
A NEW ARCHITECTURE FOR DISTRIBUTED SENSOR
INTEGRATION

D. Nadig and s. s. I)'C?Il&U (*)

Department of Computer Science
Louisiana State University
Baton Rouge, LA 70808

D. N. Jayasinaha (**)

Department of Computer and Information Sciences
Ohio State University
Columbus, OH 43210

Abstract 'Ihe computaional issues related to information integration in multi-
sensor systems and distributed sensor networks has become an active area of
research. From a computational viewpoint, the efficient extraction of informa-
tion fmm noisy and faulty signals emanating from many sensors requires the
solution of problems related a) to the architecture and fault tolerance of the dis-
tributed sensor network. b) to the proper synchronization of sensor signals, and
c) to the integration of information to keep the co"unication and the central-
ized processing requirements small. In this paper, we propose a versatile archi-
tecture for a diswihted sen= network which umsists of a multilevel network
with the nodes @casing element/sensor pairs) at each level intaconnected as
a de Bruijn network. We show that this multilevel network has m n a b l e fault
tolerance, admits simple and decentralized muting, and offers easy extensibility.

We model information from sensors as real valued intervals and state an
interesting property related to information integration in the presence of faults.
Using this property, the search for a fault is nanowed down to two potentially
faulty sensors or communication links. In a h i u t e d environment, informa-
tion has to be integrated from "tempally close" signals in the presence of
imperfect clocks in a distributed envkmnent. We apply the results of past
research in this area to state various relationships between the clocks of the pro-
cessing elements in the network for proper information integration.

Keywords and Phrasex Distributed Sensor Networks. De Bruijn Networks.
Information Integration. Abseact Estimate, Clock Synchronization. Fault Toler-
ance.

1.0 INTRODUCTION

In recent years there has been increasing interest in the development of
dishibuted sensor networb (DSNs) for information gathering. This is partly
because of the availability of new technology which makes the DSNs economi-
cally feasible to implement and the increasing complexity of today's information
gathering tasks to which they are applied. These tasks are usually timecritical
and rely on the reliable delivery of accurate i n f o d o n for their completion.
To meet these requirements, a DSN must be able to dynamically respond to fault
conditions, recon6guring its activities as necessary to compensate for distur-
bances. Thus, the search for efficient. fault-tolerant architectures for DSNs has
become an important area in research. A DSN consists of a set of sensors. a set
of processing elements m). and a communication network interconnecting the
various PES. One or more sensors is associated with each PE. We refer to the
PE and its associated sensor(s) as a node.

The integration of multiple, disparate sensors into a useful sensor network
involves the solution of several different problems. For an excellent discussion
of the problems and the current state of the art in multisensor integration, the
reader is referred to the survey paper by L w and Kay [91. From a computa-
tional viewpoint, however, the efficient extraction of information from noisy and
possibly faulty signals emanating from many sensors requires the solution of
problems relating a) to the archimtun? and the fault tolerance of the distributed
sensor network, b) to the proper synchronization of s e w signals, and c) to the
integration of information to keep the communication and the processing
requirements small.

Wesson et al. [2] were the first to attempt designing efficient networks for
dishibuted sensing. They proposed the hierarchical and committee interconnec-
tion topologies. A sensor network based on a fixed number of complete binary

(*)The authors work was supported in part by the Office of Naval Research u n b Grant
No. ONR-NOOO14.91-J-1306 and in part by the LEQFS - Board of Regents under Grant
No. LEQFS-RD-A-04. (**) Supporrcd in part by the National Science Foundation under
Grant No. CCR 8908189.

trees fully interconnected at their roots (we will refer to this network as a flat
tree network) was considered in [ll, 121 and the following issues were s tudid
(1) the integration of information in real time when clocks at the nodes are

not perfect,
(2) the rransmission of information without incurring heavy communication

costs, and
(3) the fault tolerance of the network to camin types of faults.

In this paper, which is a continuation of research reponed in [U, 121, we
propose a new versatile architecture which has several advantages over the flat
tree network. Specifically, the proposed network has better fault-tolerant proper-
ties and supports more nodes than the latter with the same diameter. We show
how information integration could be achieved in this network and state an inter-
esting property related to such integration in the presence of faults.

This paper is Qganized as follows. Sation 1.1 has a brief overview of
sensor integration. The notations and definitions used in the paper are presented
in Section 1.2. After motivatating the need for a new sensor network in Section
2.1, we propose a multi-level network with each level having the de Bruijn inter-
connection in Section 22. Algorithms for routing in this network are described
in Section 2.3. We describe s" integration in the presa~x of faults in Sec-
tion 2.4. The fault tolerant Properties of the network are the subject of Section
2.5. In a DSN, it is necessary that the clocks on the nodes be synchronized. A
variant of a previously known method for synchronizing clocks is described for
the network in Section 3.0. We conclude the paper by highlighting the features
of the proposed network and indicate the future directions this area of research
could possibly take.

1.1 An Overview of Sensor Integration

The PES of a DSN combine the sensor output readings to derive an accu-
rate value of the physical process that the s e " ~ monitor. This process of com-
bining the sensor outputs is called informarion integration or darafusion.

