A NEW ARCHITECTURE FOR DISTRIBUTED SENSOR
INTEGRATION

D. Nadig and S. S. Iyengar (*)
Department of Computer Science
Louisiana State University
Baton Rouge, LA 70808

D. N. Jayasimha (**)

Department of Computer and Information Sciences
Ohio State University
Columbus, OH 43210

Abstract: The computational issues related to information integration in muliti-
sensor systems and distributed sensor networks has become an active area of
research. From a computational viewpoint, the efficient extraction of informa-
tion from noisy and faulty signals emanating from many sensors requires the
solution of problems related a) to the architecture and fault tolerance of the dis-
tributed sensor network, b) to the proper synchronization of sensor signals, and
¢) to the integration of information to keep the commaunication and the central-
ized processing requirements small. In this paper, we propose a versatile archi-
tecture for a distributed sensor network which consists of a multilevel network
with the nodes (processing element/sensor pairs) at each level interconnected as
a de Bruijn network. We show that this multilevel network has reasonable fault
tolerance, admits simple and decentralized routing, and offers easy extensibility.

We model information from sensors as real valued intervals and state an
interesting property related to information integration in the presence of faults.
Using this property, the search for a fault is narrowed down to two potentially
faulty sensors or communication links. In a distributed environment, informa-
tion has to be integrated from "temporally close” signals in the presence of
imperfect clocks in a distributed environment. We apply the results of past
research in this area to state various relationships between the clocks of the pro-
cessing elements in the network for proper information integration.

Keywords and Phrases: Distributed Sensor Networks, De Bruijn Networks,
Information Integration, Abstract Estimate, Clock Synchronization, Fault Toler-
ance.

1.0 INTRODUCTION

In recent years there has been increasing interest in the development of
distributed sensor networks (DSNs) for information gathering. This is partly
because of the availability of new technology which makes the DSNs economi-
cally feasible to implement and the increasing complexity of today’s information
gathering tasks to which they are applied. These tasks are usually time-critical
and rely on the reliable delivery of accurate information for their completion.
To meet these requirements, a DSN must be able to dynamically respond to fault
conditions, reconfiguring its activities as necessary to compensate for distur-
bances. Thus, the search for efficient, fault-tolerant architectures for DSNs has
become an important area in research. A DSN consists of a set of sensors, a set
of processing elements (PEs), and a communication network interconnecting the
various PEs. One or more sensors is associated with each PE. We refer to the
PE and its associated sensor(s) as a node.

The integration of multiple, disparate sensors into a useful sensor network
involves the solution of several different problems. For an excellent discussion
of the problems and the current state of the art in multisensor integration, the
reader is referred to the survey paper by Luo and Kay [9]. From a computa-
tional viewpoint, however, the efficient extraction of information from noisy and
possibly faulty signals emanating from many sensors requires the solution of
problems relating a) to the architecture and the fault tolerance of the distributed
sensor network, b) to the proper synchronization of sensor signals, and c) to the
integration of information to keep the communication and the processing
requirements small.

Wesson et al. [2] were the first to attempt designing efficient networks for
distributed sensing. They proposed the hierarchical and committee interconnec-
tion topologies. A sensor network based on a fixed number of complete binary

(*) The authors work was supported in part by the Office of Naval Research under Grant
No. ONR-N00014-91-J-1306 and in part by the LEQFS - Board of Regents under Grant
No. LEQFS-RD-A-04, (**) Supported in part by the National Sci Foundation under
Grant No. CCR 8908189.

trees fully interconnected at their roots (we will refer to this network as a flat
tree network) was considered in [11, 12] and the following issues were studied:

(1) the integration of information in real time when clocks at the nodes are
not perfect,

(2) the transmission of information without incurring heavy communication
costs, and

(3) the fault tolerance of the network to certain types of faults.

In this paper, which is a continuation of research reported in [11, 12}, we
propose a new versatile architecture which has several advantages over the flat
tree network. Specifically, the proposed network has better fault-tolerant proper-
ties and supports more nodes than the latter with the same diameter. We show
how information integration could be achieved in this network and state an inter-
esting property related to such integration in the presence of faults.

This paper is organized as follows. Section 1.1 has a brief overview of
sensor integration. The notations and definitions used in the paper are presented
in Section 1.2. After motivatating the need for a new sensor network in Section
2.1, we propose a multi-level network with each level having the de Bruijn inter-
connection in Section 2.2. Algorithms for routing in this network are described
in Section 2.3. We describe sensor integration in the presence of faults in Sec-
tion 2.4, The fault tolerant properties of the network are the subject of Section
2.5. In a DSN, it is necessary that the clocks on the nodes be synchronized. A
variant of a previously known method for synchronizing clocks is described for
the network in Section 3.0. We conclude the paper by highlighting the features
of the proposed network and indicate the future directions this area of research
could possibly take.

1.1 An Overview of Sensor Integration

The PEs of a DSN combine the sensor output readings to derive an accu-
rate value of the physical process that the sensors monitor. This process of com-
bining the sensor outputs is called information integration or dasa fusion.

