An Optimal Parallel Algorithm for
Arithmetic Expression Parsing

Weian Deng & S. Sitharama Iyengar

Department of Computer Science
Louisiana State University
Baton Rouge, LA 70803

Abstract

We present an optimal expression parsing
algorithm using SIMD-SM EREW model of

computation. with a time complexity of O( \/;) using
n processors.

1: Introduction

Parallelized arithmetic expression parsing has been
intensively studied recently. Many papers have been
written on this topic.[2], [3] and [5] are some of the
important results. Dekel and Sahni [3] considered the
generation of postfix form from infix form for an given
arithmetic expression of length n, and the translation of
postfix form into tree form.Originating from the standard
priority-based sequential infix to postfix algorithm, Using
stable sort technique to pair the matching parentheses
together to exchange information among the tokens in a
expression in parallel, they came up with two parallel
algorithms on an SIMD-SM model. One used n processors

and O(logzn) time, and the other used n2/log n processors
and O(log n) time. Bar-On and Vishkin[2] presented the
best parallel algorithm for obtaining the tree form of an
arithmetic expression. They came up with an optimal
parallel algorithm with O(log n) time complexity using
nflog n processors. The heart of their algorithm consists
of the development of an efficient parenthesis pairing
algorithm in O(log n) time with n/log n processors, and
the introduction of the concept of simple expressions.
However, their algorithm is based on the SIMD-SM
CREW model which is more powerful than that used by
Dekel and Sahni. [3] Srikant [5] introduced another parallel
algorithm for expression parsing. But his focus was on
developing algorithms running on the other kinds of
computational models, like mesh-connected machine,

* This research is supported partly by LEQSF-
RD-A04 grant from LSU Board of Regents.

0-8186-2672-0/92 $03.00 © 1992 IEEE

212

shuffle-exchange machine, and cube-connected machine,
elc.

In this paper, we discuss an optimal parallel algorithms
for tree form generation of arithmetic expressions on
SIMD-SM EREW model. The main idea here is how to
avoid the read conflict posted by Bar-On and Vishkin's
algorithm by modifying their parenthesis pairing
algorithm. In next section, we will introduce some
necessary concepts and notations. In section 3, an optimal
parenthesis pairing algorithms on SIMD-SM EREW
model are presented.

2: Preliminaries

The problem we concern here is how to construct a
binary evaluation tree for a proper arithmetic expression of
length n. The expression is constructed from constants,
variables, parentheses and operators (+, -, *, / and ). The
operators follow the usual priority rule and associativities.
All operators except » are left associative. Each proper
arithmetic expression corresponds to exactly one binary
tree representation, in which all the leaves correspond to
the operands and all the internal nodes correspond to the
operators of the expression. The connection between these
nodes are determined by the priorities and the
associativities.

Definition 1: A linear expression is an proper
arithmetic expression which consists of constants,
variables and a set of operators with the same priority.

Definition 2: A sub-expression is a successive portion
of a given arithmetic expression enclosed by a pair of
matching parentheses.

Definition 3: A simple expression is an expression in
which all operators within one sub-expression but not
in any other sub-expression are of the same priority.
[2]

In other words, a simple expression is an arithmetic
expression in which each sub-expression of it is a linear
expression, provided that all the sub-expressions within



the former mentioned sub-expression are considered as its
operands. Therefore, any sub-expression of a simple
expression can be seen as a linear expression as well as an
operand for its upper level sub-expression. As an operand,
each sub-expression can be represented by its root
operator. In this way, the complicated tree form for an
expression can be found by simply translating the
expression to a simple expression, then finding all the tree
forms for all the sub-expressions in the simple expression.

Here, we adopt the same strategy as Bar-On and
Vishkin. The difference is the parenthesis pairing method.
So, in the rest of the paper, we discuss parenthesis pairing
algorithms only. The whole algorithm for expression
parsing can be driven in a straight-forward way. For more
details about the whole algorithm, see [6].

3: Parentheses pairing

The problem of parenthesis pairing is that, given a
proper parenthesis sequence of length n, n is an even
number, pair all the matching left parentheses with their
right parentheses.