The method used to integrate the information passed by the sensors
depends on whether the sensors provide competitive information or complemen-
tary information. In the former case, each sensor ideally p r o w identical infor-
mation. This redundancy of the sensor readings helps in enhancing the reliabil-
ity and fault tolerance of the network. Also, noise in the signaIs can be detected
and removed. This is because the noise in dflerent sensor signals tend to be
uncorrelated while the signals of interest are correlated. It is therefore necessary
for the information h n the sensors to be combined in a meaningful and effec-
tive manner, so that the result is fairly accurate. Complementary information
integration is done when only partial information is available from each sensor;
such information is then integrated to obtain the result.

Following Manullo [lo], we distinguish between a concrere sensor and
an absrrucr sensor. A concrete sensor is a device that can be used to sample a
physical state variable. An abstract sensor is a piecewise continuous function
from a physical state variable to a dense interval of real numbers. The m n s
for using an abstract sensor rather than a concrete sensor are detailed in [lo. 111.
Determining the function which maps a concrete sensor to an abstract sensor
depends on many factors such as the choice of a particular sensor type (e.g.,
motion detecting sensor. range finding sensor, vision sensor), the compensation
that has to be applied to the raw sensor value which is itself dependent on the
local values of certain parameters (e.g., design parameters of the sensor), the
nature of the application, etc. For instance, if a sensor reads a value to be S and
its maximum m r is known to be E. then an abstract sensor, albeit simple,
could be the interval (S - E, S + E). A PE at a node converts a concrete sensor
to an abstract sensor. The abstract sensors are combined or inregrared to form
an absrracr esrimure. The particular method of combining depends on the inte-
gration algorithm used. To keep the terminology simple, we refer to the abstract

sensor as the a b m t estimate also. An abstract estimate could, in hlm, be com-
bined with one or m m abstract esthtes to form a new abstract estimate.

Marzullo 1101 considers the case of a processor receiving input from sev-
eral s e ~ o r s whose ouqmts are intervals He gives a fault toleaant integration
algorithm which talres as input the intmvals representing the sensors and gives
as output an interval which always contains the actual physical value. A correct
sensor is one whose interval contains he actual physical value. Hence, any two
c m t sensors must intersect since they both contain the physical value being
measured.

Marzullo considers the case when at most f (f < n) sensors are faulty in a
n-sensor n e t d . The physical d u e would then be contained in m y of the
(n - f) intersecting intervals. Since it is not possible to decide which intersec-

the (n - f) intasectionsistaken tobe the output of thepmcmsor. It can be seen
that this final estimate contains the actual physical value. The final estimate.
however, becomes arbitrarily wide as the number of faulty sensors becomes
large. In such cases, an integration method d e s c r i i in [I21 reduces the width
of the final abstract estimate. For simplicity, we will use Msnullo's model for
information integraiion in the proposed network.

In this paper we " a t e on competitive infmation integration. The
architecture desaibed hece could be. used effectively for complementary infor-
mation integration in the presence of noise and possibly faulty sensors.

1.2 Notarions and Definitions

tion contains the physical value, the smallegl u" . gilltemlcontajnirlgall

We model the DSN by an undirected graph G = (V. E). where each node
represents one or more saw)fs and an associated PE of the network. and each
edge represents a communication link of the n u w o k The lcngrh of a path
between two nodes is the number of edges e n m d while going from one
node to another. The distance between two nodes is the shortest length between
the nodes. The diumeter of the network is the largest distance between any two
nodes in the network. The &gree of a no& is the number of edges associated
with that node. The degree of the network is the largest degree of any node in the
network.

Let yf represents a binary number with bit y repeated f times; B r e p
sen6 the complement of y, and x represents the don't can? bit. For example. the
binary number OOOllxx is represented by dl2*2. A node i in a network with N
= 2k nodes has the binary address ik-] ik-z ... i , io where ik-l (io) is the most
(least) significant bit. The following definitions describe two address transform-
ing functions append (app) and Strip (sh).

Let M be a k-bit number. Then,

app (M. Y) = MY
str(ik-li~-z..-ilio) = ik-lit-2...il

For example, app(000.1)=0001 and str(0010)=001. Note that
sh(a~P(M,y)) = M.

Our interest lies in multi-level Works (MLNs) in which each node of
the network can be associated with a level number. An I-level network has 1 lev-
els numbered from 0 to I - 1. The set of ncdes at level m to which a node i at
level m is connected form the neighbors of i. The set of nodes to which i is con-
nected at level m - 1 form the pcuents of i. The set of nodes to which i is con-
nected at level m + 1 form the children of i . In the MLN that we consider for the
proposed DSN, there is a single node called the root at level 0, and each node at
a higher level number has at most one parent and at most r children. We refer to
such a network as a r-ary MLN. The node i at level m(> 0) has the address
i,li,-z...ilio,whereeach digit i j E 10.1, r - 1) (OS j < m). This node i
is connected to at most r children nodes whose addresses are
app(i.0). app(i, 1). . . . , app(i,r - 1). and to its parent node whose address is
sn(i). For every node i at level m. the relation Om(r] yields the set of nodes to
which i is connected at level m. In the network pmposed, all but the the 0'
level of the network have the same intexwnnection scheme at each level.

Hence two nodes i and j in this network are connected if
(i) j = app(i,b), or
(ii) j = str(i), or
(iii) j = O(i)

A real interval R = (RI, R,) is represented by a pair of real numbers, RI is
called the lower bound and R, is called the upper bound of the interval R. We
shall refer to real intervals simply as intervals.

The width of the inmd RI. equals (R, - RI). The set theoretic intersec-
tion of two intervals, X and Y is de611ed as

where b E (0.1. ... J-I).