The method used to integrate the information passed by the sensors
depends on whether the sensors provide competitive information or complemen-
tary information. In the former case, each sensor ideally provides identical infor-
mation. This redundancy of the sensor readings helps in enhancing the reliabil-
ity and fault tolerance of the network. Also, noise in the signals can be detected
and removed. This is because the noise in different sensor signals tend to be
uncorrelated while the signals of interest are correlated. It is therefore necessary
for the information from the sensors to be combined in a meaningful and effec-
tive manner, so that the result is fairly accurate. Complementary information
integration is done when only partial information is available from each sensor;
such information is then integrated to obtain the result,

Following Marzullo [10], we distinguish between a concrete sensor and
an absiract sensor. A concrete sensor is a device that can be used to sample a
physical state variable. An abstract sensor is a piecewise continuous function
from a physical state variable to a dense interval of real numbers. The reasons
for using an abstract sensor rather than a concrete sensor are detailed in {10, 11].
Determining the function which maps a concrete sensor to an abstract sensor
depends on many factors such as the choice of a particular sensor type (e.g.,
motion detecting sensor, range finding sensor, vision sensor), the compensation
that has to be applied to the raw sensor value which is itself dependent on the
local values of certain parameters (e.g., design parameters of the sensor), the
nature of the application, etc. For instance, if a sensor reads a value to be S and
its maximum error is known to be E, then an abstract sensor, albeit simple,
could be the interval (§ — E, S + E). A PE at a node converts a concrete sensor
to an abstract sensor. The abstract sensors are combined or integrated to form
an absract estimate. The particular method of combining depends on the inte-
gration algorithm used. To keep the terminology simple, we refer to the abstract

0-7803-1257-0/93/33.00 © 1993 IEEE.

S

sensor as the abstract estimate also. An abstract estimate could, in turn, be com-
bined with one or more abstract estimates to form a new abstract estimate.

Marzullo [10] considers the case of a processor receiving input from sev-
eral sensors whose outputs are intervals. He gives a fault tolerant integration
algorithm which takes as input the intervals representing the sensors and gives
as output an interval which always contains the actual physical value. A correct
sensor is one whose interval contains the actual physical value. Hence, any two
correct sensors must intersect since they both contain the physical value being
measured.

Marzullo considers the case when at most f (f < n) sensors are faulty in a
n-sensor network. The physical value would then be contained in any of the
(n - f) intersecting intervals. Since it is not possible to decide which intersec-
tion contains the physical value, the smallest connecting interval containing all
the (n — f) intersections is taken to be the output of the processor. It can be seen
that this final estimate contains the actual physical value. The final estimate,
however, becomes arbitrarily wide as the number of faulty sensors becomes
large. In such cases, an integration method described in [12] reduces the width
of the final abstract estimate. For simplicity, we will use Marzullo’s model for
information integration in the proposed network.

In this paper we concentrate on competitive information integration. The
architecture described here could be used effectively for complementary infor-
mation integration in the presence of noise and possibly faulty sensors.

1.2 Notations and Definitions

‘We model the DSN by an undirected graph G = (V, E), where each node
represents one or more sensors and an associated PE of the network, and each
edge represents a communication link of the network. The length of a path
between two nodes is the number of edges encountered while going from one
node to another. The distance between two nodes is the shortest length between
the nodes. The diameter of the network is the largest distance between any two
nodes in the network. The degree of a node is the number of edges associated
with that node. The degree of the network is the largest degree of any node in the
network.

Let y/ represents a binary number with bit y repeated f times; ¥ repre-
sents the complement of y, and x represents the don't care bit. For example, the
binary number 00011xx is represented by 0*12x2, A node i in a network with N
= 2* nodes has the binary address i;_; ixy ... i} ip Where iy (i) is the most
(least) significant bit. The following definitions describe two address transform-
ing functions append (app) and strip (str).

Let M be a k-bit number. Then,

app (M, y) = My
Str(ipgipg - irio) = bxmipp by

For example, app(000,1)=0001 and str(0010)=001.
striapp(M,y))= M.

Our interest lies in multi-level networks (MLNS) in which each node of
the network can be associated with a level number. An I-level network has I lev-
els numbered from O to / — 1. The set of nodes at level m to which a node i at
level m is connected form the neighbors of i. The set of nodes to which i is con-
nected at level m — 1 form the parents of i. The set of nodes to which i is con-
nected at level m + 1 form the children of i. In the MLN that we consider for the
proposed DSN, there is a single node called the root at level 0, and each node at
a higher level number has at most one parent and at most 7 children. We refer to
such a network as a r-ary MLN. The node i at level m(> 0) has the address
Em-1im—2 *++i1io, where each digiti; € {0,1,...,7—1) (0 < j < m). This node i
is connected to at most r children nodes whose addresses are
app(i,0), app(i, 1),...,app(i,r — 1), and to its parent node whose address is
str(i). For every node i at level m, the relation &, (i) yields the set of nodes to
which i is connected at level m. In the network proposed, all but the the 0%
level of the network have the same interconnection scheme at each level.

Hence two nodes i and j in this network are connected if

(i) j=app(ib), or

(ii) j=str(i), or

(iif) j = @)
wherebe {0,1,... r-1}.

A real interval R = (R, R,) is represented by a pair of real numbers; R, is
called the lower bound and R, is called the upper bound of the interval R. We
shall refer to real intervals simply as intervals.

The width of the interval, R, equals (R, — R,). The set theoretic intersec-
tion of two intervals, X and Y is defined as

XNY = {clee Xandc e Y)

Note that

Correspondingly, two intervals are said to intersect (or overlap) if their set theo-
retic intersection is non empty. Hence, if the set theoretic intersection of X and
Y is non empty then their interval intersection is the interval
(max(X;,Y;), min(X,,Y,)). A special case of interval intersection is interval
inclusion. X includes Y if X; <Y, and X, 2Y,. The span of two intervals X
and Y is defined as

XvuY = (X.Y)
Note that the span operation between two non-overlapping intervals may result
in an interval that includes points not lying in either of the intervals.

Intervals X and Y are said to be non distinct if either X includes Y or Y
includes X; otherwise, X and Y are said to be distinct.

The following table defines the symbols we use in this paper.

