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Abstract-This paper investigates a fundamental problem of 
determining the position and orientation of a three-dimensional 
(3-D) object using single perspective image view. The technique 
is focused on the interpretation of trihedral angle constraint 
information. A new closed from solution based on Kanatani’s 
formulation is proposed. The main distinguishing feature of our 
method over the original Kanatani’s formulation is that our 
approach gives an effective closed form solution for general 
trihedral angle constraint. The method also provides a general 
analytic technique for dealing with a class of problem of shape 
from inverse perspective projection by using “Angle to Angle 
Correspondence Information.” A detailed implementation of our 
technique is presented. Different trihedral angle configurations 
were generated using synthetic data for testing our approach 
of finding object orientation by angle to angle constraint. We 
performed simulation experiments by adding some noise to the 
synthetic data for evaluating the effectiveness of our method 
in real situation. It has been found that our method worked 
effectively in a noisy environment which confirms that the method 
is robust in practical application. 

Index Terms-Shape from angle, shape from perspective pro- 
jection, pose estimation, extrinsic camera calibration, 3-D object 
recognition. 

I. INTRODUCTION 
NE of the major tasks in 3-D machine vision is to 0 determine the position and orientation of a 3-D object 

in the scene with respect to the sensing device. For this 
purpose, the technology of shape from inverse perspective 
projection is an essential approach for model-based 3-D re- 
construction. Continuing advances in the problem have derived 
many efficient results for the approach. There are also many 
applications of this approach in Robotics, Cartography and 
Photogrammetry, as well as in computer vision. A broader 
presentation on these application aspects can be found in the 
reference papers [SI-[ 131. 

A .  Statement of the Problem 

The formal definition for the general problem of shape from 
inverse perspective projection can be stated as follows: Let 
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perspective projection be the ideal model of a camera, then, 
the fundamental imaging process of a camera is given by 

where, P = ( 2 ,  v ;  z)7 is the description of a 3-D point in an 
obj+ coordinate system and @ = (U,  7 ~ ) ~  is the 2-D projection 
of P on the image plane; where rotation R and translation T’ 
form the transformation from the object coordinate system to 
the camera coordinate system; f :  k, ,  k , , ,  U ( ) ,  are the intrinsic 
parameters of the camera. Now, suppose thgt certain 3-D geo- 
metric features of an object are given in au object coordinate 
system and their corresponding 2-D image geometric features 
are located in an image plane by a single perspective view. 
The problem of shape from inverse perspective projection is 
to deteTine the unknown rotation matrix R and the translation 
vector T.  Equivalently, the problem can also be restated that 
to find the pose or orientation of these 3-D geometric features 
in the camera coordinate system. Therefore, this approach is 
also named as pose estimation or extrinsic camera calibration 
in literature. 

More specifically, three types of situations are mostly dis- 
cussed in the problem of shape from inverse perspective 
projection. 

1)  Perspective point to point correspondence problem. This 
problem is usually called Perspectilie n-point problem or 
PnP problem [ 81 when 71 pairs of corresponding points 
are known. 

2) Perspective line to line correspondence problem. Like 
the case in the above, we call the problem as PnL prob- 
lem when ri pairs of corresponding lines are specified. 

3) Perspective angle to angle correspondence problem. We 
name this problem as PnA problem if 71 pairs of 
corresponding angles are given. 

To achieve simplicity, stability and speed for solving an 
inverse perspective projection problem, a closed form solution 
is the most desirable result for each of PnP, PnL, and PnA 
problems. In this paper, a closed form solution is presented 
for the general problem of trihedral angle constraint, which is 
an P3A problem. It is a common and typical case among the 
PnA problems. Fig. I shows different viewing effects about a 
trihedral angle when we observe a real scene. Our method is 
capable of dealing with these different viewing effects. 
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Fig. 1. Trihedral angle configurations 

B .  Review of Literature 

The problem of finding closed form solutions for inverse 
perspective projection is found in literature, and analytical 
solutions have been provided for 3 point correspondence 
(P3P), ([8], [9]), 4 point correspondence (P4P) ([8, [ I l l )  
and 3 line correspondence (P3L) ([12], [13]). In Section 111, 
we can see that a linear solution may be available for point 
to point correspondence (PnP) when 71 is greater than or 
equal to 6, or for line to line correspondence (PnL) when 
71 is greater than or equal to 8. However, up till now, we 
have not found analytical solutions for any angle to angle 
correspondence or (PnA) problem. 

Among the (PnA) problems, trihedral angle constraint is 
the basic and most encountered case in practice. In recent 
years, trihedral angle constraint has been addressed by many 
authors from different viewpoints. The relevant presentations 
can be divided into following two categories: 

a )  Direct Approach: In this category, angle information is 
usually employed directly. Kanade [6] proposes an analytic 
solution for the problem under orthographic projection. For 
perspective projection, algebraic solutions have been given for 
special cases when two or three space angles are right angles 
by Kanatani [3], 1151, Shakunaga and Kaneko [5]; in addition, 
some constructive algorithms are suggested for solving the 
general problem by Horaud [ 7 ] ,  Shakunaga and Kaneko [ 5 ] ;  
but further results in this category are not found in literature. 

h) Indirect Approach: Geometrically, without employing 
angles directly, the configuration of a trihedral angle can 
also be specified by four space points or by a junction of 
three 3-D lines. In this sense, we can consider trihedral angle 
constraint as a special case of the P4P problem or the P3L 
problem. Therefore, the methods for solving these two types 
of problems can be applied for trihedral angle constraint ([ 1 11, 
[ 121). Because the angle information is not used explicitly by 
the methods in this category, we call it indirect approach. 