X n Y = (c l c e X ~ C C Y)

Symbol
E

a

K

Q

6

7

Dcseription
Maximum allowable deviation in time of a clock on a PE

Maximum allowable deviation in time of a clock on the central
time server

Maximum allowable drift rate in time of a clock on a PE

Maximum allowable drift rate of the clock in the central time
server

Channel transmission delay

Delay in receiving the message sent by the central time server
to any PE

Maximum difference in time that a node can tolerate between
intervals that can be integrated.

This section describes the architectural features of the pmposed network.
We provide the motivation for this architecture by reviewing the past work of
other researchers and pointing out the shortcomings of theii appmaches. In the
next subsection, we list desirable features of a DSN and later show how the pro-
posed network provides many of these features.

2.1 Motivation for aNew Architecture

Wesson et al. [2] have described two architectures for a DSN. The 6rst is
the hierarchical or tree organization and the the second is the committee organi-
zation whose nodes can send messages to one, some, or all nodes in the network.
The hierarchical network has several advantages like constant node degree and
easy extensibility. It is not a good choice for a DSN. however, because a faulty
node can disconnect an entire subtree. The committee Organization does not
have this disadvantage but is expensive and is not easily extensible.

It is clear from the above observations that both the committee organiza-
tion and the bee organization have disadvantages; a combination that uses the
merits of both the types of architectures is hence desirable. The flat tree network.
referred to earlier, incorporates some of the merits of both these organizations.
The nodes in &is network are organized as many complete binary trees, the
roots of which are completely connected. Figure 1 shows a flat tree network with
12 nodes. It has some disadvantages. however. For example, integration errors
of the lower nodes accumulate as the information goes up the hierarchy. One
way to overcome this problem is to interconnect nodes in the lower levels of this
network.

Fig 1. A flat tree network with 12 nodes 1

This motivstes our proposal for a new class of nttworks which basically
consists of the Bat tree network with nodes at evny level "ec&d as a de
Bruijn network. Thc& networks have a committet organivtion at cach level
a n d a n O d h i a s r d U c a l . aganipltion. we will show that this class of net-
vmrks has scvgaladvmtagcs such as

i) they allow the construction of large networks with bounded degree,
ii) the diameter of these networks grows only logarithmically with the the
numbexof nodes.
iii) they admit simple routing schanes.
iv) they possess fault tolerant capsbilities. and
v) they have low aMresging cunplexity.

2.2 TheRoposed hhilecllm

The proposed DSN is a modi6ed I-level MLN with the top level com-
pletely connccled and with cach of the other lev& interconnected as a de Bruijn
network. Before describing the proposed architecture f a DSN. we briefly
review the evolution of the dc Bruijn network and mention its important fea-
tures.

The we. of de Bruijn networks as inmnnect ion topologies for fault-
tolerant p a d e l and dishibuted architectma was first proposed by Pradhan [31.
hdhan (31 was also the first to propose the use of the de Bruijn netwnk for
VLSI archilectum. Recently, de Bruijn networks have gained significant practi-
cal importance with the on-going implementation of a 8096 PE de Bruijn archi-
tecture by JPL for the Galileo project, scheduled for completion by 1995.

An important feature of the de B ~ i j n network is that it can be configmd
as many useful computational networks in spite of faults. In addition, de Bruijn
networks have
(i) asmalldiameter
(ii) h i t simple routing, and
(iii) possess good fault tolerant capabilities.
For a detailed discussion on the above mentioned featum of de Bruijn net-
works, see the papa by Samanrham and Radhan [81. And, for a summary of the
evolution of the de Bruijn network, the reader is referred to the paper by Prad-
han [13].

Using graph t h re t i c notation. the undirected de Bruijn network
DG(d,k) has N = d L nodes with diamete-x k anddegree U. We are interested in
binary de Bruijn networks DG(2.R) which have N=2t. A node i of the net-
work with the binary address (IkTl ak-2 ... aI a,, has neighbors:

ak-2a,. . . aIaoat-l (ill
at-2at-3 ' ' ' alaOat-l (a
%a&-law. * * aza1 (3)
i&,at-t_lak-2. .. a2aI (W

The address of neighbors il and i3 is obtained by the left shift-end-around
operation and the right shift-end-around operation on i respectively- they are
called the LR and the RR neighbors of i. The address of nodes i2 and i4 is
obtained by complementing the rightmost bit of il and the leftmost bit of i3
respectively- they are correspondingly called the LRC and the RRC neighbors of
i.

The proposed DSN is Organized as ti~lbws:
(i) The nodes in the topmost h e 1 are called "ander nodes. There are
4 commander nodes which arc completely connected.
(ii) The nodes in the underlying levels arc interconnected as a binary de
Bmijn
network.
(iii) Each node X, at level m in the network is connected to two children
nodes app(X.1) and app(X.0) at level m+ 1 (m < l - 1) and and is con-
nected to its parent node stroc) at level m-1 (m > 0).

Henceforth we shall refer to the pposed network as the multi-level binary de
Bruijn network (BMD). Since the topmost level of the BMD contains 2' nodes,
it is convenient to assign it level 2. Hence, an I-level BMD has I levels num-
bered from 2 through I + 1. Figure 2 shows a 2-level BMD- the inter-level con-
nections are shown by dashed lines and the intra-level connections by solid
lineS.