Symbol Description
£ Maximum allowable deviation in time of a clock on aPE
a Maximum allowable deviation in time of a clock on the central
time server

x Maximum allowable drift rate in time of a clock on a PE

o Maximum allowable drift rate of the clock in the central time

server

) Channel transmission delay

I Delay in receiving the message sent by the central time server
to any PE

4 Maximum difference in time that a node can tolerate between
intervals that can be integrated.

2.0 Architecture of the Distributed Sensor Network

This section describes the architectural features of the proposed network.
We provide the motivation for this architecture by reviewing the past work of
other researchers and pointing out the shortcomings of their approaches. In the
next subsection, we list desirable features of a DSN and later show how the pro-
posed network provides many of these features.

2.1 Motivation for a New Architecture

Wesson et al. [2] have described two architectures for a DSN. The first is
the hierarchical or tree organization and the the second is the commitiee organi-
zation whose nodes can send messages to one, some, or all nodes in the network.
The hierarchical network has several advantages like constant node degree and
easy extensibility. It is not a good choice for a DSN, however, because a faulty
node can disconnect an entire subtree. The committee organization does not
have this disadvantage but is expensive and is not easily extensible.

It is clear from the above observations that both the committee organiza-
tion and the tree organization have disadvantages; a combination that uses the
merits of both the types of architectures is hence desirable. The flat tree network,
referred to earlier, incorporates some of the merits of both these organizations.
The nodes in this network are organized as many complete binary trees, the
roots of which are completely connected. Figure 1 shows a flat tree network with
12 nodes. It has some disadvantages, however. For example, integration errors
of the lower nodes accumulate as the information goes up the hierarchy. One
way to overcome this problem is to interconnect nodes in the lower levels of this
network.

Fig 1. Aflat tree network with 12 nodes

This motivates our proposal for a new class of networks which basically
consists of the flat tree network with nodes at every level connected as a de
Bruijn network. These networks have a committee organization at each level
and an overall hicrarchical organization. We will show that this class of net-
works has several advantages such as

i) they allow the construction of large networks with bounded degree,

ii) the diameter of these networks grows only logarithmically with the the

number of nodes,

iii) they admit simple routing schemes,

iv) they possess fault tolerant capabilities, and

v) they have low addressing complexity.

2.2 The Proposed Architecture

The proposed DSN is a modified {-level MLN with the top level com-
pletely connected and with each of the other levels interconnected as a de Bruijn
network. Before describing the proposed architecture for DSN, we briefly
review the evolution of the de Bruijn network and mention its important fea-
tures.

The use of de Bruijn networks as interconnection topologies for fault-
tolerant parallel and distributed architectures was first proposed by Pradhan [3).
Pradhan (3] was also the first to propose the use of the de Bruijn network for
VLS! architectures, Recently, de Bruijn networks have gained significant practi-
cal importance with the on-going implementation of a 8096 PE de Bruijn archi-
tecture by JPL for the Galileo project, scheduled for completion by 1995.

An important feature of the de Bruijn network is that it can be configured
as many useful computational networks in spite of faults. In addition, de Bruijn
networks have
(i) asmall diameter
(ii) admit simple routing, and
(iii) possess good fault tolerant capabilities.

For a detailed discussion on the above mentioned features of de Bruijn net-
works, see the paper by Samantham and Pradhan [8). And, for a summary of the
evolution of the de Bruijn network, the reader is referred to the paper by Prad-
han [13].

Using graph theoretic notation, the undirected de Bruijn network
DG(d, k) has N = d* nodes with diameter k and degree 24. We are interested in
binary de Bruijn networks DG(2, k) which have N=2*, A node i of the net-
work with the binary address ;. a;.; ... a; ay has neighbors:

Gx28)-3 @1 3oy @in
Gy28r3 "+ G180T) (i2)
GoBy181 3+ A28, (i3)
BBy 1842+« G20 (#4)

The address of neighbors i1 and 3 is obtained by the left shift-end-around
operation and the right shift-end-around operation on i respectively- they are
called the LR and the RR neighbors of i. The address of nodes i2 and i4 is
obtained by complementing the rightmost bit of i1 and the leftmost bit of i3
respectively- they are correspondingly called the LRC and the RRC neighbors of
i.

The proposed DSN is organized as follows:

(i) The nodes in the topmost level are called commander nodes. There are
4 commander nodes which are completely connected.

(ii) The nodes in the underlying levels are interconnected as a binary de
Bruijn

network.

(iii) Each node X, at level m in the network is connected to two children
nodes app(X,1) and app(X.0) at level m+1 (m<!—1) and and is con-
nected to its parent node str(X) at level m-1 (m>0).

Henceforth we shall refer to the proposed network as the multi-level binary de
Bruijn network (BMD). Since the topmost level of the BMD contains 22 nodes,
it is convenient to assign it level 2. Hence, an I-level BMD has ! levels num-
bered from 2 through / + 1. Figure 2 shows a 2-level BMD- the inter-level con-
nections are shown by dashed lines and the intra-level connections by solid
lines.