C .  A New Direct Solution for Trihedral Angle Constraint 

Our new solution for trihedral angle constraint uses the 
direct approach. Based on the original presentation scheme 
for the problem proposed by Kanatani [3], a complete analytic 
solution is developed. Compared with previous works in this 
direction, the main distinguishing feature of our method is 
it makes the trihedral angle constraint can be easily used 
for general situation. The method can also be considered as 
a closed form solution for the general PnA problems in a 
minimal condition. Here the angle information is effectively 
and directly used for the problem of shape from inverse 
perspective projection. 

There are significant differences distinguishing our approach 
from the methods of P4P [ l l ]  and P3L [I21 which use the 
Indirect approach. In brief, notice that the angle measure is 
independent of the coordinate system; but the description of 
a point or a line is dependent on a coordinate system and so 
it varies when the related coordinate system is changed. This 
is the distinguishing feature of the angle constraint compared 
to the point constraint or the line constraint. Therefore, our 
method possesses its special advantage and usages in different 
application situations. 

In Section 11, our method will be developed in detail. Then, 
in Sections 111 and IV, broad discussions and the results of 
simulation experiments will be presented. 

11. A NEW MATHEMATICAL FRAMEWORK 

A. Preliminary Formulation 

The coordinate systems considered in the paper are right 
handed orthogonal systems. According to the common model 
of the perspective projection, the following three coordinate 
systems are related to our problem (Fig. 2). 

The object coordinate system is a local 3-D coordinate 
system used for defining objects. 
The camera coordinate system is the 3-D coordinate 
system attached to a camera. We assume that the origin 
of the coordinate system is the center of projection, and 
its z-axis is the view axis. 
The image coordinate system is the projection plane. 
It is specified within the camera coordinate system by 
centering at the point (0.0, f )  and its two axes, u-axis 
and v-axis are parallel to the x;-axis and y-axis of the 
camera coordinate system, respectively. f is the focal 
length of the camera. 

Canonical Image Structure: We can rewrite the expression 
( 1  ) of imaging transformation as 

For the problem of shape from inverse perspective projec- 
tion, we assume that the intrinsic parameters of a camera model 
are given. Therefore, we can derive 
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'7 camera coordinate system 

I t "  
Coordinate System 

t "  & %  ?-Po .r . . . . . . . . . . 

" O H  Object Coordinate System 

Fig. 2. An illustration of three types of coordinate systems. 

where 9 is determined only-by the extrinsic parameters of 
rotation R and translation T ;  we ?ay regard it as a non- 
digitalized perspective projection of P with focal length f = 1 
and call it as Canonical Image. For our problem of finding 
shape from trihedral angle constraint, since canonical image is 
much more convenient than the original digitalized image and 
it is always available, we will mainly consider the canonical 
representation in the following discussions. 

View Orientation Transformation Schemes: We define the 
view orientation transformation as a pure rotation transforma- 
tion upon a camera coordinate system. Suppose the rotation 
R = (rZ,)3,3+defines a view orientation transformation such 
that = RP. Then, the corre_sponding relationship between 
the two image points of @'and p' is uniquely determined under 
the transformation by 

2' ~ 1 1 ~  + 7 ' 1 2 ~  + ~ 1 3  U / =  - = - 
Z' ~ 3 1 ~  + 7'3221 + ~ 3 3  

T 1 3 d  + T 2 3 d  + T33 

~ 3 1 7 ~  + ~ - 3 2 ' ~  + r-33 

x T117L' + 7.2171' + 
U = - = -  

I d T2171 f T 2 2 v  + r 2 3  

z 

v = - = -  
Z I  

This relation will be used to facilitate problem formulation 
of trihedral constraint. Notice that for an arbitrary view orienta- 
tion, there are infinite view orientation transformations which 
can transform the view axis of a camera coordinate system 
from an old orientation to a new one. In this paper, we just 
consider the view orientation transformation which is formed 
by a rotation around the y-axis of camera then followed by 
a rotation around the x-axis of camera. This choice comes 
from the simulation for the normal situations when people 
tum their viewing orientation from one point to another. Let 
a new view orientation be selected by a image point ( U ,  w ) ~ ,  
then, the rotation matrix which turns the z-axis of a camera 
from its old orientation to the new one can be determined as 

P1 

Po 

Fig. 3. Definition of a trihedral angle. 

Camera Coordinate System 

t yc 

Fig. 4. Angle's definition for trihedral angle constraints. 

below: 

(4) 

where, d l  = d m ,  d2 = d/u2 + v2 + 1. The matrix 
R tums the z-axis from the old orientation to the new 
orientation. 

Consider a tri- 
hzdral angle in Fig. 3.  The trihedral a_ngle is formed by 
P; = ( x i , y i , ~ i ) ~ , i  = 0, 1!2!3, with Po being its angular 
point. -+ Denote 6; = ( U ; ,  vi)T to be the perspective projection 
of Pi. Because a view orientation transformation can always 
be employe_d to turn the view axis of camera to pass through 
@ and so Po, then, without loss of generality, we assume that 
Po is located on the view axis. As shown in Fig. 4, let P,; be 
tQe an$le Jormed by j$ and the u-axis, -T+ < pi < T ;  Li = 
Pi - Po: N; be the unit direction vector of L; ;  y, be the angle 

Trihedral Angle Constraint Formulation: 
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formed by L,  and the view axis, 0 < yz < T ;  then, we have Using the values of a ,  b and c,  we can rewrite (8) to obtain (9) 
71% 2 1 2  found at the bottom of the page. Without loss of generality, 

suppose (PI - P 2 )  # 0. Then, d m  
sin [jz = 

rji = ( s i n y i c o ~ p i ~ s i n y ;  ~ ; ! c o s y ; ) ~ .  ( 5 )  

NOW, suppose qij represents the angle formed by I?i and zj, 
we have the angle constraint 

Ni 0 Nj  = sin y; sin yj cos(p; - [ j j )  + cos yi cos yj = cos q i j .  

