
Double- and Triple-Step 
Incremental Linear Interpolation 

ncremental linear interpolation determines the set of n + 1 I equidistant points on an interval [a, b] where all variables in- 
volved (n ,  a, h, and the set of equidistant points) are integers and 
n > 0. The interpolated points are denoted asx,. 0 5 i <  n and de- 
fined by rounding off the following mathematical expression: 

x, = a + [ (h  - a)/n]i = a + ki (1) 

where k = ( h  - a) /n .  Often. interpolation algorithms must also 
be reversible-that is, the points produced when interpolating 
from a to h must be the same as those produced when interpo- 
lating from b to a. 

Compared with integer addition, multiplication is a very time- 
consuming operation. Therefore, algorithms that involve inter- 
polation, such as the simulation of lighting effects and other 
computer graphics and numerical applications. can be very slow 
if they use multiplication to perform interpolation in a straight- 
forward manner. As noted in earlier work. the problem of dig- 
itizing a line segment is quite similar to linear interpolation. 
Attempts to increase interpolation speed have therefore fo- 
cused on using techniques developed for line-drawing algo- 
rithms to reduce the logic and number of multiplications 
required. 

Field’ developed a fixed-point variant of the digital differen- 
tial analyzer’ and called the variant A3. He also presented a 
generalization of Bresenham’s line-drawing algorithm.’ which 
he called BS. Both these algorithms are of the single-step type, 
since each iteration produces only one new point. However, A3 
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has two disadvantages: Its speed depends on the presence of a 
barrel shifter and it can lose accuracy. BS needs no additional 
hardware and has no error. 

Rokne and Rao4 used an approach based on the double-step 
line-drawing algorithm’ to perform linear interpolation. In the 
resulting algorithm, each iteration determines two points while 
using basically the same amount of logic as BS. Consequently, 
their double-step interpolation algorithm can be roughly twice as 
fast as BS. While interpolation algorithms based on other line- 
drawing algorithms with larger fixed-step sizesh might be faster, 
they also become much more complex. 

We have recently shown, however, some advantages in using 
variable-length step sizes to draw lines.’ Specifically, the double- 
and triple-srep line-drawing algorithm sets either two or three 
pixels per iteration with the same amount of logic and code 
complexity as the double-step line-drawing algorithm. In this ar- 
ticle, we generalize our findings for the line-drawing algorithm 
to develop a double- and triple-step interpolation algorithm that 
has similar advantages over the double-step interpolation 
algorithm. 

Double-step algorithm 
Before discussing these algorithms in greater detail, we first 

introduce additional notation used throughout the article. Let 
a =xi,, x,. . . . ,x,, = b be the n + 1 interpolated values obtained by 
rounding the numbers from Equation 1 on the interval [a, b].  
Then X,, 0 5 i 5 n, is defined by the following mathematical ex- 
pression: 

. .  
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Xi = La + ik + 0.5J = Lx, + 0.51 (2) 

In addition, let 

X ,  =x2, = a + 2ik = a + i(2k) and (3) 

Xl = LX, + 0.51 (4) 

where i = 0,1, ... , Ln/21. 

and Rao4 proved that 
In the course of developing the double-step algorithm, Rokne 

C < AiX I C + 1 (5 )  

where AtX = X, - X,+l, A$=X, -X,-l, C = LkJ, and C = L2kJ. 
By setting 1, = X ,  - X,- , ,  they note that A,X = C if I ,  < C + 0.5, 

and AtX = C + 1 if 1, 2 C + 0.5. They therefore determine the 
value of A x b y  checking the sign of 1,- (C + 0.5). Since n > 0, it 
follows that D, = 241, - (C+ 0.5)) retains the sign of 1, - (C + O S ) ,  
giving 

+ C if D, < 0 
Xl:_,+C+l i f D , 2 0  (7) 

Of course, if A x i s  an even number, say 2m, then X2,_, can.be 
readily determined because A& = m. However, when A,X is 
odd, the following comparison determines the value of &+,: 

X,+l + C' if D, < 2(b -a) -2n(C- C') 
Xc-l + C'+ 1 if D, 2 2(b - a )  - 2n( C - C') (8) 

By subtracting D, from D,,,, Bao and Rokne6 prove that the 
value of the discriminator for the next iteration is 

D, + 4(b - a )  - 2nC i fD,<O 
D,+4(b-a) -2n(C+ 1) i f D , t O  (9) 

As Equations 7, 8, and 9 show, the double-step algorithm 
performs many multiplications that are powers of two. These 
multiplications can be eliminated by performing shifts instead. 