/ I .' 001 I \ \ \

010

111 111

Fig. 2. BMD with 2 layers (level 2 and 3)

Each node of the BMD has a PE, a clock which maintains real time. an
associated sensor which samples the physical variable(s) of intemt, and an asso-
ciated b a a . The PE translates the sensor reading into an abstract estimate.
time stamps the estimate with the current time, and places the abstract estimate
in the associated buffer. There is also a buffer associated with each link. The
P E S connectad to the link have access to this buffer. Figure 3 shows the archi-
tectural details of anodeofthe BMD. The additional details in the figure will be
referred in Section 2.4. (Note: With slight modi6dons. we could allow for
multiple sensors ai each node.)

f
To parent (AE)

i
To neighbors (AE)

i
From neighbors (AE)

From / \ 61 - Buffer for sensor output
62. 63 - Buffers lor AE from children

children
84-87 - Buflers lor AE from

neighbor

Fig. 3. Intonation Integration Process
(PE - Processing Element)
(A€ - Abslracl Estimate)

2.2.1 TOpJlogical " ' : The following lemmas descrii the topological
prOpemes of the BMD.

Lemma 1: The number of nodes in BMD with L levels is 4(2L - 1).
Proofi The number of nodes at level m (2< m<l + 1).

n , = 2 x n e l ; n z = 4

Solving this equation yields the total number of nodes as

N = 4(2L - 1) (1)

Lemma 2 The BMD with L levels has degree7 anddiameta L+ 1.
h f i The nodes at the top andbatom levels havedegree at most 5. Now, con-
sider an internal ncde in the netwok This node is in a dc Bruijn network and
hence has at - 4 neighbors. The same node is also connected to its 2 chil-
dren nodesandepannt node. HenceancdeintheBMDhasdegreeequal to at
most 7. For deriving the diameter of the nctworlr. umsidu the lowermost level
in the BMD. This CO to DG(2,L+ 1) with diameter L + 1. Note that

the farthest distance between nodes in the uppermost and lowermost level is
only L. Hence the farthest nodes in the BMD lie in the lowermost level, i.e., the
diameter e q d L + 1. Fmm (I), the diameter of the BMD is O(logN) .

2.2.2 Addressing Schemc: considez a BMD with L levels. By om convUrtim,
the higheat number m this network is (L + 1). The address of a node in this
network consists of two parts -

(i) the level n u m b of the BMD in which it is pesent his requires r
l o a) 1 bits for its rcpnxa~tation.
(U) index of the node in that l e d . This requites at most (L+ 1) bits to
index a node in any level, because the lowennost level (i.e.. level (L + 1))
contains 2"4 nodes.

The address of an& in a BMDwith L levels, henceneedsr log&) 1 + (L + 1)
bits.

Type

2.2.3 Extensible Issues: To extend a BMD with L levels, we can add the addi-
tional nodes at the lowermost IeveL Thus, extending the network requires a
fixed number of intacauractions between the new nodes and the nodes at level
(L + 1) only. Note that the information inregration pmms will not per affected
at any other level of the BMD. Additional bits may be needed to address the
nodes in the new level.

c -
I

I"!
Source Destination

Cour IRE Address Address

2.3 Routing

We show that messages can be routed efficiently in a dem-ntmlized man-
ner in the BMD. We first consider muting within a level and then consider rout-
ing across levels. To evaluate the muting complexity, we assume that a message
rakes unit time to uaverse slink.

2.3.1 Intra-Level Routing: Routing in the top level takes unit lime step since
the nodes are completely connected. Routing in a de. Bruijn network is a well
studied problem [4,6]- consider the mu- algorithm pesented m [4]. In this
algorithm, tag bits an append& to the message at the source before muting.
These tag bits are used by intenndiate nodes to compute the address of the next
node in the path. This method assumes that all the nodes in the path m fault-
free. Henee the algorithm will fail if any of the intermediate nodes or l i are.
faulty.

In this section we describe two disbibuted muting algorithms PATH.1 and
PATH.2 in which the address of the next node is computed at the previous node
in the path. P m . 1 talres e(logN) steps in a de Bruijn networlt with N nodes,
and PATH.2 takes O(logN) steps.

JA a b i de. Bruijn network have N = 2' nodes and let s = Sk-1 sk-2 ...
sI so be the soure node that sends a message to the destination node D = dk-1

The message consists of the da& and the message header. The message
header contains a muting tag whose content depends on the type of muting
being perfmed. Ttvo types of muting tags are used- one for m a l muting
(Type 1) and the other for fault tolerant muting ('Qpe 2).

The ?srpe 1 muting tag contains the swrce and destination node
addresses, a counter (z) , and an inter-level muting bit (IRB). The IRB bit is set
if the source and the destination nodes are in different levels and is m e r if the
nodes are in the same level. The number of message hops f" the source node
to the current node is recorded in the counter, and is used to generate the address
of the next node in the path. Figure 4 shows a m 1 routing tag.

dk-2 ... dl do.

I I

Hol"y iter I I
I

Fig. 4. Type 1 routing tag
(IRB - Inter-Level Routing Bit)

I

(z = k) dk-1 dk-2 . . . dl do

Clearly Route 1 and Route 2 take exactly k = log N steps.

following steps (executed by the node) describe the PATH. 1 algorithm:
1.

2.