(6)  
It follows that the constraint for trihedral angle can be written 
as 

$10 f i 2  =sin y1 sin 7 2  cos(p1 - ,021 + cos y1 cos yz =cos 7712 

r510 r j 3  =sin y1 sin y3 cos (~1  - ~ 3 )  + cos y1 cos y3 =cos 7713 

N2 0 N3 =sin 7 2  sin y3 cos(p2 - a s )  + cos 7 2  cos 7 3  =cos 7723. 

(7) 
When the three angles 712, and '~113, and 7123 are given, we 
have a system of three equations and three unknowns. So we 
expect to solve y1,yz; y3 and then to determine the orientation 
of the trihedral angle in camera coordinate system. 

Kanatani [3] first suggests the formulation for angle con- 
straint. The advantage of this formulation is that the expres- 
sions are simple by moving the vertex of a trihedral angle 
on the view axis. The solution of (7) has been addressed by 
Kanatani [3], [15] for the special case where at least two of 
q12,~13, and 7723 are right angles. 

+ - .  

+ +  

We will now derive a complete solution for (7). 

B .  An Analytical Solution for the Trihedral Angle Constraint 

Estimate the Orientation: 0,"' idea for solving (7) is staight- 
forward. First, assume that N3 can be expressed by NI and 
$2 as 

iq:j = ag1 + 6iV2 + x $2. (8) 

We have 
+ +  

NI N3 = U + bc0~712 =  COST/^^ 

N2 N3 = U COS 7112 + 6 = COS 7/23 
+ +  

- . +  
N 3  N3 = ucos713 + bcos723 + c2sin2q1z = 1. 

Then, the coefficients n.6 and c can be derived 

a = (cos7713 - cos7~12cos~123)/sin2~12 

b = (cos 7123 - cos 7712 cos q13)/ sin2 7712 

Note that both equalities in (9) for sin73 yield the same result 
described by (1 l), where 

and 

From the first equation of (1 I ) ,  we have 

cosy2 = - AI cos2 71 + D1 COS yi + Fi 
c1 cos2 y1 + B1 cos y1 + El. (I4) 

Replacing cosy2 by (14) in the second equation of ( l l ) ,  it 
follows that 

s5 cos5 y1 + s4 cos4 y1 + s3 (:os3 y1 

+ s2cos2y1 + s1 cosy1 + so = 0 (15) 

a sir1 71 cos P1 + b sin 7 2  COS P 2  + c(sin y1 sin /31 cos 7 2  - sin yz sin 132 cos yl) 
cos P 3  

a sin y1 sin 01 + 6 sin yz sin io2 + c(sin 7 2  cos P 2  cos y1 - sin y1 cos cos y2) 
sin p3 

s1ny3 = 

sin y3 = 
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~5 = CzAf + EZC? - BiAlCl 
s4 = A2AT + F2Cf - B z A l B l -  BzDlCl 

- DZAICI + 2C2A1D1+ 2EzCiBi 

~3 = 2AzA1D1- DzAlB1 - DzClDl+ 2EzC1E1 
+ 2CzAiF1+ C2D: - BzAlEl -  B2CF1 
- BzD1B1+ 2FzClB1+ EzB? 

~2 = 2AzAiFi+  A2DT -- D2AlEl - DiFiC1 

- DaDlBl+ 2FzC1El f  FzB? + 2C2DlFi 

- B z D l E l -  BzBlFl+ 2EzB1E1 (16) 

+ C2 F: - BZ F1 El + E2 E;  
S I  = 2A2D1F1 - 0 2 0 1 1 3 1  - DzFIB1+ 2F2B1El 

SO = AzF; + F2E; - D2FiE1. 

By (15), (14) and the third equality of (9), we can solve 
the c o s y 1 , c o s y ~  and cosy3 step by step. The position of a 
trihedral angle is determined in camera coordinate system by 
the following expressions (referring to Fig. 4): 

F; = $0 + 1i8i ( i  = 1 , 2 , 3 )  (17) 

where 1; > 0 is the length 2f ,& = FL - $0. Because so far 
only the three unit vectors Ni can be assigned by solving (7), 
we only obtain the orientation of a trihedral angle. To find its 
full position, more information is necessary. 

Determine the Full Position of a Trihedral Angle: Suppose 
that a trihedral angle in an object coordinate system 
is given by: 

(18) 

where the correspon_ding Tlatiofship Jetween (17) and 
(18) is specified by Pi to PIL, N;  to N ’ i  and 1; = I:. To 
calculate the coordinate transformation Pi = RFi + T’ 
from the object frame to the camera frame, let P’ and 5 
be a paif of matched object point and image point; then, 
denote P’ = (x’ ,?] ’ ,  z ’ ) ~ : $  = ( ~ L , ~ I ) ~ : E E  = ( T ; ~ ) Q ~ ~ ! T  = 
( i s :  t,, t , )T,  we have 

PI.  - & -  - PI - “ + 1 $ ;  ( 1 = 1 , 2 , 3 )  

r-112’ + 7.12y’ + T13Z’  + t ,  

T Z l Z ’  + T22Y’ + T 2 3 2 ’  + t ,  
- u(7.312’ + Tyzy’ + T33Z‘ + t Z )  = 0 

- ‘fi(Tyl2’ + T32W’ + 7‘33.2’’ + t Z )  = 0. (19) 

Th5rotation matrix R can be easily found by the relation 8i = 
RN’i ( i  = 1,2,3) .  Therefore, if two pairs of matched points 
are available, the translation T’ can be obtained by solving (19). 
It follows that to get a full solution for trihedral constraint, we 
still need two pairs of matched object point and image yoint. 