00 10

level 2

levet 3

Fig. 2. BMD with 2 fayers (level 2 and 3)

Each node of the BMD has a PE, a clock which maintains real time, an
associated sensor which samples the physical variable(s) of interest, and an asso-
ciated buffer. The PE translates the sensor reading into an abstract estimate,
time stamps the estimate with the current time, and places the abstract estimate
in the associated buffer. There is also a buffer associated with each link. The
PEs connected to the link have access 1o this buffer. Figure 3 shows the archi-
tectural details of a node of the BMD. The additional details in the figure will be
referred in Section 2.4. (Note: With slight modifications, we could allow for
multiple sensors at each node.)

f
To parent { AE)

/ (Step 4)
To neighbors (AEI)

(Step 2)

From neighbors { AE I)
{Step 3)

From Bt - Buffer for sensor output

children B2, B3 - Butfers for AE from
(Step children
B84-B7 - Buffers for AE from
neighbor

A

Fig. 3. Information integration Process
(PE - Processing Element)
(AE - Abstract Estimate)

22.1 Topological Properties: The following lemmas describe the topological
properties of the BMD.

Lemma 1: The number of nodes in BMD with L levels is 4(2% — 1).
Proof: The number of nodes atlevel m 2<m<i+1),

R =2X Rppy; Ba=4
Solving this equation yields the total number of nodes as
N=4(2t-1) (8))

Lemma 2: The BMD with L levels has degree 7 and diameter L+ 1.

Proof: The nodes at the top and bottom levels have degree at most 5. Now, con-
sider an internal node in the network. This node is in a de Bruijn network and
hence has at most 4 neighbors. The same node is also connected to its 2 chil-
dren nodes and a parent node. Hence a node in the BMD has degree equal o at
most 7. For deriving the diameter of the network, consider the lowermost level
in the BMD. This comesponds to DG(2, L + 1) with diameter L + 1. Note that

the farthest distance between nodes in the uppermost and lowermost level is
only L. Hence the farthest nodes in the BMD lie in the lowermost level, i.e., the
diameter equals L + 1. From (1), the diameter of the BMD is O(log N).

222 Addressing Scheme: Consider a BMD with L levels. By our convention,
the highest level number in this network is (L + 1). The address of a node in this
network consists of two parts -
(i) the level number of the BMD in which it is present. This requires [
log(L) 1bits for its representation.
(i) index of the node in that level. This requires at most (L + 1) bits to
index a node in any level, because the lowermost level (i.c., level (L + 1))
contains 2*" nodes.

The address of a node in a BMD with L levels, hence needs [log(L) 1+ (L +1)
bits.

22.3 Extensible Issues: To extend a BMD with L levels, we can add the addi-
tional nodes at the lowermost level. Thus, extending the network requires a
fixed number of interconnections between the new nodes and the nodes at level
(L +1) only. Note that the information integration process will not get affected
at any other level of the BMD, Additional bits may be needed to address the
nodes in the new level.

2.3 Routing

We show that messages can be routed efficiently in a decentralized man-
ner in the BMD, We first consider routing within a level and then consider rout-
ing across levels. To evaluate the routing complexity, we assume that a message
takes unit time to traverse a link.

2.3.1 Intra-Level Routing: Routing in the top level takes unit time step since
the nodes are completely connected. Routing in a de Bruijn network is a well
studied problem [4, 6]- consider the routing algorithm presented in [4). In this
algorithm, tag bits are appended to the message at the source before routing.
These tag bits are used by intermediate nodes to compute the address of the next
node in the path. This method assumes that all the nodes in the path are fault-
free. Hence the algorithm will fail if any of the intermediate nodes or links are
faulty.

In this section we describe two distributed routing algorithms PATH.1 and
PATH.2 in which the address of the next node is computed at the previous node
in the path, PATH.1 takes ©(logN) steps in a de Bruijn network with N nodes,
and PATH.2 takes O(JogN)) steps.

Let a binary de Bruijn network have N = 2% nodes and let $ = 5, 532 ...
51 5o be the source node that sends a message to the destination node D = d
dgz ... dy dy.

The message consists of the data and the message header. The message
header contains a routing tag whose content depends on the type of routing
being performed. Two types of routing tags are used- one for normal routing
{(Type 1) and the other for fault tolerant routing (Type 2).

The Type 1 routing tag contains the source and destination node
addresses, a counter (z), and an inter-level routing bit (IRB). The IRB bit is ser
if the source and the destination nodes are in different levels and is reset if the
nodes are in the same level. The number of message hops from the source node
to the current node is recorded in the counter, and is used to generate the address
of the next node in the path. Figure 4 shows a Type 1 routing tag.

Routi
Type | jgg | Source | Destination %‘2;"9
Address | Address Counter

Fig. 4. Type 1 routing tag
(IRB - Inter-Level Routing Bit)

PATH.1 Algorithm

From the construction of the de Bruijn network we know that the source
node has the followmg neighbors - dy Spy Spp o 51 and Sgp ... Sy So dgp.
Using this property we can now generate two routes by appending successive
bits of the destination node to the source address.

Routel

(z=0) Sp_1Sp-2°-- 5150 (source)
(z=1) doSp-154-2" 5y

(z=2) didosp; -+ 52

(z=k) dydry---didy (destination)
Route2

(z=0) S$p_1Sp2--+ 5150 (source)
(z=1) Sp284-3 *-- Sodr1

(2=2) Sp3 -+ Sodi—1dp2

(Z = k) dg_l dg_z (] dl do (destination)

Clearly Route 1 and Route 2 take exactly k=log N steps.
Let iy ipp ... i) ip be the address of the node under consideration. The
following steps (executed by the node) describe the PATH. 1 algorithm:
1. Ifthe label of the node is the same as the destination address in the routing
tag, then accept the message.
2. Otherwise, check the value of the routing tag counter z. The address of the
next node in the path is
dy iy ipp .. iy (Route 1) OR iy 5 ig3 ... §y g dy—, (Route 2).
3. Increment the counter z and route the message to the next node.

Figure 5 shows a path from node 011 to node 101 in a DG(2,3) network
using Route 2 of the PATH.1 algorithm.