Suppose the input sequence is divided into m
segments, where n = mgq, for a certain positive integer q.
Each segment has g parentheses. These segments are not
necessary to be the proper ones. In each segment S Iz 1<
k <m, there are two kinds of parentheses; one includes all
the parentheses which can be paired within the segment,
and the other includes the parentheses in that segment
unable to be paired. Removing all the paired parentheses
from the segment, we can get a sequence of the form:

))..)) G ((

i successive right parentheses are followed by j

successive left parentheses.

Definition 4: The sequence of parentheses formed by

removing from a successive segment § k of a proper

parenthesis sequence all the paired parentheses within
the segment, is called a unpaired sequence in segment

N k and denoted by U fx

If matching parentheses have been found for all the left
most left parenthesis (LMLP in short) and the right most
right parentheses (RMRP in short) of all the unpaired
sequences of a given proper sequence, and these paired
parentheses are marked, there exists a very useful property.
(2]

Property 1: In every unpaired sequence U, ,1<k<m

of a given proper parenthesis sequence, the sequence
of left parentheses to the right of the LMLP and to
the left of next marked left parenthesis can be paired
one after the other by the sequence of right

213

parentheses to the right of the corresponding right
parenthesis of this LMLP.

[2] has the proof for this property.

Let the proper parenthesis sequence input have length
n. N processors are used. The input is divided into [nN]
segments S, 15k < [n/NT. U, is the unpaired
sequence of § I For each parenthesis in the input E(j), 1

<j<n, afunction is assigned as:

the number of *('s to its left FEGY) = ("

. _J - the number of *)' to its left ! () =

level() = the number of “('s to its left i EG) =)'
- the number of *)' to its left+1 ! ¢="9
Property 2: The matching parenthesis of LMLPk in Uk

is within the first unpaired sequence U / to its right
with level(LMLPk) b level(RMRPl). The matching
parenthesis of RMRP, in U

k k
unpaired sequence U I to its left with level(RMRPk)

2> level(LMLPl).
Proof: We prove the LMLP

the proof is similar.
It is not possible dor the matching parenthesis of

LMLPk to be within one of the unpaired sequences to

its left because this matching parenthesis should be to

the left of LMLPk. Nor can it locate within Uk .

Suppose there exists a positive integer j ,k <j <!
such that the matching right parenthesis R % of
LMLPk is within Uj' Then we have level( Rk )=
level ( LMLPk ) Because level( Rk ) 2 level (
LMLPj ) Therefore level( LMLPk ) 2 level( RMRPJ.)
This is contradictory to the fact that / is the first
unpaired sequence to the right of U 3 satisfying level(
LMLPk ) 2 level( RMRPJ. } So, no such j exists.

Because level( LMLPk } =2 1 and the right most

is within the first

case only. For RMRP

k k’

right parenthesis of a proper parenthesis sequence has
a level value of 1, a segment satisfying the given
condition can be found for each LMLP.

The matching right parenthesis must be within U !

because level( LMLPk )= level( RMRPI ) and
level( LMLPk ) < level( RMRPI_1 ) So, in the
U P there must be
one parenthesis (say R k) such that level( R k )=
level ( LMLP]c ).

sequence of the right parentheses in



From this property, an new algorithm can be found. It
finds the matching parentheses for LMLPs and RMRPs by
allocating the segments where the matching parentheses
are allocated and then searches through the corresponding
segments for the matching parentheses, This is given
below.

Algorithm (SIMD-SM EREW)

1. Partition the input into N successive segments of
length n/N, and assign each segment a processor.
In parallel, all the processors perform sequential
pairing algorithm to find all the paired parentheses
within each segment, and remove them by
marking. The result is N unpaired sequences.

2. Assign each parenthesis a nesting level value by
the method described by Dekel and Sahni [3].

3. Allocate the matching unpaired sequences for all
the LMLPk , 1<k<N . In parallel, each processor
k associated with LMLP & looks for the RMRP in
the next unpaired sequence U 1
next U ) and so on, until an unpaired sequence
U I is allocated which satisfies that level( LMLPk
) 2 level( RMRPI ). A similar approach is also

applied to RMRPs.

then the second

4. Each processor searches its unpaired sequence U f

found in step 3 for the matching right parenthesis.
This is done by a linear search on U i looking for

the right parenthesis with the same level value.
The paired parentheses are then marked. To avoid
read conflict, a pipeline approach is used: P 1

begins first. When P1 is searching the second
parenthesis, P2
is also applied to RMRPs.

begins, etc. A similar approach

5. In parallel, each processor matches its left
parentheses from the LMLP to the left until it
meets a left parenthesis marked in step 4, or until
all the left parentheses in this unpaired sequence
are finished. A similar approach is also applied to
RMRPs.