Alternatively, if one of length l i  in (17) is known, the PO can 
be simply determined by each of the following two equations 
provided the denominator is not zero. 

zo = 1; (sin y; cos [j; - ‘U; c m  y; ) / U ;  

zo = 1; (sin y; sin [l; - U ;  cos y;)/,u; 
(zo > 1). (20) 

Then, the trihedral angle is completely determined in camera 
frame but do not need to refer any object coordinate system. 

f-py E)t, . . . . . . . . . jj5J .... .......... 

Po i 
X 

(a) (b) 

Fig. 5. 
The point PO is in the front of the cube. 

Necker’s cube illusion. (a) The PO is in the back of the cube. (b) 

We are more interested in (20) than (19) for OUT method 
because both the measures of angle and length are independent 
of a concrete coordinate system. This feature makes our 
method more flexible in application than the approaches of P4P 
[ 111 and L3L [ 121 which need to refer to some object frame. 

An Algorithmic Framework for Trihedral Angle Constraint: 
To sum up, we list the steps of the solution procedure for the 
shape from trihedral angle constraint as below: 

Suppose that the intrinsic parameters of the 
camera are given; and, a trihedral configuration is picked from 
the image plane and the three corresponding 3-D angles have 
been specified. 

Step 1: Use (2) to get the canonical representation for the 
image features. 

Step 2 :  Use the angular vertex of the 2-D trihedral con- 
figuration to compute the rotation matrix R defined by (4); 
Then, transform the image coordinates from pi’s to p:’s  by 
using the relation in ( 3 ) .  

Step 3: Match the 2-D vs. 3-D angles; then, determine the 
original equation system by (5) and (7). 

Step 4 :  Derive the fifth-order equation ( 1 3 ,  then solve (15) 
to get cosyl; if there is no solution, go to step 8. 

Step 5: Calculate cosy2 by (14); if there is no solution, 
go to step 8. 

Step 6: Calculate cosy3 according to the third equality of 
(9); if there is no solution, go to step 8; 

Step 7: Check the solution against the original equation 
system (7). 

Step 8: If there is no solution but some other matching 
pattern exists for the 2-D and 3-D angles, adopt a new 
matching pattern, go to step 3; otherwise, terminate. 

Step 9: If additional information is available for finding a 
full solution, find the solution using ( 1  9)  or (20). 

Step 10: Transform the final result (17) back to the original 
camera coordinate system by using the inverse of the rotational 
matrix R defined in Step 2 .  

Prerequisite: 

111. ANALYSIS ON THE SOLUTION OF 
TRIHEDRAL ANGLE CONSTRAINT 

A. The Mirror Solution 

When a trihedral angle is specified just by the three angles 
7 ) 1 2 , 7 / 1 3 ,  and 7 / 2 3 ,  an important phenomena is the well-known 
“Necker’s cube vision illusion.” For instance, in Fig. 5, 
a projection of a cube wireframe may have two differeqt 
explanations depending on whether we think the vertex Po 
is at the back of the cube or in front of it. 
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A ”  

- .* 

Fig. 6. Mirror solution. 

The trihedral angle formulation (7) given by Kanatani 
[3] presents a mathematical explanation for the “Necker’s 
cube illusion.” In detail, note that if cos 71, cos y2 cos 7 3 ,  or 
y1 ; 7 2 ,  y3  form a solution of a trihedral angle constraint, then, 
-cosyl , -cosy2:-cosy3 or 7r - y1;7r - y2,7r - y3 form 
another solution of the same trihedral angle constraint. The5e 
two solutions are symmetric to the plane which contains PO 
and are parallel to the projection plane (Fig. 6). So, we call 
them as mirror solutions. 

In our solution scheme, notice that in (8), the coefficient 
c has a degree of freedom since it can take different signs. 
Consequently, the signs of Cl, D1 E l ,  in ( 1  2) and C2,Dz E2 
in (13) vary according to the choice of c; and so do the 
coefficients sg, s3 ,  and .SI in (IS). Therefore, suppose that 
cos 71 is a root of ( 15) when c takes a certain sing, the - cos y1 
must be a root of (IS) when c takes another sign. Similar 
conclusions also hold for cosy2 and cosyj. In other words, 
the different signs of c correspond to two solution groups of 
(7) by mirror characteristic. 

If no further clue is available, two mirror solutions are all 
the possible solutions for a trihedral angle constraint. However, 
in all cases, for a given trihedral angle constraint, the solution 
procedure needs to be executed just once by taking an arbitrary 
sign for c in (8), and then using the mirror feature to find the 
other solutions. The mirror feature enables us to save half the 
computation. 

The paper [ 121 claims that the “Necker’s cube illusion” can 
be suppressed in perspective projection but the conclusion is 
based on the prerequisite condition for the L3L approach. Our 
presentation shows that this phenomena exists in perspective 
projection as well as in orthographic projection. 