(dcsiinarion)

Let it-1 ik-2 ... il io be the address of the node under consideration. The

If the label of the node is the same as the. destination address in the muting
tag, then accept the message.
Otherwise, check the value of the muting tag cmtex I . lle address of the
next node in the path is
d, it-l ... i l (Route 1) OR ik-2 ik-3 ... il io dk+ (Route 2).
Increment the counter z and route the message to the next node.
figure 5 shows a path from ncde 011 to node 101 in a DG(2.3) network

3.

using Route 2 of Ibe P m . 1 algorilhm.

00 1 01 1

1 00 110

I Fig. 5. PATH.l route between 011 and 101

PATHS Algorithm
PKlX.2 algorithm routes the message along the sholtes(paU~ between the

source and destination nodes. To find the shortest path, we treat the node
addresses as binary strings and use a string matching algorithm described in [I].

y such that st_l si-2 ... s k y = d, d,z ... dl do. We can compute x and y m
OW, i.e., O(l0gN) time. The following Uuee cases arise depending on tbe rela-
tionship between x and y:

Find the l e e s t X Such thst S-1 Sx-2 ... SI So = dk-1 dk-2 ... dk-x, and the largest

.'"'"7--- '

(Z = k - y) dk-ldk-2 . . . Sk-u+2Sk-pr (df3hatWn)

The destination is reached after (k - y) steps.
Case 3: (x = y)- choose either of the above routings to obtain the shortest path.

Figure 6 shows the shortest path between nodes 011 and 101 in a DG(2.3)
network using the PATH.2 algorithm. In this case x = 1 and y = 2; hence, the
shortest path is of length 1. Using the PATH. 1 algorithm yields a path length of
3.

The following steps describe the PMW.2 algorithm (as executed by node
i):
1. If the label of the node (ik-1 ik-2 ... il io) is the same as the destination

address in the routing tag, then accept the message.
2. Find the largest x such that sp1 s,-z ... SI SO = dk-l d w ... db.. and the

address of the next node in the path is ik-2 ik-3 ... il io dk-x.., where z is
the value of the counter. If y z x then the address of the next node in the
path is d,l it-, ik-2 ... il.

3. Increment the counter z and route the message to the next node whose
address was generated in step 2.

Note that the value of x and y need not be computed by all nodes in the path.
Instead, the value of x or y can be transmitted in the message header.

largest y SWh that St-1 Sk-2 ... Sk-? = d,i d,z ... d1 do. If X > y then the

WO Bill
100 110

F ~ g 6 PATH 2 roulw between 011 and 101

2.3.2 Routing between layers: Let the source (S) and destination (D) nodes be
at levels L and L - X respectively. At the source the inter-level routing (IRB)
bit is set to "1" to indicate that the source and destination nodes are in different
levels. Further, when the IRB bit is set. the routing tag counte? is not in-
mented in order to maintain a proper value of the counter for intra-level routing
following the inter-level routing.

The some node S 6rst routes the message to its parent sn(S). This pro-
cedure is repeated recursively till the message is received by a node at the same
level as the destination node D. The IRB bit is reset to "0" now, and the source
address is replaced by the address of the node that received the message. The
message can be then routed to the destination using PATH.1 or PATH.2 algo-
rithm.

When the destination is at a higher level than the source, routing can be
similarly done by using app0 to generate the address of the next node in the
path till the message reaches the same level as that of the destination node. The
message can then be routed using PATH.1 or PATH.2 algorithm. Note that mes-
sages in the BMD are usually routed from higher to lower levels only.

2.4 Information Integration

In this section we describe the process of information integration in the
BMD. The idea behind the integration is to a) keep the communication q u b
ments small- this is h e by communicating the abshact estimate as a single
interval and b) maintain accuracy by ensuring that the physical values of inrerest
is always contained in the abstract estimate.

Since the de Bruijn network has a Connectivity of2. the BMD can tolerate
at most c m node fault or link fault per level (except at the topnost level which
is fully connected). We first state some results related to fault tolerance when
abstract estimates (or intervals) arc to be integrated in the prcsencc of faults in
the network.
Lemma 3: Consider n (n 23) intervals of which at most one can be faulty. Then
there can be at most two (n - 1) distinct interval intersections among these n
intervals.

A direct consequence of Lemma 3 is the following theorem. Using the
theorem, the search for a faulty node is narrowed down to at m m wdes for each
fault
Theorem 1: Given a set of n intervals containing at most one faulty interval.
(i) there is no faulty interval if there is no n-1-interval interseclion,
(ii) the interval not intersecting with an n-1-interval intersection is faulty if

there is exactly one n-1-interval intersection, and
(iii) there are two potentially faulty intervals if there are two n-I-interval inter-

Sections one of which is inuurect.
In case (iii), the two potentially faulty nodes can be traced by taking the set dif-
ference of the interval names that belong to each (n-1) interval intersection.

We now describe the information i n t e g " process. For convenience,
we will refer to the infonnation integrataon of abstract estimates between distinct
levels as "integration" and refer to the information integmtion wiIhh a level as

Abstract estimates move upward from the leaf nodes to the commander
nodes. Every non-leaf node of Ihe network combines the abstract estimates of
its two children and the local sensor (sensor essociated with this PE) to arrive at
a new abstract estimate (AE'). This step is called the "integration" step.

In the integmtion step, we assume that at most one of the three (local sen-
sor and 2 children) received abstract sensor estimates is incorrect. The new
abstract estimate is fwnd from €he three cases (refer Figure 7) that could arise
(Theorem 1). If there are two 2 interval intersections, then the smallest interval
containing these intervals forms the new abstract estimate. It can also be shown
[IO] that this new estimate is at most as wide as one of the input abstract esti-
mates.