For example, let's consider a proper input of

CCCHYHY ceeHr)y ceryhr

214

with length of 16, Suppose 4 processors are used. In
step 1, input is divided into four segments and results in
four unpaired sequences

1 2

€ ( ) e ))
12 223 4 43

4

) )

3
(
3 21

¢ J))
4 43

with the number below as the level value assigned to
each parenthesis and the number above as segment
number. In step 3, the segments at which the matching
parentheses of the LMLPs are allocated, are found first,
Then for a similar process is applied to the RMRPs. After
this step, we get

1[4,0] 20411  3[42] 41[0,1]
¢« y CCeC )Y e )
12 2234 4334 4321

The two numbers within the braces are the matching
segments for LMLP and RMRP respectively. In step 4,
the matching parentheses for LMLP and RMRP are found

and the paired parentheses are marked
# # # # # # # # # #
(( ) C CC ) )« ) ) ) )
12 2234 4334 4321

Finally, step 5 pairs all the rest of the parentheses.
The correctness and effectiveness of algorithm 3 is
given in theorem 3 below.

Theorem J3: Algorithm 3 can pair the matching
parentheses for a given proper parenthesis sequence in
time ¢t = O(n/N + N) with an optimal cost ¢ = O(n),

for N < \];

Proof: The correctness of algorithm is guaranteed by the
two properties of unpaired sequences. Step 1 and Step
2 are obviously correct. (See [2] and [3]). The
correctness of Step 3 and Step 4 is given by property
2. From property 1, we can derive that step 5 is true.

Regarding the time complexity and cost:
Step Time

O(n/N)

O(n/N)+O(log N)

ow)

O(n/N)

O(n/N)

t = O(n/N) + O(n/N) + O(log N) + O(N)
+ O(n/N) + O(n/N)
= O(n/N + N + log N) = O(n/N + N)

AW —g

So, totally



¢c=NxO(n/N+N)

=0 +N2 )
To make algorithm 3 a cost optimal one, the
condition is
n 2 N2
so, N <Vn

5.0 Conclusion

We have presented an optimal algorithm for arithmetic
expression parsing in SIMD-SM-EREW model. Our
algorithm employs pipeline approach to achieve optimal
performance. Finally, a comparison of our algorithms
with the other existing algorithms is given in Table 1.

Table 1. Comparisons of Al%orithm Performance

. Cost=
N Model Time TimexN

Dekel & 2 2
Sahni(1983)| n | SIMD-SM | O(log” n) [O(nlog™ n)
Bar-On & SIMD-
Vishkin |#/log n| SM.R | O(log n) O(n)
(1985)
Srikant n Cube- 2 2
(1990) connected 0(108 n) O(HIOg n)

Deng &
engar | Vn |svDsm| oomy | om
(1991)

4: Reference

{11 S.G.Akl, The Design and Analysis of Parallel
Algorithms. Prentice-Hall Pr., Englewood, NJ,
1989.

21 LBar-On & U,Vishkin, Optimal Parallel Generation
of a Computation Tree Forms. ACM Trans.
Program. Lang. Syst., 7(2). pp348-357, 1985

[31 E.Dekel & S. Sahni, Parallel Generation of Postfix
and Tree Forms. ACM Trans. Program. Lang.
Syst., 5(3), pp300-317, 1983.

4]  AMoitra & S.S.Iyengar, Parallel Algorithms for
Some Computa-tional Problems, 1987.

[5] Y.N. Srikant, Parallel Parsing of Arithmetic
Expressions, IEEE Trans. Comput., 39(1), pp130-
132, 1990.

(6]

215

W. Deng & S.S.Iyengar, Parallel Algorithms for
Arithmetic Expresion Parsing, 1991 Allerton Conf.
Sept. 1991.