B5 must also compute an interpolated point and update the 
discriminator. Therefore, the comparison in Equation 8 is the 
only additional work required by the double-step interpolation 
algorithm. Thus, it uses roughly the same amount of logic as 
B5 each iteration, while looping half as many times. 

drawing findings, which assume that the slope of the line being 
drawn is less than or equal to one (that is, 0 2 b - a n). This as- 
sumption does not necessarily hold for linear interpolation. 
However, the following theorems show that we can still deter- 
mine additional points during some iterations of the double- 
step interpolation algorithm. 

Lemma 1. The values of the interpolated points are subject 
to the following restriction: C I A$ +Ai+$ I C + 1. 

Proof. The proof is similar to that for Equation 9 in Rokne 
and Rae: given as Equation 5 here. For brevity, we omit the 
proof. 

Theorem 1. If C = 2 C  and A$ = C' + 1, then A,+,X = C. 
Proof. By Equation 6,  Ai+& must equal either C or C + 1. Sup- 

pose Ai+$ = C + 1. Then A$ + A,+$ = 2C + 2 = C + 2, which con- 
tradicts Lemma 1. Therefore, the theorem must hold. 

Theorem 2. If C = 2 C  + 1 and AtX = C, then A,+# = C + 1. 
Proof. By Equation 6,  At+$ must equal either C or C + 1. Sup- 

pose AI+$ = C. Then A$ + A,+$ = 2C = C- 1, which contradicts 
Lemma 1. Therefore, the theorem must hold. 

Naturally, when an additional point is interpolated, the dis- 
criminator must be adjusted accordingly. We can use arguments 
similar to those for the line-drawing algorithm7 to show how 
the discriminator is updated. That is to say, we can redefine the 
discriminator in similar terms but have it concern steps of size 
one instead of size two. We do this by letting L:=X,-X~-~. There- 
fore, k - 0.5 < 1: < k + 0.5. Since C' = LkJ, 1; is restricted to the 
following range of values: 

C - 0.5 5 1: < C + 1 + 0.5 (10) 

Hence, if 1: < C' + 0.5, then A,X = C'. Otherwise, A,X = C+ 1. It 
follows that the discriminator for steps of size one, defined as 
D~"=2n(l~-(C+0.5)),retainsthesignofl~-(C+0.5) andthat 

0,'' = 2n(l: - (C + 0.5)) 
= 2n(x, - X L - l -  (C + 0.5)) 
= 2n(a + [i(b - a)/n] - X,+, - (C + 0.5)) 
= 2na + 2i(b - a )  - 2nX,_, - n(2C'+ 1) (11) 

Subtracting D; from D:, yields 

DZI - D: = 2(b - a) - 2n(Xi - X c - l )  

= 2(b - a )  - 2nAix 

Double- and triple-step algorithm 
The double- and triple-step line-drawing algorithm can set a 

third pixel in some of the loop iterations7 The algorithm there- 
fore sets three pixels whenever possible and two pixels in the re- 

algorithm takes a similar approach but generalizes the line- 

Therefore, for steps of size one, the values of the interpolated 
points are 

ifD:<O 
maining iterations. The double- and triple-step interpolation "= { ::::I:'+, i f D r 2 0  (13) 
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and the values of the discriminator are Rokne and R ~ o . ~ )  
We begin by noting that when Cis incorrectly calculated, ei- 

ther k is an integer (that is, 2k is negative and even), or k is not 
an integer (that is, 2k is negative and odd). For both cases, 

D:+ 2(b - a )  - 2nC’ if q< 0 r+ 2(b - a )  - 2n(C’ + 1) if 2 0 (14) 
D:+] = 

Thus, the discriminator is adjusted as shown in Equation 14 
when an additional point is interpolated. 

