
Double- and Triple-Step
Incremental Linear Interpolation

ncremental linear interpolation determines the set of n + 1 I equidistant points on an interval [a, b] where all variables in-
volved (n , a, h, and the set of equidistant points) are integers and
n > 0. The interpolated points are denoted asx,. 0 5 i < n and de-
fined by rounding off the following mathematical expression:

x, = a + [(h - a)/n]i = a + ki (1)

where k = (h - a) /n . Often. interpolation algorithms must also
be reversible-that is, the points produced when interpolating
from a to h must be the same as those produced when interpo-
lating from b to a.

Compared with integer addition, multiplication is a very time-
consuming operation. Therefore, algorithms that involve inter-
polation, such as the simulation of lighting effects and other
computer graphics and numerical applications. can be very slow
if they use multiplication to perform interpolation in a straight-
forward manner. As noted in earlier work. the problem of dig-
itizing a line segment is quite similar to linear interpolation.
Attempts to increase interpolation speed have therefore fo-
cused on using techniques developed for line-drawing algo-
rithms to reduce the logic and number of multiplications
required.

Field’ developed a fixed-point variant of the digital differen-
tial analyzer’ and called the variant A3. He also presented a
generalization of Bresenham’s line-drawing algorithm.’ which
he called BS. Both these algorithms are of the single-step type,
since each iteration produces only one new point. However, A3

Phil Graham and 5. Sitharama lyengar
Louisiana State University

~~ ~ ~

This variable-step

algorithm can reduce the

double-step algorithm 3

loop iterations by 12.5

percent on average, while

keeping the same worst-

case performance, code

complexity, and

initialization costs.

has two disadvantages: Its speed depends on the presence of a
barrel shifter and it can lose accuracy. BS needs no additional
hardware and has no error.

Rokne and Rao4 used an approach based on the double-step
line-drawing algorithm’ to perform linear interpolation. In the
resulting algorithm, each iteration determines two points while
using basically the same amount of logic as BS. Consequently,
their double-step interpolation algorithm can be roughly twice as
fast as BS. While interpolation algorithms based on other line-
drawing algorithms with larger fixed-step sizesh might be faster,
they also become much more complex.

We have recently shown, however, some advantages in using
variable-length step sizes to draw lines.’ Specifically, the double-
and triple-srep line-drawing algorithm sets either two or three
pixels per iteration with the same amount of logic and code
complexity as the double-step line-drawing algorithm. In this ar-
ticle, we generalize our findings for the line-drawing algorithm
to develop a double- and triple-step interpolation algorithm that
has similar advantages over the double-step interpolation
algorithm.

Double-step algorithm
Before discussing these algorithms in greater detail, we first

introduce additional notation used throughout the article. Let
a =xi,, x,. . . . ,x,, = b be the n + 1 interpolated values obtained by
rounding the numbers from Equation 1 on the interval [a, b].
Then X,, 0 5 i 5 n, is defined by the following mathematical ex-
pression:

. .

49

Feature Article

Xi = La + ik + 0.5J = Lx, + 0.51 (2)

In addition, let

X , =x2, = a + 2ik = a + i(2k) and (3)

Xl = LX, + 0.51 (4)

where i = 0,1, ... , Ln/21.

and Rao4 proved that
In the course of developing the double-step algorithm, Rokne

C < AiX I C + 1 (5)

where AtX = X, - X,+l, A$=X, -X,-l, C = LkJ, and C = L2kJ.
By setting 1, = X , - X,- , , they note that A,X = C if I , < C + 0.5,

and AtX = C + 1 if 1, 2 C + 0.5. They therefore determine the
value of A x b y checking the sign of 1,- (C + 0.5). Since n > 0, it
follows that D, = 241, - (C+ 0.5)) retains the sign of 1, - (C + O S) ,
giving

+ C if D, < 0
Xl:_,+C+l i f D , 2 0 (7)

Of course, if A x i s an even number, say 2m, then X2,_, can.be
readily determined because A& = m. However, when A,X is
odd, the following comparison determines the value of &+,:

X,+l + C' if D, < 2(b -a) -2n(C- C')
Xc-l + C'+ 1 if D, 2 2(b - a) - 2n(C - C') (8)

By subtracting D, from D,,,, Bao and Rokne6 prove that the
value of the discriminator for the next iteration is

D, + 4(b - a) - 2nC i fD,<O
D,+4(b-a) -2n(C+ 1) i f D , t O (9)

As Equations 7, 8, and 9 show, the double-step algorithm
performs many multiplications that are powers of two. These
multiplications can be eliminated by performing shifts instead.