Fig. 5. PATH.1 route between 011 and 101

PATH.2 Algorithm

PATH .2 algorithm routes the message along the shortest path between the
source and destination nodes. To find the shortest path, we treat the node
addresses as binary strings and use a string matching algorithm described in [1].
Find the largest x such that 5,.; $,3 ... 5; 5o = dy—; dy—3 ... dy—;, and the largest
y such that sg_; 833 ... $4~y = dyy dy3 ... dy dy. We can compute x and y in
O(k), i.e., O(logN) time. The following three cases arise depending on the rela-
tionship between x and y:

Case 1: (x > y)- the shortest path is given by the following sequence of nodes:
(z=0) S$p_1Sp2'+* 5189 (source)
(z=1) sr2563 Sodr-z1

(z=2) i3+ - Sodp—x-1di-x2

(z=k—x) S$ya8:p' dido

The destination §, y5, o-++d1do = di-1dy— - d1dp is reached after (k —x)
steps.
Case 2: (x < y)- the shortest path is given by the following sequence of nodes:

(destination)

(z=0) s5p_1Sp2- 5180 (source)

(z=1) dysp - 5251

(Z = 2) d,,]d,&‘g_l et 8y

(z=k-y) dpydi - Sk—y+25k-y+1 (destination)

The destination is reached after (k — y) steps.
Case 3: (x =y)- choose either of the above routings to obtain the shortest path.

Figure 6 shows the shortest path between nodes 011 and 101 in a DG(2,3)
network using the PATH.2 algorithm. In this case x = 1 and y = 2; hence, the
shortest path is of length 1. Using the PATH.1 algorithm yields a path length of
3.

The following steps describe the PATH.2 algorithm (as executed by node
iy
1. If the label of the node (i iz ... i1 ip) is the same as the destination

address in the routing tag, then accept the message.

2. Find the largest x such that s, $,3 ... §; So = dy—y dp—3 ... di—y, and the
largest y such that 54 53 ... 54—y =dy 1 dy2 ... dy dg. If x>y then the
address of the next node in the path is iy_p ij-3 ... {y g di—z.; Where z is
the value of the counter. If y > x then the address of the next node in the
path is d’ﬂ.] l‘g-l ik_z - i].

3. Increment the counter z and route the message to the next node whose
address was generated in step 2.

Note that the value of x and y need not be computed by all nodes in the path.

Instead, the value of x or y can be transmitted in the message header.

Fig. 6. PATH.2 roule between 011 and 101

2.3.2 Routing between layers: Let the source () and destination (D) nodes be
at levels L and L~ X respectively. At the source the inter-level routing (IRB)
bit is set to "1" to indicate that the source and destination nodes are in different
levels. Further, when the IRB bit is set, the routing tag counter is not incre-
mented in order to maintain a proper value of the counter for intra-level routing
following the inter-level routing.

The source node § first routes the message to its parent str(S). This pro-
cedure is repeated recursively till the message is received by a node at the same
level as the destination node D. The IRB bit is reset to "0" now, and the source
address is replaced by the address of the node that received the message. The
message can be then routed to the destination using PATH.1 or PATH.2 algo-
rithm.

When the destination is at a higher level than the source, routing can be
similarly done by using app() to generate the address of the next node in the
path till the message reaches the same level as that of the destination node. The
message can then be routed using PATH.1 or PATH.2 algorithm. Note that mes-
sages in the BMD are usually routed from higher to lower levels only.

2.4 Information Integration

In this section we describe the process of information integration in the
BMD. The idea behind the integration is to a) keep the communication require-
ments small- this is done by communicating the abstract estimate as a single
interval and b) maintain accuracy by ensuring that the physical values of interest
is always contained in the abstract estimate.

Since the de Bruijn network has a connectivity of 2, the BMD can tolerate
at most one node fault or link fault per level (except at the topmost level which
is fully connected). We first state some results related to fault tolerance when
abstract estimates (or intervals) are to be integrated in the presence of faults in
the network.

Lemma 3: Consider n (n>3) intervals of which at most one can be faulty. Then
there can be at most two (n — 1) distinct interval intersections among these 7
intervals.

A direct consequence of Lemma 3 is the following theorem. Using the
theorem, the search for a faulty node is narrowed down to at most nodes for each
fault.

Theorem 1: Given a set of n intervals containing at most one faulty interval,

(i) there is no faulty interval if there is no n-I-interval intersection,

(ii) the interval not intersecting with an n-1-interval intersection is faulty if
there is exactly one n-1-interval intersection, and

(iii) there are two potentially faulty intervals if there are two n-I-interval inter-
sections one of which is incorrect.

In case (iii), the two potentially fauity nodes can be traced by taking the set dif-

ference of the interval names that belong to each (n-1) interval intersection.

We now describe the information integration process. For convenience,
we will refer to the information integration of abstract estimates between distinct
levels as "integration” and refer to the information integration within a level as
"comparison.”

Abstract estimates move upward from the leaf nodes to the commander
nodes. Every non-leaf node of the network combines the abstract estimates of
its two children and the loca:l sensor (sensor associated with this PE) to arrive at
a new abstract estimate (AE®). This step is called the "integration” step.