"comparison."

1 I
I- A

I
2

'I

2 -
I I
3 3 3

F i n a l output F i n a l output
estimate estimate

(11 (i i)

F i n a l output
estimate

(iii)

Fig.7. Integration step
(I - I are the 3 intervals)
1 3

Next, each node sends its AE' to all its neighbors. When a node receives
AE's from its neighbors, it combines them to arrive at a new estimate A E f .
This step is called the "comparison" step and the algorithm used to combine the
estimates is similar to the one described for the integration step. In this step,
however, a node combines 3,4, or 5 estimates depending on the number of its
neighbors (2.3. or 4 respectively).

Since the BMD can tolerate at most one fault (node or link) per level, one
of the estimates received from a neighbor could be incorrect. Hence, when a
node receives i (i = 3.4 or 5) intervals in the comparison step, it chooses the
smallest interval containing all (which is at most two as shown in lemma 3) the
i-1-interval intersections as the output. The width of this abstract estimate is
again at most as wide as one of the input correct intervals.

Figure 8 shows the comparison process in a node of the network.

7- I I I

3 I I
I

4
I

5 - Final Output
est mate

Fig.8. Comparison s tep 1 I1 - I are the 5 intervals)

If there are two i-1-interval intersections in the comparison step, then we
h o w that there exists an incorrect interval. Identifying the faulty node which
sent this incorrect interval requires the diagnostic testing of at most two nodes as
we showed in Themem 1. Once a node has been identified as faulty, appropriate
action can be taken so as to either "repair" the faulty node or replace it and
notify the parent and children of the faulty node. In this paper we shall not con-
cern curselves with the problems of identifying the cause of hulty behavior and
attempting to rectify that cause.

The following steps summarize the process of information integration:
Step 1: Receive abstract estimates from children and integrate them with
abstract estimate from 1oca1 sensor to get AE'.
Step 2: Send AE' to neighbors.
Step 3: Receive abstract estimate from neighbors and "wmpare" with own
abstract estimate to compute A E f . Identify any faulty node in the process.

Step 4: Send AEf to parent node.
Note that this process of information integration ensures that only the

"correct" estimates move up to the commander nodes in the network. Further,
the width @the estimates moving upwards is bounded by the width of one of the
correct estimates of that level of the BMD. An inunreCt estimate would be
received by a parent only when the child or the link connecting the two nodes is
faulty.

Figure 3 shows the complete information integration process at a node in
the network.

2.5 Fault Tolerant Issues

In a large network it is UNealiStic to expect all the nodes or links along a
path to be fault-free at all times. When some nodes 01 links fail, an alternative
path that avoids the faulty node or link must be derived. One of the major
advantages of our network over the netwolk pmposed in [ll] is that abstract
estimates can be routed around faults using the interconnections between nodes
at the same level.

A node is faulty if it sends an incorrect abstract estimate to its parent or to
any of its neighbors. Link faults can be detected if a node does not receive the
abstract estimate of its neighbor during the compuiscm step. When a node (a
node failure is assumed to be equivalent to the failure of all links associated with
it) or link failure is detected, any of the following actions can be taken -
(1) The fault can be ignored during the integration process. After integdon

is complete and abstract estimates have been sent to the. upper level of the
BMD, the node which detected this fault can run a dwgnostic algorithm
on the faulty node or link after isolating it.
If the faulty node or link is in the path of an abstract estimate transmitted
towards its destination, this a b s m utimate can be re-routed around the
fault to the destination. After the integration process is complete the node
which detected the fault can run a diagnostic algorithm on the faulty com-
ponent.
The BMD network provides fault tolerance by taking both of the remedial

actions mentioned above.
Suppose a node X, with children Y and Z. is faulty. In the Eat tree [I l l network
the subtree rooted at X is unusable. In the BMD network, however, the abstract
estimates of Y and Z are also read by the neighbors of Y and Z. Thus the
abstract estimates of Y and Z get factored into the final abstract estimates pro-
duced by the neighbors of Y and Z. Hence the subtree rooted at X does not
become unusable - only the faulty node is unusable. Moreover. X is identified as
a faulty node during the comparison step because its abstract estimate (which it
sends to its neighbors) may not contain the physical value.

(2)

If action (2) is taken by the neighbor of the faulty node, then it must
reroute the a b s m estimate received. around the faulty node D the destination.
ThiSmeanSthatthCdestiaation node must wait for m a c time to receive the
abstrPct estimate, b e c a ~ ~ additionsl hops may be q u i d for nrouting the
message. This requires that the value of y (maximum diff- in rime that a
node can tolerate be" intavals that can be integnted- please see the next
section on clock synchnizatiOn) be in- to maintain the "near syn-
chronous" behavior of the s e w network. Note that by increasing the value of
7. the network would tolerete single nodJlink fault but the process of sensor
integration would be slowed down. Samantham and Radhan [81 mention that
fouradditiod hops arc cnough to avoid a single node fault in a binary de Bruijn
network. Since the nodes in every level (except the top level) in the BMD are
arranged in a binary de Bruijn network. the value of y will have to be increased
by four time units.