B5 must also compute an interpolated point and update the
discriminator. Therefore, the comparison in Equation 8 is the
only additional work required by the double-step interpolation
algorithm. Thus, it uses roughly the same amount of logic as
B5 each iteration, while looping half as many times.

drawing findings, which assume that the slope of the line being
drawn is less than or equal to one (that is, 0 2 b - a n). This as-
sumption does not necessarily hold for linear interpolation.
However, the following theorems show that we can still deter-
mine additional points during some iterations of the double-
step interpolation algorithm.

Lemma 1. The values of the interpolated points are subject
to the following restriction: C I A$ +Ai+$ I C + 1.

Proof. The proof is similar to that for Equation 9 in Rokne
and Rae: given as Equation 5 here. For brevity, we omit the
proof.

Theorem 1. If C = 2 C and A$ = C' + 1, then A,+,X = C.
Proof. By Equation 6, Ai+& must equal either C or C + 1. Sup-

pose Ai+$ = C + 1. Then A$ + A,+$ = 2C + 2 = C + 2, which con-
tradicts Lemma 1. Therefore, the theorem must hold.

Theorem 2. If C = 2 C + 1 and AtX = C, then A,+# = C + 1.
Proof. By Equation 6, At+$ must equal either C or C + 1. Sup-

pose AI+$ = C. Then A$ + A,+$ = 2C = C- 1, which contradicts
Lemma 1. Therefore, the theorem must hold.

Naturally, when an additional point is interpolated, the dis-
criminator must be adjusted accordingly. We can use arguments
similar to those for the line-drawing algorithm7 to show how
the discriminator is updated. That is to say, we can redefine the
discriminator in similar terms but have it concern steps of size
one instead of size two. We do this by letting L:=X,-X~-~. There-
fore, k - 0.5 < 1: < k + 0.5. Since C' = LkJ, 1; is restricted to the
following range of values:

C - 0.5 5 1: < C + 1 + 0.5 (10)

Hence, if 1: < C' + 0.5, then A,X = C'. Otherwise, A,X = C+ 1. It
follows that the discriminator for steps of size one, defined as
D~"=2n(l~-(C+0.5)),retainsthesignofl~-(C+0.5) andthat

0,'' = 2n(l: - (C + 0.5))
= 2n(x, - X L - l - (C + 0.5))
= 2n(a + [i(b - a)/n] - X,+, - (C + 0.5))
= 2na + 2i(b - a) - 2nX,_, - n(2C'+ 1) (11)

Subtracting D; from D:, yields

DZI - D: = 2(b - a) - 2n(Xi - X c - l)

= 2(b - a) - 2nAix

Double- and triple-step algorithm
The double- and triple-step line-drawing algorithm can set a

third pixel in some of the loop iterations7 The algorithm there-
fore sets three pixels whenever possible and two pixels in the re-

algorithm takes a similar approach but generalizes the line-

Therefore, for steps of size one, the values of the interpolated
points are

ifD:<O
maining iterations. The double- and triple-step interpolation "= { ::::I:'+, i f D r 2 0 (13)

50 IEEE Computer Graphics and Applications

Double- and Triple-Step Interpolation

and the values of the discriminator are Rokne and R ~ o . ~)
We begin by noting that when Cis incorrectly calculated, ei-

ther k is an integer (that is, 2k is negative and even), or k is not
an integer (that is, 2k is negative and odd). For both cases,

D:+ 2(b - a) - 2nC’ if q< 0 r+ 2(b - a) - 2n(C’ + 1) if 2 0 (14)
D:+] =

Thus, the discriminator is adjusted as shown in Equation 14
when an additional point is interpolated.

Next, we must determine how the algorithm can terminate
and still interpolate the correct number of points. Again, we
take an approach similar to that for the line-drawing algorithm.’
Specifically, the loop is exited once in-, is determined. After
the algorithm exits the loop, it checks to determine whether
the last point, X n , has been found.