B. Special Configuration Cases 

Some special configurations of trihedral angle are com- 
monly encountered in real applications. For these cases, the 
general quintic equation (IS) can be simplified to certain lower 
and more succinct pattems to facilitate the solving procedures. 

Coplanar Configuratio;: CoQanar configuration means 
that the three vectors N I ;  G2. N3 are located on a plane. 
In this case, we have c = 0 in (8). It follows that 
C; = D; = E;  = 0 ( i  = 1 > 2 )  in (12) and (13), and so 
sg = s3 = s1 = 0 in (IS). Then, equation (IS) becomes 

sq cos4 y1 + .52 cos2 71 + s o  = 0. 

This is actually a quadratic equation on cos2 y1 
Sup- 

pose there are at least two rig_ht angles in a_trih_edral angle. 
1: this case, we can choose such that N,.Nj  = 0 and 
N2.N3 = 0. This implies that n = 0 and b = 0 in (8). 
Consequently, we have A; = B, = C; = O(i = 1: 2) in 
(12) and (13), and therefore -54 = s2 = SO = 0 in (15). Then, 
(1.5) can be rewritten as 

The Configuration With Two or Three Right Angles: 

4 sj cos y1 + s j  cos2 y1 + s1 = 0 

As in case (a), we obtain a quadratic equation on cos2 yl. 
In addition to the two cases for spatial angles, certain image 

configurations may also decrease the order of (15). We are 
interested in the conditions which lead s:, = 0 or sg = 0 and 
so a quadrinomial or a cubic can be resulted. 

Assume one right angle 
exists, say [jl - [32 = ~ / 2 ,  we have A ,  = EL = 0( i  = 1,2)  
in (12) and (13)  so that s:, = st) = 0 in (IS), we get a cubic 
from (IS) as 

Special Image Configurations: 

s 4  cos3 y1 + s 3  cos2 y1 + R2 (‘os y1 + s 1  = 0 .  

If there are three collinear points in an image configuration, 
let ,#I - /)2 = T ,  we have C1 = C2 = 0 in (12) and (13) so 
that s j  = 0 in (IS) and so (15) becomes a quadrinomial 

4 3 S A  cos y1 + s 3  cos y1 + s 2  cos2 y1 + *SI (’0s 71 + s o  = 0. 

The two special image configurations may appear when some 
objects are overlapping each other. This is not unusual in 
multiple-object scene. An instance is an object which is 
assembled by several parts. 

C. Comparison and Comments on the Problems 
of PnP, PnL, and PnA 

The constraints for the problems of PnP, PnL, and PnA 
can be divided into two categories. The first category is 
linear constraint. In this category, for 2-D image features, the 
corresponding 3-D features are defined in an object coordinate 
system, and the transformation from the object coordinate 
system to the camera coordinate system is the unknown. 
The second category is nonlinear constraint. In this category, 
for the interested 2-D image features, the corresponding 3-D 
features are given by a group of scalars, and the unknowns 
define a 3-D configuration in camera coordinate system. 

For example, PnL is a typical constraint in the first category 
because it is necessary to refer to some coordinate system for 
specifying a 3-D line. Concretely, let a spatial line be depicted 
as y‘+ t 6  in an object coordinate system, where (7 is a point 
on the line and rTi is the direction vector of the line; suppose 
the related image line is represented as Z . ( u , v ,  l)T = 0, 
where vector ii = (U? b,  c): denote the transformation from the 
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Type of Data 
Corresoondence 

Type of Dependence on Linear Investigations on 
Constraint Obiect Frame Solution Closed Form Solulion 

Yes 

11 Corresnondence I/. Non'inear I 
n > b  P4P, Horaud. 

[ I l l ,  1989 

NO No [a], 1981 I P3P. Linnainma. 

II JAnc 

object coordinate system t? the camera coordinate system by 
rotation R and translation T.  Then, we get two linear constraint 
equations 

f i .  Rr2 = 0 n' .  (Rrj*+f) = O  (21) 

for a line to line projection. PnP (19) is another constraint 
in the first category because the constraint equations (19) are 
linear, the 3-D points in (19) are defined in an object frame and 
the unknowns are the components of the rotation R and the 
translation T which form the transformation from the object 
coordinate system to the camera coordinate system. 

Contrary to PnL, PnA is a typical constraint in the second 
category because only n scalars are needed for specifying n 
spatial angles. On the other hand, obviously (6) is nonlinear 
and the unknowns define the orientations of the spatial angle 
in camera coordinate system. An interesting fact is PnP can be 
presented Ln both categories when 71 > 1. To make the matter 
clear, let P, = ( J ~ ,  ,yt. z,)*(I = 1 , 2 )  be two given 3-D points 
with the coordinates in a camera frame, we have 

Because :ci = u i z i  and :yi = , U ; Z ~ ,  the expression can be 
rewritten as 

(22) 

where ai = + 11: + l , b 1 2  = 7 L 2 ' f L l  + 111112 + 1. This time, 
we find that the PnP-constraint (22) is a nonlinear equation. 
The 3-D features of PI and i\ are given by their distance d12 

and the unknowns are the z coordinate of the two points in 
camera coordinate system. 

Generally speaking, a PnP or PnA problem can be restated 
as a related PmL problem, where m may differ from U. 
However, in mathematics, this is not the case when a PnP 
or PnA constraint is specified in category two. A constraint 
in category one may be changed into category two provided 
it  is essentially a PnP or PnA constraint, but by no means 
a constraint in category two can be changed into category 
one. Therefore, solution approach for the constraint in category 
two is more powerful than an approach for the constraint in 
category one in dealing with a same problem. 

