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Efficient Data Structures for Model-Based 3-D Object
Recognition and Localization from Range Images

Wu Wang and S. S. Iyengar

Abstract—This paper defines and investigates a fandamental problem
in computer vision: recognition and localization of multiple free-form
3-D objects in range images. This facility is important in an automated

turing envir t in the industry. The emphasis throughout this
paper will be on the design of efficient data structures and algorithms. The
principal results of our work are as follows:

+ Surfaces are characterized by surface curvatures derived from
geometric models of objects. Surface shapes and a knowledge rep-
resentation scheme are uniquely defined and used in the search for
corresponding surfaces of an object, based on an ordered feature
space.

« Knowledge about model surface shapes is automatically abstracted
from CAD models, and these models are also used directly in the
vision process.

« Our technique will recognize objects by hypothesizing and locating
them. Knowledge about object surface shapes is used to infer
hypotheses, and CAD medels are used to locate objects.

* One of the most important problems in 3-D machine vision is the
recognition of objects from their partial view due to occlusion. Our
approach is surface based and is not sensitive to noise or occlusion.

* A test system called free-form object recognition and localization
(FORL) was implemented and tested on synthetic images.

Index Terms—CAD-based vision, geometric modeling, image process-
ing, model-based machine vision, range image understanding, surface
curvature, surface shape, 3-D object recognition and localization.

I. INTRODUCTION

In recent years, there has been a tremendous spurt in the recognition
of 3-D objects in range images. Visual data obtained from range
sensors by a robot provides 3-D range information about objects
directly. Interpretation of range data by a vision system has been one
of the major problems of vision research, e.g., ability to derive prop-
erties, such as extracting features and recognizing objects. Toward
this objective, we develop an efficient approach for the recognition
and localization of 3-D freeform objects in range images using the
properties of algebraic surfaces. Bolles and Horaud {3] present an
approach for finding the configuration of objects from range data by
matching preselected features. Their method, because it is edge based,
is sensitive to occlusion and noise. Gunnarsson and Prinz [7] propose
a method for localization of industrial parts using CAD models but
handle a very limited rotation of the objects from the models. Vemuri
and Aggarwal [14] propose a method for determining the orientation
of an object from a range image by point correspondence, which
may be sensitive to noise. Flynn and Jain [6] describe a method for
constructing relational graphs from CAD models. These relational
graphs can subsequently be used for object recognition. Grimson
and Lozano-Perez [17] discuss use of sparse local measurements of
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positions and surface normals to recognize and locate objects. Wong
et al. [15] propose an attribute hypergraph-based object recognition.
Bhanu and Nuttal [19] propose characterization of surface curvatures
on curvature graphs to recognize objects.

This paper is organized as follows. In Section II, we explain
one of the most common CAD model representations—boundary
representation of solids. The invariant properties of surfaces are
shown in Section III. We discuss the considerations for knowledge
representation in intelligent systems and introduce our data structures
in Section IV. The control strategy of the recognition and localization
process is discussed in detail in Section V. The implementation details
are shown in Section VI. Finally, we present our conclusions in
Section VII.

A. Models for Machine Vision

Model representation has a significant effect on model-based object
recognition. Many modeling methods have been proposed and used in
computer vision systems. Wireframe models to describe solid object
edges are commonly used in blockworld vision [12]. The approach
we introduce is suitable for using either CAD models or automatically
generated models to recognize and localize objects. In fact, automatic
models are the same as CAD models in the sense of their data
structures.

B. Computer-Aided Design Models

CAD models contain details about solid objects. A CAD system
is generally used to design new shapes for automatic manufacture.
It provides an interactive design interface, which is usually user
friendly, and helps create, modify, and analyze a design. CAD models
are very stable in representing geometric features of 3-D objects
and revealing model structures in detail. Another reason for CAD
model-based vision is the wide availability of CAD/CAM systems
in industry. CAD models are perfect for producing images from
models. However, machine vision, as a reverse process, does not
easily use CAD models directly. We have developed an approach
to use CAD models to generate hypothesis images for verification.
Our approach uses the knowledge about surface shapes of objects to
perform recognition reasoning. Knowledge about surface shapes of
objects is abstracted from CAD models automatically.

There exist many schemes for representing solids. Among them,
the most popular schemes are boundary representations (B-rep),
constructive solid geometry (CSG), sweep representations, cell de-
compositions, spatial occupancy enumeration, primitive instances,
and analytic solid modeling (ASM) [4], [5].

C. Boundary Representation of Solids

A boundary representation of a solid object m can be defined as a
set m = f1, far..., fpm, where fi, 1 < i < py, is a surface patch.
There are many conventional functions to describe surface patches in
computer graphics, although there is no unique B-rep for a solid.

Methods of designing surface patches in CAD systems often use
a set of discrete points called control points to help define surface
patches. B-spline and Bezier surfaces are some commeonly used
functions.
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D. Models Generated Automatically

The fundamental principle of automatically building object models
consists of taking multiple views of an object, segmenting each such
image, and dividing each image into a set of smooth segments that
can be represented by a mathematical function. There are many
different ways to represent surface segments. Most automatic model
generation research concentrates on creating models in parametric
function representation. There are scgmentation methods [9] that
describe surface segment regions by an explicit bivariate function z =
f(x,y). For instance, an image can be partitioned into smooth surface
segments described by variable-order explicit bivariate functions.
Explicit functions are not often used in automatic model generation
research since they are not compatible with CAD models. However,
our approach only requires models given in Section I-C. The f; in
Section I-C can be represented in parametric functions, as CAD
models, or in explicit functions. Therefore, our approach allows
automatic generation of models for recognition and localization,
which makes a self-contained vision system. On the other hand, if the
same segmentation procedure is used to partition images in automatic
model generation and segment the input image in recognition, the
recognition and localization process will be more accurate and more
efficient.