By using the following theorems and examining all possible
cases, we can prove that the algorithm interpolates the correct
number of points. For instance, suppose C is even and the last
point interpolated in the previous iteration was .in-*. For the al-
gorithm to interpolate an “extra” point, A,$ must equal C‘+ l (by
Theorem l), which is impossible (by Theorem 3 below). A sim-
ilar argument holds when C is odd. The proofs for the remain-
ing cases are obvious and are omitted for brevity, although there
are some exceptions when 2k is integral, which we discuss below.

Theorem 3. If C = 2C’, then A,X = C’.
Proof. It follows from the symmetric nature of lines and the

reduction of the line-drawing problem to linear interpolation
that A$ = AnX. (The one exception is when 2((b - a) modulo n)
= n, that is, x, = q + 0.5 where q is any integer. This exception can-
not occur when C = 2C’.) Since the value of A$ = C’, the value
of AnX must also equal C‘.

Theorem 4. If C = 2C’+ 1 and 2((b - a) modulo n) # n, then

Proof. The proof is similar to that for Theorem 3. For brevity,
A n i = C’+ 1.

we omit it here.

Implementation
Figure 1 on the next page presents a detailed algorithm that

interpolates points whether or not (b - a) < n. Note that the
double- and triple-step interpolation algorithm has as many
cases as the double- and triple-step line-drawing algorithm even
though the interpolation algorithm does not require (b - a) to
be less than or equal to n; further, the interpolation algorithm
must be reversible. The code assumes that the div operator di-
vides two integers, rounding towards zero. In addition, the mod
operator returns the remainder that occurs when one number
is divided by another. Due to this rounding, the values of C and
C’are decremented when a > b (see Figure 1).

Unless some additional checks are made, the algorithm will
calculate values of C and/or C’incorrectly when 2k is a negative
integer. Even though these values could be corrected, we leave
them unchanged because, as the following argument shows, the
algorithm will still output the correct interpolated values. (As
in other discussions, the argument uses some observations from

D, =4(b - a) - n(2C+ 1)
= 4(b - a) - n[2(2k - 1) + 11
= 4(b - a) - [4n(b - a)/n] + 2n - n
= n

Therefore, when k is a negative integer, the fourth “if” clause of
the detailed algorithm in Figure 1 is satisfied every iteration
because

D,,, = D, + 4(b-a) -2n (C+ 1)
= D, + 4(b - a) - 2n[(2k- 1) + 11
= D, + 4(b - a) - [4n(b - a)/n] + 2n - 2n
=D,+O

and the desired results are produced even though C# L2kl. When
k is not an integer,

v = 2(b - a) - 2n(c - C)
= 2(b - a) - 2nC
= 2(b - a) - 2ntkl
= 2(b - a) - 2n[((b - a) - (n/2))/n]
= n

where Vis the value in Equation 8 to which the discriminator is
compared to determine the middle point. Therefore, the algo-
rithm will again work correctly because the second “if” clause of
the detailed algorithm is satisfied every iteration.

Another exception occurs when 2k is an odd integer and a < b,
since an extra point can be output. However, the problem is
easily corrected by decrementing the value of C (the proof of its
correctness follows from the preceding discussion). Hence, the
algorithm works correctly when 2k is a negative integer or when
2k is a positive odd integer, even though C # L2kJ.

Efficiency
We now compare the performance of the double- and triple-

step interpolation algorithm with the double-step and the B5 al-
gorithms. (We make no comparison with the A3 algorithm
because it can lose accuracy and its speed depends on whether
the processor has a barrel shifter.)

To ensure that exactly n points are interpolated when
4(b - a) 5 n, the algorithm must keep a count of the number of
points produced. The following comparisons therefore use a
version of the double-step interpolation algorithm slightly mod-
ified to this purpose. (Implementing this count has the added
benefit of reducing code complexity.) Furthermore, we con-
sider only values of a, b, and n such that 0 5 (b - a) 5 nl2. Analy-
sis of the algorithms for the remaining sets of numbers involve
similar arguments.