Next, we must determine how the algorithm can terminate 
and still interpolate the correct number of points. Again, we 
take an approach similar to that for the line-drawing algorithm.’ 
Specifically, the loop is exited once in-, is determined. After 
the algorithm exits the loop, it checks to determine whether 
the last point, X n ,  has been found. 

By using the following theorems and examining all possible 
cases, we can prove that the algorithm interpolates the correct 
number of points. For instance, suppose C is even and the last 
point interpolated in the previous iteration was .in-*. For the al- 
gorithm to interpolate an “extra” point, A,$ must equal C‘+ l (by 
Theorem l), which is impossible (by Theorem 3 below). A sim- 
ilar argument holds when C is odd. The proofs for the remain- 
ing cases are obvious and are omitted for brevity, although there 
are some exceptions when 2k is integral, which we discuss below. 

Theorem 3. If C = 2C’, then A,X = C’. 
Proof. It follows from the symmetric nature of lines and the 

reduction of the line-drawing problem to linear interpolation 
that A$ = AnX. (The one exception is when 2((b  - a )  modulo n )  
= n, that is, x, = q + 0.5 where q is any integer. This exception can- 
not occur when C = 2C’.) Since the value of A$ = C’, the value 
of AnX must also equal C‘. 

Theorem 4. If C = 2C’+ 1 and 2((b - a )  modulo n )  # n,  then 

Proof. The proof is similar to that for Theorem 3. For brevity, 
A n i  = C’+ 1. 

we omit it here. 

Implementation 
Figure 1 on the next page presents a detailed algorithm that 

interpolates points whether or not ( b  - a )  < n.  Note that the 
double- and triple-step interpolation algorithm has as many 
cases as the double- and triple-step line-drawing algorithm even 
though the interpolation algorithm does not require ( b  - a )  to 
be less than or equal to n; further, the interpolation algorithm 
must be reversible. The code assumes that the div operator di- 
vides two integers, rounding towards zero. In addition, the mod 
operator returns the remainder that occurs when one number 
is divided by another. Due to this rounding, the values of C and 
C’are decremented when a > b (see Figure 1). 

Unless some additional checks are made, the algorithm will 
calculate values of C and/or C’incorrectly when 2k is a negative 
integer. Even though these values could be corrected, we leave 
them unchanged because, as the following argument shows, the 
algorithm will still output the correct interpolated values. (As 
in other discussions, the argument uses some observations from 

D,  =4(b - a )  - n(2C+ 1) 
= 4(b - a )  - n[2(2k - 1) + 11 
= 4(b - a) - [4n(b - a)/n] + 2n - n 
= n  

Therefore, when k is a negative integer, the fourth “if” clause of 
the detailed algorithm in Figure 1 is satisfied every iteration 
because 

D,,, = D, + 4(b-a) -2n (C+ 1) 
= D, + 4(b - a )  - 2n[(2k-  1) + 11 
= D, + 4(b - a )  - [4n(b - a)/n] + 2n - 2n 
=D,+O 

and the desired results are produced even though C# L2kl. When 
k is not an integer, 

v = 2( b - a )  - 2n( c - C )  
= 2(b - a )  - 2nC 
= 2(b - a )  - 2ntkl 
= 2(b - a )  - 2n[((b - a) - (n/2))/n] 
= n  

where Vis the value in Equation 8 to which the discriminator is 
compared to determine the middle point. Therefore, the algo- 
rithm will again work correctly because the second “if” clause of 
the detailed algorithm is satisfied every iteration. 