II. INVARIANT PROPERTIES OF SURFACES

If surfaces are recognized by their characteristics, object recogni-
tion can be reduced to a surface recognition problem—the so-called
surface-based recognition. This is in contrast with the conventional
edge-based recognition that recognizes objects by using edge charac-
teristics and their relations. In order to recognize surfaces, we must
have well-defined features or mathematical entities that can be used
to distinguish between different entities of the same type. It is well
known that curvature, torsion, and speed uniquely define the shape
of 3-D curves [8], [10]. In the surface case, there are two basic
mathematical entities that are considered in the analysis of smooth
surfaces. They are referred to as the first and second fundamental
forms of a surface. We will show how these forms uniquely char-
acterize and quantify a general, smooth surface shape. Based on
these fundamental forms, invariant surface characteristics, such as
the Gaussian curvature and the mean curvature, are derived. These
characteristics are invariant to changes in surface parameterization
and to translation and rotations of object surfaces. A robust 3-D object
recognition system should be view independent. Therefore, the use of
invariant surface characteristics in 3-D vision systems is significant.
Furthermore, the Gaussian curvature and the mean curvature are local
surface properties that allow surface curvature to be used in occlusion
situations.

A. Surfaces

A curved surface can be defined as a polynomial in terms of two
parameters u and v. The surface S is a set of points in 3-D space.
The representation

P =p(u.v) = [2(u,v), y(u, v), 2(u,v)] 2.1)
is a mapping of an open set U in the uv plane onto S. If for all
(u,v) in U

T4+ T +J2#0 2.2)
where J2, Jﬁ, and J? are Jacobians defined as
0(y, 2) oz, 2) oz, y)
Jr = : = s J. = : .
) T oy " T oy @Y

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 10, OCTOBER 1992

all derivatives of p(u,v) of up to order m exist, and all such
derivatives are continuous, then the curved surface defined by (2.1)
is said to be of class C'™.

Condition (2.2) guarantees that the curved surface will not degen-
erate to a point or a curve and that it does not contain any singular
points. This condition requires constraints on both the curve itself
and the parameters. We will assume that the condition holds since all
our geometric models are generated by piecewise-smooth surfaces,
and the images are segmented into piecewise-smooth surfaces.

A parametric representation will be denoted by p = p(u,v) and
its partial derivatives by

p p ’p o%p
Pu= 5y Pr = 5y Pun ™ G2 Pue T gy

If p is class m > 2, then p,, = p,,. Although that strictly
speaking, a parametric representation (2.1) is a mapping, we will
speak rather loosely and identify it with its image: a set of points
S. Therefore, we say that P is a point on p = p(u,v) when P is
a point on the image of p = p(u,v), or we might even say that the
parametric representation p = p(u,v) is contained in .S when the
image of p = p(u,v) is a subset of S.

B. Fundamental Forms

A surface in 3-D space is uniquely determined by certain local
invariant quantities known as the first and second fundamental forms
[8], [10], [13]. Let p = p(u, v) be a parametric surface patch of class
> 1; then, the first fundamental form is

I=dp-dp

= (p,dv +p,dv) - (p,du + p,dv)

2.4)
= (p, 'pu)du2 + 2(p, - p,)dudv + (p, - p, )do?
= Edu® + 2Fdudv + Gdv®
where
E=p, p.F=p, p,.G=p, P, 235

E,F, and GG are known as the coefficients of the first fundamental
form. Suppose p = p(u.v) is a surface patch of class > 2. The
unit normal to a surface at a point p(u,v) is n(u,v) = Tﬁ%fm,
which is a function with differential dn = n,du + n,dv. Note that
dn is a vector parallel to the tangent plane at p(u,v). This follows

from 0 = d(1) = d(n-n) = 2dn-n. The second fundamental form is
II=—dp-dn
= —(p,du + p,dv)(n.du + n,dv)
= —p, - n.du’ — (p, - 1. +p, - 0y )dudv — p, - ndv>
= Ldu® + 2Mdudv + Ndo*

2.6)
where

L=-p,n,, M= —%(pu~nv+pv-nu), N=—-p,n, 27

C. Curvatures

Let P be a point on a surface p = p(u,v) of class > 2, and let
p = p(u(t),v(t)) be a curve C that lies on the surface and passes
through P. The normal curvature vector to C' at P is the vector
projection of the curvature vector k of C at P onto the normal n

at P, ie.
k., = (k-n)n. (2.8)

Notice that k. is independent of the sense of n or of C. The
component of k,, in the direction of = is called the normal curvature
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of C' at P, that is
kn=k-n. 29

Here, the sign of k., depends on the sense of =, but it is independent
of the sense of C.

Note that the unit tangent to C' at P is t = % = ‘—:}%, and
the curvature vector is k = % = %/7%. Thus, 0 = Ed;(t ‘m) =

% ‘ntt- % since ¢ is perpendicular to n along the curve.

It follows that
_ L(du/dt)? + 2M (du/dt)(dv/dt) + N(dv/dt)?

ko = E(dv/dt)? + 2F(du/dt)(dv/dt) + G(dv/dt)?

(2.10)

Note that k, depends only on %%, which is the direction of the
tangent line to C at P. Otherwise, k., is a function of the fundamental
forms I and I, which depend only on P.