The important facts on the problems of PnP, PnL and PnA 
are listed in Table I. Our approach presents the first closed 
form solution for P3A problem. Furthermore, by (6) we see 

+ 2012Z3 22 + (122; = dT2 

that each pair of corresponding 2-D and 3-D angles results in 
a new constraint equation with two variable. That means an 
PnA problem is solvable in a closed from one if > 3 and 
each spatial angle at least is a trihedral vertex. So the number 
of the constraint equations must be greater than or equal to the 
number of the unknowns. When this condition is satisfied, our 
approach provides a basic method to cope with the problem. 
Its distinctive power is that angle information is sufficient for 
the method. 

I v .  EXPERIMENTAL VALIDATION 

A. Experimental Design 

In regard to the application of the new developed approach, 
we are mainly concemed about its effects on the following 
three aspects. 

1)  Because the solutions are derived originally from the 
fifth order polynomial ( 1 3 ,  there may exist at most five 
pairs of mirror solution. However, there are possible 
extraneous roots caused by the elimination process. So 
each solution coming from (15), ( 1  4) and (7) should be 
formally checked by the three inherent criteria. 

C-1: Each solution obtained by (15), (14) and (9) must 
be in [-1. I]. 

C-2: Each group of solutions should satisfy the orig- 
inal equation system (7). 

C-3: If additional information about the 3-D length 
of the leg of a trihedral angle is available, the 
solution of (20) should be bigger that 0. 

In this section, our first task is to investigate how many 
solution can occur for an arbitrary trihedral angle con- 
straint and whether the true solution is always obtainable 
by our method. 

2) For a pair of matched 2-D and 3-D trihedral angle 
configurations, we call the trihedral angle constraint is 
correctly matched if the 2-D trihedral angle configuration 
is indeed the projection of the 3-D trihedral angle 
configuration, and each pair of 2-D and 3-D sides of 
the trihedral angle configurations is matched in real cor- 
responding relationship; otherwise, we say the trihedral 
angle constraint is an error match. In real application 
situation, a obtained trihedral angle constraint may or 
may not be correctly matched. Therefore. in this section, 
our second task is to inspect when a correctly matched 
trihedral angle constraint is derived, if the real solution 
can be gained by our method; or when an error match 
is presented, whether our method can identify the ill- 
condition. 

3) It is inevitable that the 2-D data abstracted from a real 
digital image are affected by noise. To understand the 
power of our method, our third task in this section is to 
study the presented approach for its sensitivity to noise. 

To make the three questions be tested in general, we 
arranged our experimental procedure as below. 
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TABLE I I  
T H ~  SOLUTION DISTRIBUTION Ob (15) 

Number of Solutions 
Frequency 

0 1  1 I 2  I 3  1 4 1 5  
I , ,  I I I ,  

[deal CorrectMatch 0 3 48 42 7 0 

Data-1: Randomly generate a set of ideal trihedral angle 
constraints in a camera coordinate system. This is 
a group of ideal data. 

Test-1: Use correct angle matching relationship on the ideal 
data to solve a trihedral angle constraint and then a 
investigate the solution pattern. 

Test-2: Use incorrect angle matching relationship on the 
ideal data to solve a trihedral angle constraint and 
then to check the solution results. 

Data-2: For a trihedral angle constraint, the effects of differ- 
ent noises can be simply considered as a composite 
noise acted on the jj1: ijz and [& of (7). Therefore, 
we choose a noise interval [-dy: dg] ,  for example 
[ -8 ,8 ]  with degree measure, as the source of noise. 
A sequence of noise triplet is randomly selected 
from the noise interval. Then, each trihedral angle 
constraint in Data-1 is added on a noise triplet to 
product a set of noise data. 

Data-3: Do Test-1 for Data-2. 
Data-4: Do Test-2 for Data-2. 

The test results are given in the following paragraphs. 

B .  The Initial Solution f i)r Trihedrul Angle Constraint 

Our solution of a trihedral angle constraint is obtained from 
the fifth-order equation (IS). The equation can be easily solved 
by iterative approaches. However, we consider the equation 
( I  5 )  as an equation about cos y1 so only the solutions in the 
interval [-1,1] are what we look for. Consequently, we can 
expect that, in the interval [-1,1], the number of solutions 
of equation (IS) may be 0, 1, 2, 3, 4 or S for a trihedral 

TABLE III 
RESERVED SOLUTION NI:MBER 

words, intuitively, we can not find a notable disparity among 
the distributions of the entries of the four rows in Table 11. 

C. The Selection of Real Solution for 
Trihedral Angle Constraint 

Once coscyl is solved, cosy2 and cosy3 can be obtained 
by (14) and (9). If a set of formal solutions of (IS) ,  (14), 
and (9) is a real solution of a trihedral angle constraint, the 
solutions must satisfy the inherent criteria C-1 and C-2. We 
call a this kind of solution set as a reserved solution for a 
trihedral angle constraint. In other word, a reserved is a real 
solution of a trihedral angle constraint. Our experiment shows 
that the reserved solutions have a very different distribution 
comparing with Table 11. Table 111 is the result. 

By Table 111, we see that the overwhelming majority of 
the error matched trihedral angle constraints have no solution. 
That means that they can be effectively identified by our 
method. On the other hand, in the case of correctly matched 
trihedral angle constraints, we noticed that the true solution is 
always included in the reserved solutions for ideal data; and 
an approximate solution for the true value always exists in the 
reserved solutions for noised data (see Section IV-E for case 
studies). Therefore, our method is well behaved in dealing 
with real application problem. 