Another exception occurs when 2k is an odd integer and a < b, 
since an extra point can be output. However, the problem is 
easily corrected by decrementing the value of C (the proof of its 
correctness follows from the preceding discussion). Hence, the 
algorithm works correctly when 2k is a negative integer or when 
2k is a positive odd integer, even though C # L2kJ. 

Efficiency 
We now compare the performance of the double- and triple- 

step interpolation algorithm with the double-step and the B5 al- 
gorithms. (We make no comparison with the A3 algorithm 
because it can lose accuracy and its speed depends on whether 
the processor has a barrel shifter.) 

To ensure that exactly n points are interpolated when 
4(b - a )  5 n, the algorithm must keep a count of the number of 
points produced. The following comparisons therefore use a 
version of the double-step interpolation algorithm slightly mod- 
ified to this purpose. (Implementing this count has the added 
benefit of reducing code complexity.) Furthermore, we con- 
sider only values of a, b, and n such that 0 5 ( b  - a )  5 nl2. Analy- 
sis of the algorithms for the remaining sets of numbers involve 
similar arguments. 
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Figure 1. The double- and triple-step incremental linear interpolation algorithm. 

procedure INTERPOLATION(a, b ,  n :  integer); 

int i n c r l ,  i nc r2 ,  i nc r3 ,  i ,  x ,  endpt;  
int dx, dx2, n2, C, C', Cl', D ,  V;  C' 1 

begin 
dx = b - a ;  
dx2 = 2*dx; 
n2 = 2*n; 
if (dx < 0 )  then 
begin 

C1' = dx div n; 

C = (dx2 div n )  - 1; 
C '  = c1' - 1; 

end 

begin 
else 

C' = dx div n; 

if (2*(dxmod n)  = n)  then C = (dx2 div n ) -  1 
else C = dx2 div n ;  

c1' = c' + 1; 

end ; 
D = 2*dx2 - n2*C - n; 
V = dx2 - n2*C + n2*C'; 
i n c r l  = 2*dx2 - n2*C; 
incr2  = i n c r l  - n2; 
x = a ;  
i = 0 ;  
endpt = n - 1; 
output ( a )  ; 
{Case 1: C i s  even) 
if ( C  is even) then 
begin 

i nc r3  = incr2  + dx2 - n2*C'; 
while ( i  < endpt )  do 

{ i f  c l ause  1: A,x + A,,,x = Cl 
if (D < 0) then 
begin 

x = x + c'; 
output  ( x )  ; 
x = x + c'; 

output ( x )  ; 
D = D + i n c r l ;  
i = i + 2 ;  
end 

{ i f  c l ause  2 :  Alx + A,,,x = C + 1 and 
A,x = C' + 1 )  
else if (D 2 V) then 
begin 

x = x + C l ' ;  
output ( x )  ; 
x = x + c'; 
output ( x )  ; 
D = D + i nc r2 ;  
i = i + 2 ;  

{ i f  c l ause  3: AJX + A,,,X = C + 1 and AiX = 

else 
begin 

x = x + c'; 
output  ( x )  ; 
x = x + Cl ' ;  
output ( x )  ; 
x = x + c'; 
output ( X I  ; 

D = D + i nc r3 ;  
i = i + 3 ;  

end ; 
end 

{Case 2 :  C i s  odd) 
else 
begin 

i nc r3  = i n c r l  + dx2 - n2*C' - n2; 
while (i < endpt )  do 

{ i f  c l ause  4: AiX + A,,,X = C + 1) 
if (D 2 0 )  then 
begin 

x = x + Cl ' ;  
o u t p u t ( x ) ;  
x = x + Cl ' ;  
output (x) ; 
D = D + i nc r2 ;  
i = i + 2 ;  

end 
( i f  clause 5: AIX + A,+& = C and A$ = C') 
else if (D < V) then 
begin 

x = x + c'; 
output  (x) ; 
x = x + Cl ' ;  
output ( x )  ; 
D = D + i n c r l ;  
i = i + 2 ;  

end 
{ i f  clause 6: A$ + A,+& = C and AIX = C' + 1) 
else 
begin 

x = x + C l ' ;  
output ( x )  ; 
x = x + c'; 
ou tput  ( x )  ; 
x = x + Cl ' ;  
ou tput  (x) ; 
D = D + i nc r3 ;  
i = i + 3 ;  

end ; 
end 

if ( i  < n )  then o u t p u t ( b ) ;  
end end ; 