All curves through a point P on a surface tangent to the same
line through P have the same normal curvature at P [8]. Since the
normal curvature to C' at P depends only on P and the direction of
the tangent line to C' at P, and we can say that the normal curvature
in the direction du : dv, du, and dv are not both zero, we have

g - Ldv’ +2Mdudv + Ndv?
"7 BEdu? 4+ 2Fdudv + Gdv? '

(2.11)

Notice that the above form is simply k., = ZL. du

. : dv are
the direction numbers of the line in the tangent Iplane parallel to
p,du +p dv. du : dv and dv’ : dv’ determine the same line if and
only if they are proportional. It is clear that &k, is invariant in the
same sense as I and I1. k,, does not change sign under a parametric
transformation that preserves the sense of n, and ksubn changes sign
under a parametric transformation, which reverses the sense of n.

Since I > 0, k, is positive, negative, or zero together with I7,
that is, if P is elliptic, then %k, # 0 and remains the same sign for all
du : dv at P.If P is a hyperbolic point, then k, is positive, negative,
or zero, depending on du : dv. If P is a parabolic point, k, remains
the same sign and is zero for the direction for which IT = 0. If P
is planar, k, = 0 in all directions.

The two perpendicular directions for which the values of k.
take on maximum and minimum values are called the principal
directions. The maximum and minimum values of normal curvatures
ki and ko are called the principal curvatures [10]. A point on
the surface at which k, is constant is called an umbilical point.
If k, = constant # 0, it is called an elliptic umbilical point.
If kn = constant = 0, it is called a parabolic umbilical point.
Therefore, if all points of a connected surface S are umbilical, then
S is either contained in a sphere or in a plane [13]. The principal
curvatures are roots of

(EG—-F?)k* —(EN+GL—-2FM)k+ (LN - M*)=0. (2.12)

The average of the roots of the above equation is the mean curvature,
and the product is the Gaussian curvature.

III. DATA STRUCTURES FOR OUR SYSTEM

In our vision task, the knowledge the system needs is the de-
scriptions about objects. We already have the B-rep about objects;
however, it is suitable for producing images from object models but
not suitable for vision tasks.

A model database is a set M = m,,ma2,...,mn, where each m;,
1 < i < n is the B-rep for a solid object.

A B-rep is a set m; = fi1, fiz, ..., fip;, Where fi;, 1 < j <piis
a surface patch. This set of surface patches cover the boundary of m;.

Each model is described by a set of surface patches and the implicit
spatial relationships among the surface patches. This information
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Fig. 1. Curvature map as a mesh on a surface patch.
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Fig. 2 Curvature map as a three-layer structure.

"Ki-1<Ki< Kiyg - o -

[ [ [k [ |
A e =i
P

.

N S

F ilHi-1liI}‘;;|i"ﬁ+1|i~-i i j

- Hial < Hbe Mgl -

Fig. 3. Physical structure of curvature map.

is sufficient for generating an image from the models, which will
be used in our verification process during object recognition and
localization. We use a data structure known as a curvature map
to represent the surface shape. A curvature map can be viewed as
a mesh on a surface patch as shown in Fig. 1. We compute the
Gaussian curvature A and the magnitude of mean curvature |H| at
each node of the mesh in Fig. 1. In the system, a curvature map is, in
fact, a three-layer structure as shown in Fig. 2. One layer stores the
spatial coordinates of each node of the mesh. The other two layers
are for the Gaussian curvature and the magnitude of mean curvature
at the corresponding points. Each curvature map is reorganized into
the structure shown in Fig. 3. The Gaussian curvature layer and the
magnitude of mean curvature layer are sorted arrays. Each value in
either curvature layer is associated with a point coordinate. Note that
K, and |H;| are not necessarily associated with the same point.

To perform recognition reasoning, each plane is associated with
its surface normal. The relationship between plane normals within a
model can help recognition reasoning.

IV. CONTROL STRATEGY

The vision process in an autonomous robot normally involves
the recognition of complex objects in scenes and the problems of
estimating the position and orientation of an object. The above
process is computationally intensive, and new models are needed
that permit efficient ways of recognizing and localizing 3-D objects.
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A. Recognition and Localization

Suppose there are n objects O = {01,02,...,0,} in a scene, and
there are k models M = {m1,mg,...,m} in the model database.
Our task is to find a matching 0o; = TRANSFORM((m;), where
0, € O, mj € M, and TRANSFORM is a transformation,
that is, we should find a matching between o; and m; for the
recognition task and find the transformation TRANSFORM for
the localization task. Since we can only find a set of surface segments
S5 = {s1,s2,...,5} in an image, the task becomes one of finding
the membership of an image surface segment in the set of models,
ie., finding s; € TRANSFORM (m;), where s; € S, and
m; € M. Since each model is described in terms of a set of surface
patches m; = fi, fi2,.... fip,, the task becomes one of finding the
membership of an image surface segment in a subset of the surface
patches of a certain model, i.c., s, € TRANSFORM (m}), where
s; € S, and m; C m. Since it is not cost effective to search all
possible combinations of image surface segments with model surface
patches, the task becomes an Al search problem. Since heuristic
search is well defined and understandable, we introduce our approach
in terms of heuristic search.

B. Main Algorithm

Our algorithm is a heuristic search procedure using an evaluation
function to direct search through the state space. A curved surface in
an image contains more heuristic information by itself than a planar
surface, which can be understood intuitively. We focus our proposed
technique on curved surface segments differently from planar surface
segments in an image. First, we use information from curved surface
segments to direct the search. If no curved segments can be used, the
planar surface segments are used to continue searching. The main
algorithm is as follows.