In the maining part of this section, we show one way of avoiding a sin-
gle node fault using exactly four hops, when rouring in any level of the BMD

... dl do be the destination node. Application of the PATH.1 algorithm yields the
following pak

except the tOpmOSt level. h t Sk-1 3 6 2 ... Si So be the SOUlCe node and dk-1 dk-2

(2 = 0) sk-1 sk-2 * '. SI SO ("x)

(2 = 1) sk-2sk-3 * * Sodk-1

(I = 2) SI-3 . . . S0dk-l dk-2

Assume that either node i2 or the link between i l and i2 has failed. We
now show an alternative route (reroute) between i l (rerouting source) and i3
(rerouting destination) that takes only four additional hops. Note that this tech-
nique is independent of the number of nodes in the leveL

When i l receives a message (consisting of the absaact estimate and the
1 tag), it appends four fields to the Type I tag which enable rerouting of

the message- (1) source address (il). (2) destination address (i3), (3) reroute
counter (RC). and (4) remuting bit (RRB). We shall refer to the tag, f m e d by
appnding reroute fields to the Type 1 tag, as Type 2 tag. Figure 9 shows a Type
2 tag. To initiate rerouting, il increments 2 and sets RRB = "1". When RRB =
"1". a node does not increment r ; instead it uses RC to compute the address of
the next node in the reroute. When the message reaches i3. i3 removes the
reroute fields from the tag. and increments I . Routing from i3 then proceeds nor-
mally using PATH.1 or PATH.2 algorithms.

Fig 9. Type 2 routing tag (rerouting tag)
(RRB - Re-Routing Bit)
(RC . Rerouting Counter)

Hence the routing algorithms given d e r can be easily adapIed to take the

to faults than the one pnscnttd in [4] since our algorithm does not require drat
the p"ce of a fault be known to the source node as the other algorithm does.

alternative path in case of faulu olarcrouting algailhm is also mon adaptive

I I

OW

lo0 -
110

Fig. 10. Fault tolerant routing between 001 and 110
when 01 1 is faulty I

Finally, since the network can sustain one node or link fault at every level,
the B M D network with L levels and N =2(2'- 1) nodes can sustain L, i.e.,
approximately log N, node or link faults.

3.0 Clock Synchronization Issucs

So far we have assumed that any two absaact estimates can be integrated.
In reality. since the sensor oumts typically change as a function of time. only
estimates that are temporally "close to each other" must be integrated if mean-
ingful results are. desired This is achieved by time-stamping each estimate. The
condition undex which two estimates may be integrated is given at the end of the
next subsection. In a diseibuted environment such as ours. there is no central
synchronized clock which regulates the activities of each node. Instead. each
node is under the conbul of its own clock. Since the sensa responds to real-
time events it is convenient far the clock to provide the real, i.e., physical time.
Further, since the estimates from different scllsors have to be integrated, it is
necessary for the time provided by the clocks ofthe sensors to be "close to each
OW. 'IEeclock at each node may not be accurate becauseof a variay of rea-
sons such as clock shift. change in tempaaant. etc. Each clock must thmfore
synchronize with a more accurate clock. We assume the exisleme of a central
time serva which when requested for the time at r , provides the time C(r). The
PES in our DSN spdally lie within tens of feet from each otha; hence the exis-
tence o f a single timc server for the clocks on all t h e m can be assumed. The
central time ~ ~ v t r itselfpaiodically synchnnuzes ' with a univasal time server,
which is always a"te and lies outside our environment.

We use the cbck model described in [ll] to synchronize the clocks in the
BMD. We summarize the basic results of the model in the next two sectk".

3.1 Clock behavior and Synchronization

Let C,(r) be the time provided by the clock on PE p at time (r is the time
provided by a universal time server). We assume that the clocks run continu-

ously rather than in discrete "ticks". Hence denotes the rate at which the
clock is running at time t. We also assume that that this rate is non-negative;
hence, the time on the clocks monotonically increase.

We now state the conditions on the clocks for proper synchronization.
Clock Condition 1: The deviation in time of each clock is bounded, i.e., for PE
p, thae exists cp << 1 and a << 1 such that

dC (0
1

Ir-C(r)l < a (2b)

Clock Condition 2: Between synchronizations, the drift rate of the clock is
bounded, i.e., for PE p , there exists kP cc 1 and U << 1 such that

Clock Condition 3: The clock on each of the PES and the central time server
advance monotonically.

For simplicity, we assume that E,, and 'cp is the same for all PES, i.e. E,, =
E and K,, = k. From Clock Condition 1 we have.

Synchronhation Bonnd: If p and 4 are. two PES then

Let S,, and S,, be the minimum and maximum values of delay for a
message sent by a PE to its neighbor. Let 7 be the maximum difference in time
that a node can tolaate between intervals that can be integrated. Note that the
value of 7 will depend on the longest path between leaf nodes and commander
nodes, which is equal to L in a BMD with L levels.

The following lemma and theorem state precisely the conditions for com-
bining a b e t sensor estimates which are. temporally "close to each other." The
discussion in this section follows closely the discussion presented in [l l l . We
therefore state all the results without proof. The interested wader is rcfemd to
[W.
Lemma 4: Let a message be received by PE p at CJr). Then this message was
sent in the interval (C,(r) - 2E - 6,-, CJr) + 2e - 8,,,i,,).

The time stamp of an abswt estimate may not belong to the interval
given above if the channel is faulty. The following thcoran gives the condition
under which estimates are "temporally close" and may be intcgrattd.
Theorem 2: Let the three proper absmct sensor estimates I I , 12 and 13 be
received by PE p at times

Cp(f l) < Cp(r2) e Cp(r3)

respectively. Then I i (i = 2,3) can be integrated. iff

(C,(ti) - C,(rl) + 4E + s,,, - 6,) s y

Since the clocks on the central time server and each of the PES drift, they
have to be periodically reset. We now state a bound on the time period between
synchronizations. Let T , be the time period of synchronizations of the central
time server, and let T, be the time period between synchronizations of the PE p.

