in the network. Let us
now derive a condition for & such that under m node fail-
ures, the diameter of the network does not exceed the
maximum permissible diameter D', for which the trans-
mission delay does not exceed #,. In [3], it is shown that
deletion of m nodes in a k-connected graph of order n (m
< k), the diameter of the resulting graph D’ is bounded
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by

D n—m-—2

IA

—m + 1.

It is clear that for D' to be within the delay constraint,
under a fixed m, the connectivity k of the graph could now
be computed using the above inequality, such that not only
network connectedness is maintained, but also the node
failures do not result in unacceptable delays. Also, for a
A edge-connected graph of order n, deletion of A — 1
results in a graph of diameter D’ such that

D<sA\D+\x-1

where D is the diameter of the original graph [3].

We have shown the effect of link/node failures on the
connectedness of the graph and the delay in the network.
These results provide means for retaining the network
connected, and also to ensure that the delay constraints
for DSN are met with.

IV. DISTRIBUTED ROUTING ALGORITHMS

Under the problem solving strategies for DSN, it is im-
perative that efficient routing schemes are developed for
information dissemination in the network. Each sensor
generates a bulk of data which need be transmitted to some
or all other nodes in DSN, depending on the problem
solving technique. It is clear that the routing scheme de-
pends on both topology and problem solving strategies.
Topology changes could occur in DSN due to link fail-
ures, interceptions, jamming, etc. In this section, we re-
view some of the fail-safe, dynamic, distributed routing
protocols [1], [6], [11], [12], [17], [18], and discuss mod-
ifications of these algorithms to suit the DSN domains.

There are basically two methods for information roui-
ing in any network. First of these is by providing every
node with the entire topological information; and the other
method uses the routing tables, containing the shortest
path information. Subtle issues in algorithms for these two
methods have been discussed in [11].

Distributed topology learning algorithms have been
discussed in [18], [19], [20]. Sharma et al. [20] present
an efficient distributed topology learning algorithm which
could be employed for DSN. However, due to the large
size of DSN, it would be prohibitive to store the topology
information at every node. Also, this scheme would in-
crease the traffic on the network whenever topology up-
dates have to be made. (Topology update messages are
sent to nodes in the networks, when node/link failure oc-
curs, and when a link/node comes up.)

The schemes that use shortest paths are better suited for
DSN. However, dynamic determination of optimal routes
is almost infeasible for large networks like DSN. The
hierarchial routing schemes of Kleinrock and Kamoun [12]
and Baratz and Jaffe [1] focus on solving the dynamic
routing problem in large networks. The main idea is as
follows. The network is partitioned in to set of disjoint
clusters, and into k-levels. The shortést path information
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with respect to a cluster, is maintained at each node in the
cluster. A node also keeps an additional information which
is the shortest path information to each supercluster. This
scheme is shown to achieve optimality in path length,
asymptotically.

The hybrid topology configuration discussed in Section
11, is similar to the hierarchial structure discussed above.
Each sensor cluster unit in the hybrid structure could be
considered as the cluster of nodes in the scheme described
in [12]. Due to the small size of an SCU, we could em-
ploy the cluster shortest path information at each node in
cluster. Employing the algorithms in [1], [12], we could
find an optimal routing path in DSN. Details of these al-
gorithms are beyond the scope of this paper, and can be
found in [1], [11), [12], [17]. For complexity analysis in
routing algorithms see [27].

V. DiscussioN

We have discussed the communication issues in DSN,
and addressed certain basic aspects that serve as the key
design criteria for topological configuration of the net-
work. Two important communication constraints were
identified, namely, the delay and the reliability con-
straints. Study of delay is crucial to proper functioning of
DSN, and we presented distributed diameter finding al-
gorithms to determine the maximum end-to-end delay in
the network. The algorithms SDIA and MDIA provide
means to monitor the delay constraints in the network. It
should be noted that these algorithms function correctly
irrespective of whether the mode of communication is
synchronous or asynchronous and properties of such al-
gorithms are discussed in [21].

The hybrid network structure provides a basic structure
for problem solving using the divide-and-conquer para-
digm. This structure is shown to be convenient in adapt-
ing to the hierarchial, distributed dynamic information
routing schemes described in [12].

The distributed algorithms presented in this paper as-
sume that no node/link failures occur during the execution
of the algorithm. Although the execution time of the al-
gorithm is linear in the number of nodes, it is necessary
to incorporate fail-safety strategies into the algorithm. It
should also be noted that the diameter finding algorithm
for an arbitrary graph is expensive in terms of message
complexity. It is therefore necessary to design heuristic
algorithms to determine the diameter, with low message
complexities.

APPENDIX A
Notations used in the Appendixes are as follows.

MSG; Message sent by node j.
Upon RCV (MSG)))  Upon receiving message MSG
from node j.

Variables at node i:

N; = Set of neighbors of node i.
dy, d, = Integers, initially 0.
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Ipd = Diameter, initially 0.

State; = State of the node, initially IDLE.
SF; = Sender of FIND message, initially nil.
RC = Return message count, initially 0.

Algorithm at node i # start node s:

When node i is in IDLE state;
{1). Upon RCV (FIND;)

(2. ifi = leaf node, then
send (RETURN (0, 0)) to j:
EXIT.
else

send (FIND) to all k, k € N;j.
SF,’ = ]', Statei = WAIT,
When node i is in WAIT state;
{1). Upon RCV (RETURN (d, pd);)
2. d=d+1; {increment the distance}.
RC =RC + 1;
compute d, and d, as the two largest d’s
received
Ipd = max (lpd, pd, d, + dy);
if (RC = [N;| — 1) then
send(RETURN (max (d,, d;), Ipd) to
SF;
EXIT.
Algorithm at node i = s, a start node.
{(1). Send(FIND) to all k € N;;
state; = WAIT;
Upon receiving the RETURN message, the algorithm dif-
fers in line ¢(3) above and is shown below.
(3). if RC = |N;| then
Ipd = diameter of the tree;
EXIT.

(3).

APPENDIX B

The variables are the same as in Appendix A except
that RC is a set variable.
Algorithm at node i

When node i is in IDLE state;
(1) Upon RCV(FIND; ) or Upon START,

State; = ACTIVE;

if i = leafnode then
send(RETURN (0, 0)) to j;

else
SF; = j if i is not a start node;
send(FIND) to all k, k € N; SF;;

Upon RCV (RETURN (4, pd);)

{some leaf node started the algorithm}

d=d+1;

RC=RCU {j};

compute d, and d, as the two largest received d’s.

Ipd = max (pd, Ipd, d, + d»);

if RC = N, then
{Ipd is the tree diameter}
state; = TERMINAL;
send(SETDIA (lpd) to all k, k € N;;
EXIT.

(1.
(2).

(3.
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else
if |RC| — |N;| = 1 then
{RETURN received from all but one
neighbor}
State; = ACTIVE;
send(RETURN (max (d;, d,), Ipd);
else
(4).
State; = ACTIVE;
send(FIND) to all k, ke N; {j };
When node i is in ACTIVE state;

(1>. Upon RCV(FIND; ), ignore the message;

{1). upon receiving the RETURN message, it behaves
similar to an IDLE node except in step {4) above,
where the send action is not performed.

Upon RCV(SETDIA(pd); )
Ipd = pd; {diameter of the tree};
send(SETDIA (lpd)) to all k, k e N; {j }.
EXIT.

(1.
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