Note that in Table I1 and Table 111, we identify a pair 
of mirror solutions as one solution. In practice situation, if 
more information and knowledge about the observed object 
are available, usually the criterion C-3 and the constraint 
of visibility can be applied to solve the mirror solution 
uncertainty. 

angle constraint. Therefore, we first investigate the situation 
about the total number of solutions of (IS). According to the D .  Noise Sensiti1,ity Analysis 
procedure depicted in Section IV-A, one hundred groups of 
data are tested and the result is shown as Table 11. 

In Table 11, an entry represents the emerging frequency 
of the test ca5e specified by the corresponding row title and 
column title. For example, the entry 48 in the first row and 
the third column means that, when using a randomly generated 
set of an ideal trihedral angle constraint and supposing that the 
correct match for the constraint has been employed, we got the 
2 solution cases for 48 times in the 100 experiments. By Table 
11, we see that ( IS) usually has solution in the interval [-1,1] 
no matter what kind of experimental condition is assumed. 

We employ the statistical method of regression analysis to 
explore our technique for its sensitivity in a noise environment. 

As we mentioned in Section IV-A, for a trihedral angle 
constraint (7), the composite effect of noise can be represented 
by a disturbance on the 2-D angles I j j l , [ j a  and {jJ. For .i = 
1. 2.3.  denote pz as the noised pl ,  also denote y1  as the correct 
solution of (7) corresponding to [j, and i, as the solution of 
(7) corresponding to / I r .  Then, we investigate the covariant 
relationships for two kinds of corresponding values (Ayz, Ap,) 
and (+%, yr ) by following two linear regression models: 

Furthermore, there is no significant difference to distinguish 
the ideal data from noise data or distinguish the correct match 
from error match by just referring to solution of (15). In order 

= o,O + O,lnjjL + E ,  9, = + (L:lyl + E ,  (23) 

where A y 1  = -i: - -y7, A[jl = [j, - 8,. ( t  = 1.2.3).  
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(a). Plot of AS1 vs Ay1 

I 

LJ----l 
(c). Plot of A82 VS Ay2 

(b). Plot of y1 vs A 

1 

I *! ## u m .(I 

(0. Plot of y3 vs 93 ' 

Fig. 7. The plot charts for regression analysis of the noise sensitivity. 

According to the procedure described in Section IV-A, 
twenty five groups of synthetic data were generated for regres- 
sion analysis; where, the noises were selected from the noise 
interval [--5,5] with degree measure; and for multiple solution 
cases, we chose the best approximation of the correct value y L  
as ; Y I .  Our intention is to test the null statistical hypotheses: 

Ho: (L, = 0 and Ho: = 0 ( i  = 1.2 .3)  (24) 

by using the analysis of variance (ANOVA) to check the data 
fitness for the linear regression model (23). 

The results of the regression analysis are presented by Table 
1V and Fig. 7. The results shows us that there is no definite 
relationship between Ayi and A{jj; but very strong linear 
relationship exist between ;Y; and yi. Therefore, the solution 
of our method for trihedral angle constraint is stable under 
the noise environment with [ -so.  5'1 noise interval. More 
generally, we can expect that the similar results will occur for 
different but reasonable noise intervals. In fact, this is true 
for our another test with noise interval [ -H", 8'1. We choose 
[ - so ,  5'1 as our noise interval because experimentally we 
consider the interval can cover noise range in normal situation. 
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Models 

A?i = 010 + ollAPl 
A72 = a, + a?, Ap2 
Ar3 = + 

t = aio + aily1 
f2 = aio + oil r2 
f3 = a;o + r, 
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F-value for the P-value for the Acceptance for the 
Null Hypotheses Null Hypotheses Null Hypotheses 

1.811 0.1910 Accept 
0.532 0.4728 Accept 
0.001 0.9821 Accept 

464.508 O.(K)01 Reject 
353.901 0.0001 Reject 
253.391 0.0001 Reject 

Fig. 8 

VI1 7713 q2? 
n 72 yi 

D1 p, 
b, b2 ,b, 

(a) 

The solution configurations of case I .  (a) The ideal solution. (b) The noised solution, 

67.571604 86.834868 69.342293 
130.853547 134.728754 138.439739 
88.523299 - 9.910554 - 121.549899 
86.838031 - 8.336878 - 123.994752 

cos rl cos y2 cos 7, 
0.970826 - 0.053171 2.835116 
0.999666 0.385158 0.032857 

- 0.654128 - 0.703751 - 0.748258 
cos f] cos f2 cos f, 

0.801787 - 0.059474 3.339292 
0.983277 0.409125 - 0.098713 

- 0.626433 - 0.717331 - 0.763436 

7, 72 73 
* * * 
* * 

130.853547 134.728754 138.439739 

7, ?1 f3 

* * 
* * * 

128.787414 135.834538 139.768061 

For these reasons, we conclude that the method is robust in 
real application situation. 

E .  The Case Studies 

In this section, different solution patterns for trihedral angle 
constraint will be illustrated in detail. For each case, first, 
the ideal image data l&j[&.,i& and the noised image data 
f i l ;  /&; & are produced depending on a trihedral angle which 
is specified by the three angles of 'r)12, ' r ) ~ : j  and r/2:3; then, the 

TABLE VI 
EXAMPLE OF Two SOLUTION CASE 

37.899191 69.760851 62.179838 

derived solutions 71, y 2  7 3  and +I ,  92 ~ j 3  will be shown by 
tables and displayed by wireframe pictures. 