The central time server synchronizes itself every T , seconds with a perfect
universal time server which exists outside the environment of our DSN. The
central time server also synchronizes the clock on a PE every T , seconds.

be the minimum and maximum of the delay in receiving
the message sent by the central time server to any PE. Also, let Ti, and Ti, be
the periods wrresponding to T, and T, as observed by the central time server.
Thebounds on these observedperiods canbe shown to be [ll]:
Theorem 3: The time period as observed by the central time server between
synchronizations of the central time server is bounded by

Let 5- and

1
T', I a(- - 1)

d

Theorem 4: The time period as observed by the central time server between
synchronizations of the clock on a PE is bounded by

T c i f E--2a-~c,-clr,bl)-a
IC

4.0 Conclusions

The effectiveuse of multiple sen- systems requires the solution of vari-
ous problems relating to senm models, the architecture of the sensor network,
the integration of information at each node of the network, the cost of informa-
tion transmission, and the fault tolerance of the network. The integration of
information in real time quim the clocks at each of the nodes be synchro-
nized. Synchronization of clocks is a non-trivial task in such distributed sensor
networks. In an earlier paper [ll]. some issues related to the archilcctlne of
DSNs, information integrarion, and clock synchroniion had been addressed.
This papa extends the study by considering a m m sophisticated architcam
for DSNs which has a number of advantages including the ability to tolerate sin-
gle node or link faults at each level.

Since our focus has been primarily on computational issues, we have cho-
sen to represent se" output information by Marzullo's simple and elegant
model which is based on real valued intervals. We have also used a rclarively
simple information integration algorithm. We are aware that sensor modeling is
itself a very detailed area of study [7] and that very sophisticated methods exist
for information integration. We have also assumed that the outplt of each sen-

--r---- 1

sor is a physical value. "he a b e discussion and results easily extend to the
case when the output of a semm is a vector rather than a single value.

This study could be extended in s e v d directions. A straightforward
extension is to assign weights to the abstract estimates produced as a function of
its level in the hierarchy. We also plan to investigate morc sophisticated fault
tolerant Strategies for Ihe de Bruijn network than the scheme presented here. A
future goal of our project is to investigate the computation and communication
requirements of more sophisticated integration algorithms executing on large
scale DSNs.

Acknowledgements
The authors would l i e to thank Dr. Dhiraj K. Pradhan for his help during

the preparation of the paper.

R e f m c e s

Knuth, D. E., Moms, J. H., and Ratt, V. R., "Fast pattern matching in
strings," SIAM J. Computing, Vol. 6, pp. 323-350.1977.

Wesson, R. et. al., "Network Structures for Distributed Situation Assess-
ment," IEEE Trans. on SMC., Jan. 1981, pp. 5-23.

Pradhan, D. K., "Interconnection Topologies for Fault-Tolerant Parallel
and Distributed Architectures," Proc. 10th Int. Conf. parallel Processing,
Aug. 81, pp. 238-242.

Pradhan, D. K.. and Reddy, S. M., "A Fault-Toleranl Communication
Architecture for Diseibuted Systems." Em Trans. on Comp., Vol. c-31,
No. 9. 1982.

F'radhan, D. K., "Dynamically Resrmctllrable Fault-ToleFant Processor
Network Architecture," IEEE Trans. on Comp., Vol. c-34, No. 5, May
1985.

Esfahanian. Abdol-Hossein. and Hakimi, S. L.. "Fault-Tolerant Routing in
de Bruijn Communication Networks," IEEE Trans. on Comp.. Vol. c-34,
No. 9.1985.

Durrant-Whyte. H. F., "Sensor Models and Multisensor Integration," Int.
J. Robot Res.. Vol. 7. No. 6,1988.

Samantham. Maheswara R.. and Radhan, D. K., "lk De Bruijn Multi-
processor Network: A Versatile Parallel Processing and Sorting Network
for VLSI," IEEE Trans. on Comp.. Vol. 38, No. 4,1989.

Luo, R. C.. and Kay, M. G., "Multisensor Integration and Fusion in Intelli-
gent Systems," IEEE 'Iians. on SMC. Vol. 19, No. 5,1989, pp. 901-927.

[lo] Marmllo, K.. "Tolerating Failures of Continuous-Valued Sensors," ACM
Trans. on Compter Systems. vol. 4, no. 4. Nov. 1990, pp. 284-304.

[ll] Jayasimha, D. N.. Iyengar, S. S., and Kashyap, R. L., "Information Inte-
gration and S y n c h ~ l i o n in Distributed Sensor Networks," IEEE
Trans. on SMC, vol. 21, no. 5, Sept. 1991, pp. 1032-1043.

[121 Rasad, Lakshman, Iyengar, S. S.. Kashyap. R. L., Madan. R. N., "Func-
tional Characterization of Sensor Integnuion in Diseibuted Sensor Net-
works," IEEE Trans. on SMC, vol. 21, no. 5. Sept. 1991.

[13] Pradhan, D. K.. "Fault-Tolerant VLSI Architectures Based on de BNijn
Graphs (Galileo in the Mid Nineties)." DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, Vol. 5,1991.