For our algorithm, n / 2  iterations occur in the worst case, such 
as when (b - a)  = 0. The best-case performance occurs when 
3(b - a )  = n. Under this condition, our algorithm interpolates 
three points each iteration. Thus, it performs one-third fewer it- 
erations than the double-step algorithm, which always deter- 
mines two points each iteration. 

For an average-case analysis, we first note that the relative 
speed of the double- and triple-step algorithm depends on the 
value of (b -a ) .  In other words, when (b - a)  = 0, the algorithm 
takes two steps every iteration. When (b - a )  = 1, there can be 
at most one iteration where three steps are taken, and so on. As- 
suming that the number of steps of size three is (b - a) /2 on av- 
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Table 1. The number of tests and additions made by the B5, 
double-step (DS), and the double- and triple-step (DTS) 

interpolation algorithms for the average case. 

Tests 32nll6 20nl l6 18nl l6 

Additions 48nl16 321-111 6 30nll6 

erage and that the average value of (h  - a)  is n/4. the average 
number of iterations having steps of size three equals n / 8 ,  and 
the average number of iterations is 7n/16. Since the double- 
step algorithm always iterates n / 2  times. our interpolation al- 
gorithm reduces the number of iterations by 12.5 percent on 
average. As stated earlier, the BS algorithm requires n iterations 
because it always takes one step. 

Now that we have determined the number of iterations pcr- 
formed by each algorithm, we can find the amount of work done 
by the algorithms for the average case: Each iteration of the 
BS algorithm performs two tests (one loop control test and one 
test on the discriminator) and three additions (one addition to 
calculate the point, one to update the discriminator, and one to 
increment the count of the points produced). Therefore. BS re- 
quires 2n tests and 3n additions on average. 

On the other hand. the double-step algorithm performs the 
same two tests as BS each iteration plus ( h  - a )  additional tests 
(which equals n /4  on average) since the test in Equation 8 is 
sometimes required. The double-step algorithm also requres 
four additions (two additions to calculate the two points. one to 
update the discriminator. and one to increment the count). 
Therefore, 2(n i2 )  + n i 4  = Sn/4 tests and 4(n/2) additions are 
performed on average. 

For the double- and triple-step algorithm. the work needed 
in each iteration is similar to that for the double-step algorithm. 
Thus, it requires 2(7n/16) + n / 4  = 18ni 16 tests and n + 2(7n/  16) 
=30n/16 additions (n  additions for determining the points plus 
the additions for updating the discriminator and incrementing 
the count). 

Table 1 summarizes the efficiency comparisons. Our analysis 
confirms the empirical comparisons made in Rokne and Rao.' 
which state that the ratio of the number of tests made by the 
double-step and the BS algorithms equals 0.63, and the ratio o f  
the number of additions equals 0.75 when the additions to up- 
date the count are ignored. Although the multiple-step algo- 
rithms perform substantially less work than BS for larger values 
of n, BS has less overhead; so it may be desirable to test the 
step count and use BS for small n. 

Concluding remarks 
Our method of linear interpolation generalizes the findings 

of a variable-step line-drawing algorithm. The resulting inter- 
polation algorithm has as many loops as the line-drawing algo- 
rithm, but fewer restrictions on its input variables. Furthermore. 
its benefits over the fixed-step interpolation algorithms are sim- 
ilar to those of the variable-step line-drawing algorithm. That 
is, the double- and triple-step interpolation algorithm can re- 
duce the number of iterations of the double-step interpolation 
algorithm while keeping the code complexity. initialization 
costs, and worst-case performance the same. The improvement 
in speed over the single-step BS algorithm is even greater. 0 
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