May 1994 51

Feature Article

Figure 1. The double- and triple-step incremental linear interpolation algorithm.

procedure INTERPOLATION(a, b , n : integer);

int i n c r l , i nc r2 , i nc r3 , i , x , endpt;
int dx, dx2, n2, C, C', Cl', D , V; C' 1

begin
dx = b - a ;
dx2 = 2*dx;
n2 = 2*n;
if (dx < 0) then
begin

C1' = dx div n;

C = (dx2 div n) - 1;
C ' = c1' - 1;

end

begin
else

C' = dx div n;

if (2*(dxmod n) = n) then C = (dx2 div n) - 1
else C = dx2 div n ;

c1' = c' + 1;

end ;
D = 2*dx2 - n2*C - n;
V = dx2 - n2*C + n2*C';
i n c r l = 2*dx2 - n2*C;
incr2 = i n c r l - n2;
x = a ;
i = 0 ;
endpt = n - 1;
output (a) ;
{Case 1: C i s even)
if (C is even) then
begin

i nc r3 = incr2 + dx2 - n2*C';
while (i < endpt) do

{ i f c l ause 1: A,x + A,,,x = Cl
if (D < 0) then
begin

x = x + c';
output (x) ;
x = x + c';

output (x) ;
D = D + i n c r l ;
i = i + 2 ;
end

{ i f c l ause 2 : Alx + A,,,x = C + 1 and
A,x = C' + 1)
else if (D 2 V) then
begin

x = x + C l ' ;
output (x) ;
x = x + c';
output (x) ;
D = D + i nc r2 ;
i = i + 2 ;

{ i f c l ause 3: AJX + A,,,X = C + 1 and AiX =

else
begin

x = x + c';
output (x) ;
x = x + Cl ' ;
output (x) ;
x = x + c';
output (X I ;

D = D + i nc r3 ;
i = i + 3 ;

end ;
end

{Case 2 : C i s odd)
else
begin

i nc r3 = i n c r l + dx2 - n2*C' - n2;
while (i < endpt) do

{ i f c l ause 4: AiX + A,,,X = C + 1)
if (D 2 0) then
begin

x = x + Cl ' ;
o u t p u t (x) ;
x = x + Cl ' ;
output (x) ;
D = D + i nc r2 ;
i = i + 2 ;

end
(i f clause 5: AIX + A,+& = C and A$ = C')
else if (D < V) then
begin

x = x + c';
output (x) ;
x = x + Cl ' ;
output (x) ;
D = D + i n c r l ;
i = i + 2 ;

end
{ i f clause 6: A$ + A,+& = C and AIX = C' + 1)
else
begin

x = x + C l ' ;
output (x) ;
x = x + c';
ou tput (x) ;
x = x + Cl ' ;
ou tput (x) ;
D = D + i nc r3 ;
i = i + 3 ;

end ;
end

if (i < n) then o u t p u t (b) ;
end end ;

For our algorithm, n / 2 iterations occur in the worst case, such
as when (b - a) = 0. The best-case performance occurs when
3(b - a) = n. Under this condition, our algorithm interpolates
three points each iteration. Thus, it performs one-third fewer it-
erations than the double-step algorithm, which always deter-
mines two points each iteration.

For an average-case analysis, we first note that the relative
speed of the double- and triple-step algorithm depends on the
value of (b -a) . In other words, when (b - a) = 0, the algorithm
takes two steps every iteration. When (b - a) = 1, there can be
at most one iteration where three steps are taken, and so on. As-
suming that the number of steps of size three is (b - a) /2 on av-

52 IEEE Computer Graphics and Applications

Double- and Triple-Step Interpolation

Table 1. The number of tests and additions made by the B5,
double-step (DS), and the double- and triple-step (DTS)

interpolation algorithms for the average case.

Tests 32nll6 20nl l6 18nl l6

Additions 48nl16 321-111 6 30nll6

erage and that the average value of (h - a) is n/4. the average
number of iterations having steps of size three equals n / 8 , and
the average number of iterations is 7n/16. Since the double-
step algorithm always iterates n / 2 times. our interpolation al-
gorithm reduces the number of iterations by 12.5 percent on
average. As stated earlier, the BS algorithm requires n iterations
because it always takes one step.

Now that we have determined the number of iterations pcr-
formed by each algorithm, we can find the amount of work done
by the algorithms for the average case: Each iteration of the
BS algorithm performs two tests (one loop control test and one
test on the discriminator) and three additions (one addition to
calculate the point, one to update the discriminator, and one to
increment the count of the points produced). Therefore. BS re-
quires 2n tests and 3n additions on average.