For a trihedral angle con- 
straint, a single solution is mostly encountered (see Table 111). 
An example of a single solution case is shown in Table V, and 
the two solutions are displayed in Fig. 8. We see in the Table V, 
as well as in the following tables for the case 2 to 4, a solution 
which matches the original data always can be obtained in the 
solutions of the ideal data. Also, in most cases, it is actually 
difficult to tell the difference of a pair of corresponding ideal 
and noise solutions by watching the solution figures. 

In the example of the two 
solutions case shown in Table VI, the first solution de- 
rived from ideal data is the one which matches the original 
trihedral angle configuration but as a mirror image. The 
other solution derived from ideal data is an approximate 
solution to the original trihedral angle configuration. In fact, 
we have found that when there are multiple solutions in a 
trihedral angle constraint, usually these solutions are spread 
around the two correct mirror solutions respectively in some 
degree. This property may be utilized to classify the multiple 

Case I )  Single Solution Case: 

Case 2) Two Solution Case: 
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Fig. 
sol1 

sol 
Thl 
9(a 

(e) (0 
, 9. 
ition. (e) Watch the second ideal solution from another view position. (0 Watch the second noised solution from another view position. 

The solution configurations of case 2. (a) The first ideal solution. (b) The tirst noised solution. (c) The second ideal solution. (d) The second n 

utions into two groups for further processing in application. position; where, the side formed by Po and P3 in 
e solutions in Table VI are displayed in Fig. 9. Fig. 9(c) or (d) is occluded by the face formed by Po, PI 
,)-(d) are the four solutions observed from a same view P2. Fig. 9(e) and (f) are the pictures of watching the 

oised 

Fig. 
and 
two 
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(e) (0 
Fig. 10. 
noised solution. (e) The third ideal solution. (f) The third noised solution. 

solutions displayed in Fig. 9(c) and (d), but from another 
view position. This time, they look like the picture Fig. 9(a) 
and (b). 

The solution configurations of case 3. (a) The first ideal solution. (b) The first noised solution. ( c )  The second ideal solution. (d) The second 

Case 3 )  Three Solution Case: We show two examples for 
the three solutions case and the four solutions case in the 
following text. However, actually the situation that the number 
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( e )  (0 
Fig. 1 I .  
noised solution. (e) The third ideal solution. (0 The fourth ideal solution. 

The solution configurations of case 4. (a) The first ideal solution. (b) The first noised solution. (c) The second ideal solution. (d) The second 

of solutions is more than two is very few for trihedral angle 
constraint. Among the several hundreds of trihedral angle 
constraints we generated randomly, the case of three solutions 

or four solutions did not exceed 15, and we have not found a 
case of five solutions although the solutions is derived from 
the fifth-order (15). 
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- 0.918088 - 0.330667 - 0.142751 

TABLE VI1 
EXAMPLE OF THREE SOLUTION CASE 

356.648091 109.309237 98.207079 

cos 7, cosy2 cosn 

110 278410 85 662193 60 646586 

TABLE VI11 
EXAMPLE OF FOUR SOLUTION CASE 

96.639703 78.120769 128.700834 

In the example of the three solutions case shown in Table 
VII, the correct ideal solution is the second one. Again, the cor- 
rect solution is the mirror image to the original configuration. 
Fig. 10 shows the pictures of the solutions in Table VII. 

In the example of the four 
solutions case shown in Table VIII, we can notice that the 
number of solutions is four for ideal data but just two for noisy 
data. The situation that the number of solutions for noisy data 
is less than that for ideal data is very common for trihedral 
angle constraint. By comparing Table I1 and Table 111, we 
can have a knowledge for this situation. On the other hand, 
although the number of solutions for noisy data may be less 
than that for ideal data, we notice that the approximation of 
the correct solution can be obtained by noisy solution in the 
overwhelming majority cases. 

The pictures of the six solutions in Table VI11 are displayed 
in Fig. 11. 

Case 4 )  Four solution Case: 

V. CONCLUSION 
Methods for solving the orientation and position of an object 

from a single perspective projection view are important for 
their wide applications and powers. The method presented 
in this paper permits us to find an analytic solution of a 
trihedral angle constraint by directly using angle information. 
Angle is a very common feature for characterizing a variety of 
objects. The knowledge about the angles of an object provides 

a strong clue for estimating the orientation and position of the 
object. So the constraints involving angles have been studied 
and applied in computer vision and image analysis by many 
researchers. Our method gives the first closed form solution 
for the problem of angle constraint in perspective projection. 
Trihedral angle is the simplest but also the most encountered 
angle constraint in 3-D computer vision. For different cases 
of trihedral angle constraint depicted in Fig. 1 ,  the proposed 
approach can be effectively used to recover the orientation and 
position of an object. Furthermore, our method also provides a 
basic approach for dealing with the general PnA problems pro- 
vided that the number of constraint equations on PnA problem 
is greater than or equal to the number of unknowns. The results 
of simulation experiments show that the new method is not 
only a real time technique of shape from angle constraint, but 
also powerful enough to cope with noisy environments in real 
applications. With the new developments, we present a overall 
analysis on the essential characteristics of PnP, PnL, and PnA, 
the three fundamental techniques used for the problem of shape 
from inverse perspective projection. The combination of the 
three techniques of PnP, PnL, and PnA certainly is a very 
promising tool to deal with various situations in the problem 
of shape from perspective. To design a sound algorithm for 
this unified approach is a topic for our further research. 
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