MAIN ALGORITHM

1. If the input image is empty, then exit.

2. Let s be the set of all models, where each consists of a set of
surface patches. Set TEMP and P to ¢.

3.* Find a curved surface segment p’ in the input image such that
p' is close to one segment in P, and p’ is not in TEMP.
Add p' to P. If not found, go to step 13.

4.* Obtain the subset s’ C s such that p’ € P is matched to the
surface patches of m; for all m; € 5.

5. If |s'| = 0, delete p’ from P, and place p’ in TEMP. (If
|P| = 0, erase p’ from the image.) Go to step 3.

6.* If |s'| = 1, a hypothesis is formed. Go to step 9 for
verification.

7.* If there are three surface segments in P that match with the
same model in s, then find the model m in s’ that matches
the most segments in P. Delete m from s'. Go to step 9 for
verification.

8. Let s = s'. Go to step 3.

9.* If verification succeeds, erase TRANSFORM (m) from the
input image. Go to step 1.

10.* Check whether surfaces of m can match to segments in P

at different positions. If another matching position is found,
g0 to step 9.

11. If |s'| = 0, fail to recognize all segments in P. Frase all
p" € P from the image. Go to step 1.

12.  Go to step 6.

13.* If |P| > 0, find a planar surface segment in the image close

to one segment in P. If found, go to step 4; otherwise, go
to step 15.

image

m-"

¥
Find a curved segment p“in/
such that p” is not in TEMP and is

close tosome peP. Addp’ wP.|( Andap

Obtain &’ ¢ s suchthatp’€ P
is matched 1o m;, for all m;e s

3 scgments in P mach ™\ N|
with some mes"?

Find mes” which matches with

most inP.
¢ «5={m)

Hypothesis formation
TRANSFORM (m)

'
t
Y ‘m maich to ssgments in
i
m., ISFORM .

Fail 1o recognize segments in P,
Erascall p’eP from/.

Fig. 4. Flow diagram of the main algorithm.

14.* Find three planar surface segments close to each other. If
found, go to step 4.
15.  Exit with failure.

Note: Steps with * will be discussed in detail in the following
sections.

There are many tradeoffs in application systems. Heuristics help
reduce the amount of search. However, applying heuristics to find
the search directions is also expensive. If we use more heuristics,
the search is directed more accurately. Therefore, the search is
more efficient. However, if we use more heuristics, the cost of the
evaluation function will be higher. It is very difficult to design an
evaluation function that not only performs efficiently but also contains
a great deal of heuristic information. Hence, the total cost of a search
system can be classified as two classes: one is the cost of the search
process, and another is the cost of the heuristic evaluation operator.
The total cost of a search system can be shown informally in Fig. 4. In
designing a search system, we first have to find tradeoffs, considering
the application requirements and the factors of the search system. One
way to design heuristic evaluation functions is to design multiple
functions to deal with different situations so that each function is
efficient. Our approach is to use different heuristic information and
different evaluation functions to deal with curved surface segments
and planar surface segments in the input image, which has been
proven to be efficient.

C. Image Segmentation

This section discusses techniques used to obtain a surface segment
in steps 3, 13, and 14. The knowledge about model surface patches
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Heuristic evaluation

/ Search

Heuristics

Fig. 5. Search system cost.

is represented as a Gaussian curvature map and a magnitude of mean
curvature map for curved surfaces as well as angles between surface
normals for planar surface patches. Therefore, the useful features in
the image are the curvatures of curved surface segments and angles
between planar surface segments. In order to find these features, the
simplest method is to use an approximation function to apply to a
small window of pixels to find the curvatures and then classify a
region of neighboring pixels into surface segments such that each
segment contains a smooth surface. Suppose that we use a 5 X
window to obtain the curvatures of the central pixel of the window
as shown in Fig. 5. Let us use an explicit function = = f(z,y)
to approximate the window in order to obtain the first and second
derivatives on the central pixel to compute the curvatures. Let

z =a0.'r3 + alzzy + ag.ry2 + (13y3 + a412 + asry

+ asy® 4+ arz + asy + ao. (5.1

Let the center of the window be (x,y) = (0,0), and every pixel

is one unit, as shown in Fig. 5. We can use a least-squares approach
to find the approximation efficiently. Let

= [ag,al....,ag]r

y=[2(—2,-2).2(-1,-2),...,2(2,-2),

(=2 =1), 2(=1,=1),...,2(2,=1),...,2(2,2)]T
x3  zdye  xows vys ... To wo 1
z3 2y 21y? y? r1 y1 1
A:
23y T3.y24 T2aY3e Y34 ... T2a You 1

where (2o0,y0) = (=2,-2), (z1,41) = (=1,-2), (z2,92) =
(0,=2)..... (x24,y24) = (2,2). We have an overdetermined system

Az =y. (5.2)
The least-squares method is to find an z such that |Az — y|* =

minimum
Multiply A7 to both sides of (5.4); thus, we have
ATAz = A"y (5.3)

where

ATA=
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Fig. 6. Window for approximation to obtain curvatures.
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Since AT A is nonsingular, we multiply both sides of (5.1) by
(AT4)~.

z=(ATA) 14Ty (5.4)
Let B = (ATA)"'AT. Then
z = By (5.5)

where B is a 10 x 25 matrix computed before the system starts.
y is the data from the window. Therefore, the coefficients of the
approximation function (5.3) are easily obtained. Since the purpose
of finding the approximation function is to compute the curvatures at
the central pixel of the window, we can derive a more efficient way
to perform the task. The first derivatives of (5.3) are

2y = 3a02” + 2a12y + agy2 + 2a4x + asy + a7
2y = a2 + 2a07y + 3asy® + asz + 2a6y + as
and the second derivatives of (5.3) are
Zze = 6aox + 2a1y + 2a4
Zyy = 2022 + 6asy + 2ae
Zgy = 2017 + 2a2y + a5 = Zys.