On the other hand. the double-step algorithm performs the
same two tests as BS each iteration plus (h - a) additional tests
(which equals n /4 on average) since the test in Equation 8 is
sometimes required. The double-step algorithm also requres
four additions (two additions to calculate the two points. one to
update the discriminator. and one to increment the count).
Therefore, 2(n i2) + n i 4 = Sn/4 tests and 4(n/2) additions are
performed on average.

For the double- and triple-step algorithm. the work needed
in each iteration is similar to that for the double-step algorithm.
Thus, it requires 2(7n/16) + n / 4 = 18ni 16 tests and n + 2(7n/ 16)
=30n/16 additions (n additions for determining the points plus
the additions for updating the discriminator and incrementing
the count).

Table 1 summarizes the efficiency comparisons. Our analysis
confirms the empirical comparisons made in Rokne and Rao.'
which state that the ratio of the number of tests made by the
double-step and the BS algorithms equals 0.63, and the ratio o f
the number of additions equals 0.75 when the additions to up-
date the count are ignored. Although the multiple-step algo-
rithms perform substantially less work than BS for larger values
of n, BS has less overhead; so it may be desirable to test the
step count and use BS for small n.

Concluding remarks
Our method of linear interpolation generalizes the findings

of a variable-step line-drawing algorithm. The resulting inter-
polation algorithm has as many loops as the line-drawing algo-
rithm, but fewer restrictions on its input variables. Furthermore.
its benefits over the fixed-step interpolation algorithms are sim-
ilar to those of the variable-step line-drawing algorithm. That
is, the double- and triple-step interpolation algorithm can re-
duce the number of iterations of the double-step interpolation
algorithm while keeping the code complexity. initialization
costs, and worst-case performance the same. The improvement
in speed over the single-step BS algorithm is even greater. 0

Acknowledgments
This research is supported in part by the Oftice of Naval Research grant

NO00 14-91 -J-l306.

References
I . D. Ficld. "Incremental Linear Interpolation." ACM Trrms. Grcrph-

2. T.R.H. Sizer. The Digird I) i f ~ ~ , r ~ n r i r r / A r i i i / ~ . ~ e r . Chapman and Hall.

3. J.E. Bresenham. .'Incremental Line Compaction." Cornpurer J . .

4. J . Rokne and Y. Rao. "Double-Step Incremental Linear Interpola-
tion."ACM Trans. Gr.rrphics.Vol. I1.No. 2. Apr. 1992.p~. 183-192.

5. X. Wu and J. Rokne. "Double-Step Incremental Generation of
Lines and Circles, "Conipirtrr Vision. Graphics. und lnirrge Pro-
cessing, Vol. 37. No. 3. Mar. 1987. pp. 331-344.

6. P. Bao and J. Rokne. "Quadruple-Step Line Generation." Com-
purrrs & Grtrphic.;. Vol. 13. No. 4. 1989. pp. 461-469.

7. P. Graham and S.S. lyengar. "Double- and Triple-Step Incremen-
ta l Generation of Lines." Proc.. IYY.3 AC'M C'on7pirrer Science Conf .
ACM Press. New York. 1993.

ics. Vol. 4, No. 1, Jan. 1985. pp. 1-11.

London. 1968.

Vol. 25. No. 1. Feb. 1982. pp. 116-120.

Phil Graham is currently employed by Boss
Film Studios as a computer-generated imagery
programmer. working on special effects and im-
age processing in the entertainment business.
His research interests are in the design and anal-
ysis of graphic algorithms. particularly fractals.
rasterization algorithms. and rendering tech-
niques. Graham received his BS and PhD in

computer science from Louisiana State University in Baton Rouge.

S. Sitharama Iyengar is chair of the Computer
Science Department and professor of computer
science at Louisiana State University. His re-
search interests are in high-performance algo-
rithms and data structures. Iyengar received his
BS in engineering from Bangalore University.
India, his MS from the Indian Institute of Sci-
ence. and his PhD from Mississippi State Uni-

versity. He is an ACM national lecturer. a series editor for Neuro
Conipirririg of Coniplex Svsrmis, and area cditor for the Joiirna/ of Com-
pirrc'r Scirricx, mid Inforrrinrion.

May 1994 53