In the integration step, we assume that at most one of the three (local sen-
sor and 2 children) received abstract sensor estimates is incorrect. The new
abstract estimaie is found from the three cases (refer Figure 7) that could arise
(Theorem 1). If there are two 2 interval intersections, then the smallest interval
containing these intervals forms the new abstract estimate. It can also be shown
{10] that this new estimate is at most as wide as one of the input abstract esti-
mates.,

Final output
estimate

(i) (ii) (iii)

Final output
estimate

Final output
estimate

Fig.7. Integration step

{I - 1 are the 3 intervals)
1 3

~ Neat, each node sends its AE’ 1o all its neighbors. When a node receives
AE's from its neighbors, it combines them to arrive at a new estimate AE/.
This step is called the "comparison” step and the algorithm used to combine the
estimates is similar to the one described for the integration step. In this step,
however, a node combines 3, 4, or 5 estimates depending on the number of its
neighbors (2, 3, or 4 respectively).
Since the BMD can tolerate at most one fault (node or link) per level, one
of the estimates received from a neighbor could be incorrect. Hence, when a
node receives i (i =3, 4 or 5) intervals in the comparison step, it chooses the
smallest interval containing all (which is at most two as shown in lemma 3) the
i-I-interval intersections as the output. The width of this abstract estimate is
again at most as wide as one of the input correct intervals.

Figure 8 shows the comparison process in a node of the network.

e Final output
estimate

Fig.8. Comparison step

(I - I are the S5 intervals)
1 5

If there are two i-1-interval intersections in the comparison step, then we
know that there exists an incorrect interval. Identifying the faulty node which
sent this incorrect interval requires the diagnostic testing of at most two nodes as
we showed in Theorem 1. Once a node has been identified as faulty, appropriate
action can be taken so as to either "repair” the faulty node or replace it and
notify the parent and children of the faulty node. In this paper we shall not con-
cern ourselves with the problems of identifying the cause of faulty behavior and
attempting to rectify that cause.

The following steps summarize the process of information integration:
Step 1: Receive abstract estimates from children and integrate them with
abstract estimate from local sensor to get AE",

Step 2: Send AE* to neighbors.

Step 3: Receive abstract estimate from neighbors and "compare” with own
abstract estimate to compute AE/. Identify any faulty node in the process.

Step 4: Send AE/ to parent node.

Note that this process of information integration ensures that only the
"correct” estimates move up to the commander nodes in the network. Further,
the width of the estimates moving upwards is bounded by the width of one of the
correct estimates of that level of the BMD. An incorrect estimate would be
received by a parent only when the child or the link connecting the two nodes is
faulty.

Figure 3 shows the complete information integration process at a node in
the network.

2.5 Fault Tolerant Issues

In a large network it is unrealistic to expect all the nodes or links along a
path to be fault-free at all times. When some nodes or links fail, an alternative
path that avoids the faulty node or link must be derived. One of the major
advantages of our network over the network proposed in [11] is that abstract
estimates can be routed around faults using the interconnections between nodes
at the same level.

A node is faulty if it sends an incorrect abstract estimate to its parent or to
any of its neighbors. Link faults can be detected if a node does not receive the
abstract estimate of its neighbor during the comparison step. When a node (a
node failure is assumed to be equivalent to the failure of all links associated with
it) or link failure is detected, any of the following actions can be taken -

(1) The fault can be ignored during the integration process. After integration
is complete and abstract estimates have been sent to the upper level of the
BMD, the node which detected this fault can run a diagnostic algorithm
on the faulty node or link after isolating it.

(2) If the faulty node or link is in the path of an abstract estimate transmitted
towards its destination, this abstract estimate can be re-routed around the
fault to the destination. After the integration process is complete the node
which detected the fault can run a diagnostic algorithm on the faulty com-
ponent.

The BMD network provides fault tolerance by taking both of the remedial
actions mentioned above.

Suppose a node X, with children Y and Z, is faulty. In the flat tree [11] network

the subtree rooted at X is unusable. In the BMD network, however, the abstract

estimates of Y and Z are also read by the neighbors of Y and Z. Thus the
abstract estimates of Y and Z get factored into the final abstract estimates pro-
duced by the neighbors of Y and Z. Hence the subtree rooted at X does not
become unusable - only the fanlty node is unusable. Moreover, X is identified as

a faulty node during the comparison step because its abstract estimate (which it

sends to its neighbors) may not contain the physical value.

e

If action (2) is taken by the neighbor of the faulty node, then it must
reroute the abstract estimate received, around the faulty node to the destination.
This means that the destination node must wait for more time to receive the
abstract estimate, because additional hops may be required for rerouting the
message. This requires that the value of ¥ (maximum difference in time that a
node can tolerate between intervals that can be integrated- please see the next
section on clock synchronization) be increased to maintain the "near syn-
chronous” behavior of the sensor network. Note that by increasing the value of
7, the network would tolerate single node/link fault but the process of sensor
integration would be slowed down. Samantham and Pradhan [8] mention that
four additional hops are enough to avoid a single node fault in a binary de Bruijn
network. Since the nodes in every level (except the top level) in the BMD are
arranged in a binary de Bruijn network, the value of 7 will have to be increased
by four time units.

In the remaining part of this section, we show one way of avoiding a sin-
gle node fault using exactly four hops, when routing in any level of the BMD
except the topmost level. Let 53 553 ... 53 S be the source node and dy dy—;
... dy d be the destination node. Application of the PATH.1 algorithm yields the
following path:

(2 = 0) Sg-184-2 *** 5150 (SOWCC)

(z2=1) 512513+ Sodp

(z2=2) Sp3 -+ Sodp-1di-

(z=m—1) SpmSt-m-1 +- S0dk1 .. dpmnr (i1)
(z=m) St-m1St-m-2 - S0kt . Ayomit Qim (i2)
(z=m+1) Stem2-- Sodi-1 .. dt-mdi-m @i3)
(Z = k) dk—ldl-Z vee d] do (destinalion)

Assume that either node i2 or the link between il and i2 has failed. We
now show an alternative route (reroute) between i1 (rerouting source) and i3
(rerouting destination) that takes only four additional hops. Note that this tech-
nique is independent of the number of nodes in the level.