Substituting the coordinates of the center of the window that are
(0,0), at the central pixel of the window, we have z; = a7,2y =
as, Zrx = 204, 2yy = 206, Zzy = a5.

If we represent B in (5.7) as the column vector [Bo, Bi, Bz, . .. Bs),
where B;, 0 < i <9, is a1 x 25 matrix that is the ith row of B,
then we have z; = a7 = Bry, z, = as = Bsy, zz2 = 2a4 = 2Bay,
2yy = 2as = 2Bgy, and z;y = as = Bsy.

Since y is a 5 X 5 window on the image, we can represent the
above as 5 x 5 window operators so that we just apply the operators
to the window. An operator is represented as a 5 x 5 matrix. When
applying the operator, we simply multiply the corresponding elements
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in the window and then add them together. The operators z;, zy, . . -
can now be calculated and used to obtain the curvature. In this way,
we can obtain curvatures for each pixel in a small region. A smooth
surface is a surface that has continuous first and second derivatives.
Therefore, we should not include edge points in the surface segment
region in order to obtain a smooth surface segment. Since edge points
must have high curvature, we can determine whether a point is on an
edge by testing the principal curvatures at that point. From the roots
of (2.12), we have ky = H — (H2 — K)% ky = H + (H? — K)*.

If either |k1| or k2| is greater than a threshold T > 0, the point
is on an edge. The selection of T is by experimentation. Finally,
we obtain a local curvature map of a smooth surface segment in
the image. The surface nature can be determined according to the
curvatures. If the whole map has |K'| < K.cro and |H| < H.ero,
the surface is a plane. A'..,, and H.,, are also thresholds for testing
the zero of A" and H since A" and H cannot really be zero in the input
image due to noise and quantization effects. Since A’ is the product
of principal curvatures and H is the average of principal curvatures,
we let K...o > HZ,,. These thresholds are also selected through
experimentation. After the surface nature and the local curvature map
are obtained, they are used as heuristic information in the evaluation
function at step 4 in the main algorithm.

D. Surface Matching Evaluation

In this section, we discuss how to perform steps 4 and 10 of the
main algorithm.

After the curvature map of a surface segment is obtained, we can
evaluate how close the curvature map matches with the curvature
maps of model surface patches in set s. s has all models initially
and then contains a subset of models after one or more iterations.
If the curvature map of the surface segment indicates the surface
segment as a plane, then the surface segment can match to all planar
surface patches of models in s. Therefore, at step 4, all models not
including any planar surface patches are deleted from s to form s'. If
the surface segment is curved, we need more work to select the subset
s' of s at step 4. The surface segment curvature map can be viewed
as a three-layer data structure. The first layer is the surface segment
from the image where every pixel is associated with its coordinates
(x,y.z) in the 3-D space, i.c., the pixel coordinates in the image
associates with (z,y), and the pixel value is z, as shown in Fig. 6.
The other two layers are the Gaussian curvatures and the magnitudes
of mean curvature, which are the same size as the surface segment
layer. Every pixel in the segment has its Gaussian curvature and
the magnitude of its mean curvature in these two layers as shown
in Figs. 7 and 8, respectively. Now let us take a model m from
s to check whether the surface segment can match to its surface
patches. Since the surface segment is smooth, the center shape of
the surface segment is least affected by noise. We first locate the
possible positions of the center pixel of the surface segment on the
model m. From the initial positions, if we can develop a local fitting
of the surface segment to the model surfaces, it is possible that the
surface segment matches with the model. Then, the fitting position
of the center of the segment is also recorded. In the previous section,
we discussed the knowledge representation of surface shapes of the
models. The surface shape is represented as a curvature map for a
surface patch. The curvature maps are ordered lists that are sorted by
values of K" and |H|. The initial possible positions of the segment
center are located in the following way. Suppose that the center of
the surface segment is on the (0,0) pixel of the segment curvature
map, as shown in Figs. 7 and 8. Let

a = max {|K@,0) — Kl :i,j=-1,0,1}
3 = max {||Hl0,0) — |H|ci,j)|  i,j = —1,0,1}.
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Fig. 7. Surface segment layer.

° %0

Fig. 8. Gaussian curvature layer.

Thus, « is the maximum difference between the central A value and
its neighboring K" value, and 73 is the maximum difference between
the central |H| value and its neighboring values.

A point p on the model with Gaussian curvature A'p and magnitude
of mean curvature |H |p is a possible matching position of the center
of the surface segment if | (o,0) — Ap| < a and ||H |(0,0) — |H|p| <
3. These points can be found efficiently by binary search from model
surface curvature maps represented as ordered lists. Let these initial
points be in set SP, let the distance between two neighboring pixels
be ,_l,e, and let the noise rate be o. Then, we use the following
procedure to check whether the points in SP can be selected as
corresponding points to the center of the surface segment.

Procedure Fitting

1. n is the total number of pixels of the surface segment. u = 0,

which is the number of pixels unmatched.

2. If SP = ¢, exit with failure.

3. Take p from SP. SP = SP — p.

4. For every noncentral position (7,j) of the surface segment

curvature map

5. Ci" = max{][x’(l_j) - IS'(‘+,‘VVJ‘+J’I)| : l',,j, = —1,0, 1}

6. 8" = max {||Hli ;) = [Hli4o 4| i3 = -1,0.1}.

7. For every point p’ on the model m with

8. |IX’(,J) - I\-I)’l < o' and ||H|(l'1) — IH|pI| < J'

9. If |distance(seg_p(o,0). Seg-p(i,;)) — distance(p’,p)| < ¢, go

to step 4.

10. End_for /* step 7 */.

11. v = u+ 1.

12. If £ > o, then go to step 2.

13. End_for /* step 4 */.

14. Exit with success.

Note that the procedure Fitting only finds a very possible match
when it exits successfully. The procedure only does checking on the
distance between points, which is a necessary condition for a match
but not a sufficient condition. If we want to inspect all conditions
to guarantee the exact match, however, the process will be very
expensive. Referring to Fig. 4, we have a tradeoff between the
evaluation cost and the search cost.
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E. Hypothesis Formation

In this section, we discuss the techniques in steps 6 and 7 of the
main algorithm, which are used to form a hypothesis for verification
in step 9. We defined our task as finding matchings between surface
segments in the image and a transformation of model surfaces
si € TRANSFORM(m;), where s; € s, which is a set of
surface segments, and m; € M, which is a set of models. We have
discussed how to find a possible membership of s; on m ;. However,
in order to verify the matching, we have to find TRANSFORM
and then check whether s; is really on TRANSFORM (m;). Thus,
at this point, we simply need to find TRANSFORM to obtain the
hypothesis.

If |s'| > 1 at step 7, we select a model m from s’ such that m
has the most possible matching surface segments in P to form the
hypothesis. If there are three curved surface segments matched to m,
and their possible positions on m have been found in previous steps
as discussed in Section V-IV, then we perform a distance checking
between these points similar to that in procedure Fitting. If the
distance checking fails, the hypothesis cannot be formed. Otherwise,
we can obtain TRANSFORM from the relationship of the central
points of the three surface segments and the corresponding positions
on the model m since three noncollinear points uniquely determine
a 3-D spatial transformation. If there is only one curved surface
segment matched with model m, which is possible at step 6, then
we use the central point of the surface segment and two additional
noncentral points to obtain the transformation. Let the three points
from the surface segments be (szo, syo.s20), (s21.5y1.521), and
(sr2.sy2,822). Let their corresponding points on the model m be
(ro0.y0,20), (*1.91.21), and (x2,y2. 22).

A transformation of points in 3-D space is represented explicitly as

['y'"] = [xyz]R+ T (5.6)
where R is a 3 x 3 rotation matrix, and 7 is a 1 X 3 translation
matrix. The rotation matrices corresponding to the =, x, and y axes
are, respectively

cosf sinf 0
R.(8)= | —sinf cosf 0
0 0 1
1 0 0
R,(6)= |0 cosf siné |;
0 —sinf cosé
cos @ 0 —sin#
Ry(8) = 0 1 0
sin 0 cos 8

Thus, R in (5.10) is the composition of an arbitrary sequence of
rotations about the z,y,, and z axes. We have

Too 7To1 To2
R=|rwo ™ riz| T =][tztyt.].
T20 T21 T22

To find the transformation of the three points, we can easily pin
down the translation: T = [¢,t,¢.] = [szo — ZosYo — YoSz0 — 20)-
When we substitute the three points in (5.10), we have

[szosyoszo] = [woyozo]R+ T 5.7
[sxlsylszl] = [$1y121]R+T (58)
[sz2sy2s22] = [z2y222]R+ T (5.9

From (5.7)«5.9), we get

sTo = ToToo + YoT10 + ZoT20 + 2,

$yYo = ToTo1 + YoT11 + 20721 + Ey,

szo = ToTo2 + YoT12 + 20722 + E=.
sz1 = 1700 + Y1710 + 21720 + 12,
sy1 = 21701 + Y1711 + 21721 + ty,
szy = 1702 + Y1712 + 21722+t
swa = x2To0 + Y2710 + 22720 + ta,
sy2 = xoTo1 + y2r11 + 22721 + 1y,
szo = x2To2 + Y2ri2 + 22722 + 1t

From the above three linear systems, we obtain R. Therefore, the
hypothesis is formed, which is a matching between surfaces and their
transformation. If there are only planar segments matched with model
m, we need three nonparallel planes to determine a transformation
in 3-D space. To obtain a plane equation

Ar+By+C:4+D=0 (5.10)

we need three noncollinear points on the plane. Given three non-
collinear points (xi,y1,21), (¥2,¥2.22), and (x3,y3, 23) on the
plane, we have
Ary+ By, +C=z+ D=0,
AIz+By2+C:2+D=O,
Ars+ Bys +Cz3 + D =0.
Since the three points are not collinear, the equations can be solved
for A, B.C, and D by arbitrarily assigning a value to one of them
and then solving the resulting three equations in three unknowns. A

better way to obtain (5.14) is to select any point (x.y.z) on the
plane; then, we have

Ar+By+Cz+D =0,
Ari+By1 +Cz+D =0,
Aros + Bys + Cz2+ D =0,
Ars + Bys +Cz3+ D =0.
If there is a nontrivial (nonzero) solution to this homogeneous

system, the determinant of its coefficients must be zero. Expanding
by cofactors about the first row, we have

Az4+By+C:4D =0 (5.11)
where

oo 1

A = det y2 22 1|
ys z3 1

I 21 1

B '=—det|x 222 1

xr3 23 1
o y1 1

C'=det| z2 w2 1}|;
3 Y3 1

rr Y1 =
T2 Y2 22
r3 Yz =23

D' = —det

Thus, (5.11) is the equation we want. The three points cannot be
collinear. If all cofactors in (5.11) are zero, collinearity occurs.
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The surface normal of (5.10) is

— (4,B,C)