When il receives a message (consisting of the abstract estimate and the
Type 1 tag), it appends four fields to the Type 1 tag which enable rerouting of
the message- (1) source address (i1), (2) destination address (i3), (3) reroute
counter (RC), and (4) rerouting bit (RRB). We shall refer to the tag, formed by
appending reroute fields to the Type 1 tag, as Type 2 tag. Figure 9 shows a Type
2 tag. To initiate rerouting, i1 increments z and sets RRB = "1". When RRB =
"1", a node does not increment z; instead it uses RC to compute the address of
the next node in the reroute. When the message reaches i3, i3 removes the
reroute fields from the tag, and increments z. Routing from i3 then proceeds nor-
mally using PATH.1 or PATH.2 algorithms.

urce |Destination | ROUING ksoirce | Destination
Type | IRB F:duss Address C::r?lar odress|Address | C RRB

Fig 9. Type 2 routing tag (rerouting tag)
(ARB - Re-Routing Bit)
{RC - Rerouting Counter)

The alternative route between i; and i, is shown below:
(z=m—1) SpmStm-1 *** Sodr-1 ** diomnr
E=m) St m1Skm2 - Sodey - demirdim
(z=m) Si_m2Sk-m3 " Sodpy *** dk—wblak—mdh—u—l
(z=m) dip1Sem2 ' S0t Bt Tiom
(z=m) dymiim1 " Sodit *** Qiomnt
(z=m) dymi1Se-m2 " 501 *** diomst Gim
(z=m+1) Spm2Si-m3 504kt " At-ms1 Qpmbrmt

The above route takes 6 steps- only 4 more than the normal route between
iy and i3. Figure 10 shows fault tolerant routing in a DG(2,3) (level 3) between
nodes 001 and 110 when the node 011 is faulty. This alternative route can be
chosen when a faulty node is encountered in the path to the destination node.

Hence the routing algorithms given earlier can be easily adapted to take the
alternative path in case of faults. Our rerouting algorithm is also more adaptive
to faults than the one presented in [4] since our algorithm does not require that
the presence of a fault be known to the source node as the other algorithm doces.

001 011 (faulty)

Fig. 10. Fault folerant routing between 001 and 110
when 011 is faulty

Finally, since the network can sustain one node or link fault at every level,
the BMD network with L levels and N =2(2F-1) nodes can sustain L, ie.,
approximately log N, node or link faults.

3.0 Clock Synchronization Issues

So far we have assumed that any two abstract estimates can be integrated.
In reality, since the sensor outputs typically change as a function of time, only
estimates that are temporally "close to each other” must be integrated if mean-
ingful results are desired. This is achieved by time-stamping each estimate. The
condition under which two estimates may be integrated is given at the end of the
next subsection. In a distributed environment such as ours, there is no central
synchronized clock which regulates the activities of each node. Instead, each
node is under the control of its own clock. Since the sensor responds to real-
time events it is convenient for the clock to provide the real, i.e., physical time.
Further , since the estimates from different sensors have to be integrated, it is
necessary for the time provided by the clocks of the sensors to be "close to each
other". The clock at each node may not be accurate because of a variety of rea-
sons such as clock shift, change in temperature, etc. Each clock must therefore
synchronize with a more accurate clock. We assume the existence of a central
time server which when requested for the time at ¢, provides the time C(z). The
PEs in our DSN spatially lie within tens of feet from each other, hence the exis-
tence of a single time server for the clocks on all the PEs can be assumed. The
central time server itself periodically synchronizes with a universal time server,
which is always accurate and lies outside our environment.

We use the clock model described in [11] to synchronize the clocks in the
BMD. We summarize the basic results of the model in the next two sections.

3.1 Clock behavior and Synchronization

Let C,(1) be the time provided by the clock on PE p at time ¢ (7 is the time
provided by a universal time server). We assume that the clocks run continu-
dC (¢
ously rather than in discrete "ticks”. Hence ——’—(—-)— denotes the rate at which the
clock is running at time t. We also assume that that this rate is non-negative;
hence, the time on the clocks monotonically increase.
We now state the conditions on the clocks for proper synchronization.

Clock Condition 1: The deviation in time of each clock is bounded, i.e., for PE
p. there exists £, << 1 and & << 1 such that

|i-c0| 5 & (9)

[t-C@®)| € « (2b)

Clock Condition 2: Between synchronizations, the drift rate of the clock is
bounded, i.e., for PE p, there exists x, << 1 and o << 1 such that

dc, ()
;: -1 s «x, (3a)
L0 _yl <,

e

Clock Condition 3: The clock on each of the PEs and the central time server
advance monotonically.

For simplicity, we assume that £, and «,, is the same for all PEs, i.e. &, =
£ and x, = x. From Clock Condition 1 we have,

Synchronization Bound: If p and ¢ are two PEs then

|c,0-co] s 2 @

Let 8, and Sy, be the minimum and maximum values of delay for a
message sent by a PE to its neighbor. Let 7 be the maximum difference in time
that a node can tolerate between intervals that can be integrated. Note that the
value of y will depend on the longest path between leaf nodes and commander
nodes, which is equal to L in a BMD with L levels.

The following lemma and theorem state precisely the conditions for com-
bining abstract sensor estimates which are temporally "close to each other.” The
discussion in this section follows closely the discussion presented in [11]. We
therefore state all the results without proof. The interested reader is referred to
[11].

Lemma 4: Let a message be received by PE p at Cp(¢). Then this message was
sent in the interval (C (1) — 2& — 8pux, Cp(t) + 26 — Spin)-

The time stamp of an abstract estimate may not belong to the interval
given above if the channel is faulty. The following theorem gives the condition
under which estimates are "temporally close” and may be integrated.