- (A2 + B2 _,_02)1/2'
Let the three plane segments be

n

Az + Bl +Ciz:+D; =0 (5.12)
A+ By +Chz4+ Dy = (5.13)
Az + B3+ Csz+ Dy =0 (5.19)

and their surface normals be

nl = (A'1,B'1,C"y)
(A% + B35+ e’
o UBBLCY)
(A2 + B'23 + C3)V/?
n, = (Aj, B3, C3)

(A4 B+ O
In order to determine a 3-D transformation uniquely, we must have
ne#En, 1<ij <304
The angle between two planes is obtained from cos§ = n, -n; =
A:d; 4+ B;B; + CC;
(A7 + B} + C2)\/2(A2 4+ B? 4+ C2)1/2°

Since we have had all the angle information between planes in a
model, we should inspect the angles between any two planar surface
segments and compare them with the angles between planes in the
model. If a matching can be found, we can proceed to find the
transformation from the corresponding planes to form a hypothesis.
Suppose the three corresponding planes on the model m are

A+ B +Ciz+D; =0 (5.15)
Asz + By + Coz+ Do =0 (5.16)
_431‘ + B3 + CgZ + D3 = 0 (517)

Let us first determine the rotation matrix of the transformation,
ie., to rotate the model m such that after rotation (5.15) is parallel
to (5.12), (5.16) is parallel to (5.13), and (5.17) is parallel to (5.14).
We use the rotation matrix in (5.10). Substitute the transformation in
(5.15). We have
Ai(@roo + yrio + 2r20 + t2) — Bi(xror + yriy + zr2 + £,)

+C1(xro2 + yri2 + 2722+ t.) + Dy = 0.
The new equation is

(Airoo + Biror + Ciros)z + (A1rio + Biryy + Crria)y

+(Air2o + Birar + Ciree)z + Dy 4+t +t, 4+ 8, = 0. (5.18)
Since (5.18) is parallel to (5.12), we have
Airoo + Biroy + Ciroe _Airo+ Birin + Cire
Al - B;
_ Ao + B17;21 + 017‘22. (5.19)
&1
Similarly, from (5.16) and (5.17), we have
Azroo + Baror + Caroz _ Agrio 4 Boryy + Caris
Al - B}
A B
_ A2rao + 27;21 + Caran (5.20)
Gy
and
Asro0 + Bsro1 + Csroz _ Asrio + Barin + Carie
Al - B}
A B
_ Asrao + 2;121 + C'stz_ (5.21)
3
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Thus, we can solve nine unknowns in nine linear equations of
(5.19)«5.21). In order to let (5.18) and (5.12) represent the same
plane, we have other conditions shown as follows:

Dy +t: +ty+t. _ Airoo + Biror + Ciroz

D, a

Dy +t: +t,+t. _ Asroo + Baror + Caoroz
D; = )

D3 +t: +ty, +t. _ Asroo + Bsror + Caroz
D} = A

which determine the translation matrix T = [t.t¢.].
Therefore, we obtain the transformation from the corresponding
matching surface to a hypothesis.

V. IMPLEMENTATION DETAILS

A hypothesis is obtained locally by analyzing neighboring surface
segments in the image. The way of obtaining hypotheses is efficient
and robust to occlusion, especially when several objects are presented
in a scene, and each object is partially visible. However, local analysis
does not guarantee a valid matching.

Given a hypothesis of s, € TRANSFORM(m), where s; €
s C s = {s1,5...., s¢}, which are the surface segments in
the image, and m € model set M, we build an image P from
TRANSFORM(m) and then compare P with the input image O
to make decisions based on the correlation between P and O.

Suppose that each object in the scene has at least v% area visible,
for instance 50%. We compare the image points on P with values
in corresponding positions on O. If more than v% of the image
points on P can match with input image O within a noise estimate
b, for instance 5%, we can believe that the hypothesis is true and
then erase the matching region of P from O such that O does not
contain the recognized and localized object for the next iteration. To
obtain hypothesis image P, we simply use the z-buffer technique
of computer graphics [5]. This technique is also called the depth-
buffer image space algorithm. The algorithm is simple to implement.
The performance of the algorithm tends to be constant since, on the
average, the number of pixels covered by each surface decreases
as the number of surfaces in the view volume increases [5]. The
algorithm works in the following way. The hypothesis image P is
initialized to the largest representable = value. For each point (z.y)
inside TRANSFORM (m), do the following:

1) Compute the depth z(x.y) at (x.y).

2) 1If z(a.y) is less than the image P value at (z.y), then place

z(x.y) into the image P at (r,y).
The algorithm records the smallest = encountered for each (x,y).
The order of surfaces of the model has no effect on the resulting
image. The hidden surfaces have larger = values, which are replaced
by visible surfaces’ > values.

We have implemented this approach as a test vision system free-
form object recognition and localization (FORL) and tested this on
synthesized range images. FORL was implemented in C on a Sun-
3/160C Workstation.

The vision process uses information in the knowledge base about
surface shapes and the CAD database to recognize and localize 3-
D free-form objects. Range images serve as inputs to the vision
process. The vision system identifies objects and their transformations
with respect to the ideal positions of the CAD models. Range
segmentation, which was discussed in Section IV-C is carried out
next. This is followed by the surface matching evaluation procedure
described in Section IV-D. After this, a hypothesis is provided for
verification using the technique introduced in Section IV-E. Finally,
a synthetic image is produced from the hypothesis and verified as
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Fig. 9. Magnitude of mean curvature layer.
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Fig. 10. Flow diagram of FORL.

shown in Section IV-F. The CAD database is the source of the
object models. Surface shape information is abstracted from CAD
models and then stored in the knowledge base. The following is one
of the examples of recognizing and localizing multiple 3-D free-form
objects in FORL. Figs. 9-11 show the objects in the CAD database.
We arbitrarily selected three objects and arbitrarily arranged them in
3-D space. Fig. 12 shows the contour of the range image.

Fig. 13 shows that one object is recognized and localized. When the
first recognized object is erased, the contour of the image is shown
in Fig. 14. Fig. 15 shows that the next object is recognized and
localized. Again, the contour of the image is shown in Figs. 16 and
17 when the second object is erased. Fig. 18 shows the recognition
and localization of the last object.

VI. CONCLUSIONS
We have designed an effective method of surface characterization
of 3-D objects using surface curvature properties and developed an
efficient approach to recognizing and localizing multiple 3-D free-
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Fig. 11. Objects in the CAD database.

Fig. 12. More objects in the CAD database.

Fig. 13.

Contour of the range image.

form objects (free-form object recognition and localization (FORL)).
Our approach is surface based, which is not sensitive to noise and
occlusion, forms hypotheses by local analysis of surface shapes,
does not depend on the visibility of complete objects, and uses
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Fig. 14. One object is recognized and localized.
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Fig. 17. Second recognized and localized object is erased.

Fig. 15. Recognized and localized object is erased.

Fig. 16. Second object is recognized and localized.

information from CAD database in recognizing and localization. We
have developed a knowledge representation scheme for describing
free-form surface shapes. The data structure and procedures are

Fig. 18. Last object is recognized and localized.

well designed so that the knowledge leads the system to intelligent
behavior. Knowledge about surface shapes is abstracted from CAD
models to direct the search in verification of vision hypotheses.
The knowledge representation used eases processes of knowledge
acquisition, information retrieval, modification of knowledge base,
and reasoning for solution. Future research should be on combining
surface-based recognition and edge-based systems. Our approach
is very suitable for parallel processing to increase efficiency [11].
Developing parallel algorithms for our approach to 3-D vision is
another future research direction.
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Surface Shape Reconstruction of a Nonrigid
Transparent Object Using Refraction and Motion
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Abstract—The appearance of a pattern behind a transparent, moving
object is distorted by refraction at the moving object’s surface. This
paper describes an algorithm for reconstructing the surface shape of a
nonrigid transparent object, such as water, from the apparent motion of
the observed pattern. This algorithm is based on the optical and statistical
analysis of the distortions. It consists of the following parts: 1) extraction
of optical flow, 2) averaging of each point trajectory obtained from the
optical flow sequence, 3) calculation of the surface normal using optical
characteristics, and 4) reconstruction of the surface. The algorithm is
applied to both synthetic and real images to demonstrate its performance.
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1. INTRODUCTION

One of the primary tasks of a computer vision system [1] is
to capture 3-D information, such as surface orientation, from 2-D
images. This task is usually difficult. However, if some cues are
known about the scene, such as stereopsis (e.g., [2], [3]), shading
(e.g, [4), [5]), contour (e.g., [6], [7]), texture (e.g., [8], [9]), and
motion (e.g., [10]-[18]), 2-D images may provide information about
the surface. This information is first converted into local surface
orientation [19] and then into the shape of the surface. This cor-
respondence proposes a method for reconstructing the surface shape
of an undulating transparent object, such as a water surface, using the
cues of refraction and motion. Surface orientation is made from the
moving (apparent distortion) of patterns viewed through the object.
This approach is similar to the method called shape from motion.
The previous work in shape from motion involves reconstructing a
3-D structure from movement of several points on the object based
on an assumption of rigidity (e.g., Ullman et. al. [101-[17]). The
method described in this paper does not use the rigidity assumption
but uses physical characteristics such as optical laws and statistical
motion features of the object. In addition, the method uses points on
refracted images rather than points on the object.

In this method, the objects should have the following two charac-
teristics: 1) They should be transparent with a refraction index not
equal to unity, and 2) their surface shape should be deformed around
an average surface whose shape is known. To clarify the essence
of the idea, an example of a water surface with waves [20], [21],
like the surface of a pool or river, is used. Because of refraction at
the water surface, the observed pattern of objects under water with
waves appears to be moving. Note that human beings can perceive
the surface shape from the observed moving pattern. In this case, the
above two characteristics correspond to the following: 1) Water is
transparent and has a refraction index of 1.33; 2) the average surface
is usually a plane whose surface normal is vertical, and a wave can be
regarded as a deformation from the average shape. The goal here is
to reconstruct the shape of the water surface from deformed images
observed through the waving water and, in so doing, recover the
original pattern under the water. The original pattern under the water
is assumed to be unknown.

This method has two main original ideas. First, it can be considered
to be the inverse operation of the ray-tracing approach. The ray-
tracing technique is a common method in the field of computer
graphics. It is based on an optical law such as a refraction law
(Snell’s law) or a reflection law and is used to synthesize the images
from the given model (shapes of the objects). For example, Ts’o [22]
synthesized ocean wave images using physical characteristics and
ray-tracing techniques.

Second, this method uses the idea that the pattern observed through
the undulating surface is deformed around the pattern observed
through the average surface. In the simplest case of the top view
and orthographic projection, the average coordinate of the trajectory
of a certain point on the distorted pattern corresponds to the the point
observed through the static flat water surface. This means that the
average position of the point becomes the position obser-ed when
there is no water.

The algorithm consists of the following four parts:

1) Optical flow is calculated from an image sequence observed
through the moving water surface. Here, “optical flow” refers to
point-to-point correspondence between two succeeding image
frames. A trace of the optical flow becomes the trajectory of
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