Theorem 2: Let the three proper abstract sensor estimates [y [and /5 be
received by PE p at times

C,(t1) < Cp(12) < C,(13)
respectively. Then /; (i = 2, 3) can be integrated, iff
(Cp(t) —Cot1) +4& + Oy — Fin) S ¥

Since the clocks on the central time server and each of the PEs drift, they
have to be periodically reset. We now state a bound on the time period between
synchronizations. Let T, be the time period of synchronizations of the central
time server, and let 7, be the time period between synchronizations of the PE p.

The central time server synchronizes itself every T, seconds with a perfect
universal time server which exists outside the environment of our DSN. The
central time server also synchronizes the clock on a PE every T, seconds.

Let &y and &, be the minimum and maximum of the delay in receiving
the message sent by the central time server to any PE. Also, let T, and T%, be
the periods corresponding to T, and T, as observed by the central time server.
The bounds on these observed periods can be shown to be [11]:

Theorem 3: The time period as observed by the central time server between
synchronizations of the central time server is bounded by

T, < a(é -1

Theorem 4: The time period as observed by the central time server between
synchronizations of the clock on a PE is bounded by

€20~ Grux = fuia)

Tt < =

4.0 Conclusions

The effective -use of multiple sensor systems requires the solution of vari-
ous problems relating to sensor models, the architecture of the sensor network,
the integration of information at cach node of the network, the cost of informa-
tion transmission, and the fault tolerance of the network. The integration of
information in real time requires the clocks at each of the nodes be synchro-
nized. Synchronization of clocks is a non-trivial task in such distributed sensor
networks. In an earlier paper [11], some issues related to the architecture of
DSNs, information integration, and clock synchronization had been addressed.
This paper extends the study by considering a more sophisticated architecture
for DSNs which has a number of advantages including the ability to tolerate sin-
gle node or link faults at each level.

Since our focus has been primarily on computational issues, we have cho-
sen to represent sensor output information by Marzullo’s simple and elegant
model which is based on real valued intervals. We have also used a relatively
simple information integration algorithm. We are aware that sensor modeling is
itself a very detailed area of study [7] and that very sophisticated methods exist
for information integration. We have also assumed that the output of each sen-

sor is a physical value. The above discussion and results easily extend to the
case when the output of a sensor is a vector rather than a single value.

This study could be extended in several directions. A straightforward
extension is to assign weights to the abstract estimates produced as a function of
its level in the hierarchy. We also plan to investigate more sophisticated fault
tolerant strategies for the de Bruijn network than the scheme presented here. A
future goal of our project is to investigate the computation and communication
requirements of more sophisticated integration algorithms executing on large
scale DSNs.

Acknowledgements
The authors would like to thank Dr. Dhiraj K. Pradhan for his help during
the preparation of the paper.

References

[1] Knuth, D. E., Morris, J. H., and Pratt, V. R., "Fast pattem matching in
strings,” SIAM J. Computing, Vol. 6, pp. 323-350, 1977.

{21 Wesson, R. et. al., "Network Structures for Distributed Situation Assess-
ment,” IEEE Trans. on SMC.,, Jan. 1981, pp. 5-23.

(3] Pradhan, D. K., "Interconnection Topologies for Fault-Tolerant Parallel
and Distributed Architectures,” Proc. 10th Int. Conf. Parallel Processing,

Aug. 81, pp. 238-242.

{4] Pradhan, D. K., and Reddy, S. M., "A Fault-Tolerant Communication
Architecture for Distributed Systems,” IEEE Trans. on Comp., Vol. ¢-31,
No. 9, 1982,

[S] Pradhan, D. K., "Dynamically Restructurable Fault-Tolerant Processor
Network Architecture,” IEEE Trans. on Comp., Vol. ¢-34, No. 5, May
1985.

[6] Esfahanian, Abdol-Hossein, and Hakimi, S. L., "Fault-Tolerant Routing in
de Bruijn Communication Networks," IEEE Trans, on Comp., Vol. c-34,
No. 9, 1985.

[7]7 Durrant-Whyte, H. F., "Sensor Models and Multisensor Integration,” Int.
J. Robot. Res., Vol. 7, No. 6, 1988.

[8] Samantham, Maheswara R., and Pradhan, D. K., "The De Bruijn Multi-
processor Network: A Versatile Paralle] Processing and Sorting Network
for VLSL," IEEE Trans. on Comp., Vol. 38, No. 4, 1989.

[9] Luo,R.C., and Kay, M. G., "Multisensor Integration and Fusion in Intelli-
gent Systems,” IEEE Trans. on SMC, Vol. 19, No. 5, 1989, pp. 901-927.

{10] Marzullo, K., "Tolerating Failures of Continuous-Valued Sensors,” ACM
Trans. on Computer Systems, vol. 4, no. 4, Nov. 1990, pp. 284-304.

[11} Jayasimha, D. N., Iyengar, S. S., and Kashyap, R. L., "Information Inte-
gration and Synchronization in Distributed Sensor Networks,” IEEE
Trans. on SMC, vol. 21, no. 5, Sept. 1991, pp. 1032-1043.

[12]) Prasad, Lakshman, Iyengar, S. S., Kashyap, R. L., Madan, R. N., "Func-
tional Characterization of Sensor Integration in Distributed Sensor Net-
works,” IEEE Trans. on SMC, vol. 21, no. 5, Sept. 1991,

[13]} Pradhan, D. K., "Fault-Tolerant VLSI Architectures Based on de Bruijn
Graphs (Galileo in the Mid Nineties)," DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, Vol. 5, 1991.

b e s a—————

