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Abstract-We present a new edge detector for automatic ex- 
traction of oceanographic (mesoscale) features present in in- 
frared (IR) images obtained from the Advanced Very High Res- 
olution Radiometer (AVHRR). Conventional edge detectors are 
very sensitive to edge fine structure, which makes it difficult to 
distinguish the weak gradients that are useful in this applica- 
tion from noise. Mathematical morphology has been used in the 
past to develop efficient and statistically robust edge detectors. 
Image analysis techniques use the histogram for operations such 
as thresholding and edge extraction in a local neighborhood in 
the image. An efficient computational framework is discussed 
for extraction of mesoscale features present in IR images. The 
technique presented here, the Histogram-Based Morphological 
Edge detector (HMED), extracts all the weak gradients, yet re- 
tains theedgesharpnessin theimage. Wealsopresent newmorpho- 
logical operations defined in the domain of the histogram of an 
image. We provide interesting experimental results from ap- 
plying the HMED technique to oceanographic data in which 
certain features are known to have edge gradients of varying 
strength. 

I. INTRODUCTION 
N infrared (IR) image of the ocean obtained from the A Advanced Very High Resolution Radiometer 

(AVHRR) aboard the NOAA-7 satellite is shown in Fig. 
1. Such images are widely used for the study of ocean 
dynamics. In this image, bright areas represent warmer 
temperatures and light areas represent colder tempera- 
tures. The Gulf Stream, cold eddies, and warm eddies (the 
former are normally found south of the Gulf Stream and 
the latter north of the Gulf Stream) are examples of “me- 
soscale” ocean features with dimensions on the order of 
50-300 km. 

The Gulf Stream is warmer than the Surgasso Sea to its 
south, and much warmer than the waters to its north. 
Thus, its northern boundaries are more easily detectable 
than its southern boundaries in satellite IR images. Some- 
times, clouds obscure oceanographic features, making 
their detection difficult. The movement of these features 
compounds the problems associated with the detection. 
For instance, the Gulf Stream can meander 30 km in one 
day. Sometimes, these meanders lead to the “birth” of a 
Gulf Stream ring, which is a special type of eddy that 
forms from a cutoff Gulf Stream meander [1]-[3]. When 
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Fig. I .  North Atlantic image obtained on April 17. 

the Gulf Stream closes on itself, surrounding a mass of 
cold water at its southern boundary, a counterclockwise- 
rotating cold ring forms. Similarly, when the Gulf Stream 
surrounds a mass of warm water at its northern boundary, 
a clockwise-rotating warm ring originates [4]. 

Since satellite IR images of the ocean often depict the 
mesoscale features clearly, AVHRR imagery is used ex- 
tensively to study them. In Section 11, we discuss some 
techniques developed for the detection of edges in ocean- 
ographic images. In Section 111, we present recently de- 
veloped morphological edge detectors, and explain some 
preliminary concepts of morphological operations. We are 
not aware of any other morphological edge detectors based 
on the histogram of an image in the field of image analysis 
and computer vision. The Histogram-Based Morphologi- 
cal Edge detector (HMED) with the new morphological 
operations is explained in Section IV. Our implementa- 
tion’s results, when applied to oceanographic images, are 
given in Section V. 

11. EDGE DETECTION I N  OCEANOGRAPHIC IMAGES 
The Naval Research Laboratory began development of 

the Semi-Automated Mesoscale Analysis System (SA- 
MAS), a comprehensive set of algorithms that handles the 
entire automated analysis problem, from low-level seg- 
mentation through intermediate-level feature formation 
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and into higher level artificial intelligence modules that 
estimate positions of previously detected features when 
cloud cover obscures direct observation in the current im- 
age set [5]. 

The current version of SAMAS groups various modules 
into these three categories. A cloud detection algorithm 
processes the thermal infrared image of the ocean to clas- 
sify all pixels either as cloud pixels or noncloud pixels 
[6]. Considering only noncloud pixels, the system uses 
the cluster shade texture measure as the low-level opera- 
tion and detection of zero crossings in cluster shade as the 
medium-level operation, leading to a set of edge primi- 
tives [7]. SAMAS uses two-step nonlinear relaxation [8] 
to label edge primitives [9]. In the first relaxation labeling 
step, a priori probability values of the edge pixels are 
computed using a priori knowledge of the approximate 
sizes and positions of the features, based on a previous 
analysis (typically from one week earlier). In the second 
step, these probability values are updated using compati- 
bility coefficients in an iterative fashion, until the values 
stabilize. The relaxation labeling technique reduces un- 
certainty in the assignment of labels to edge pixels [9]. 
We also developed a topographic-based feature labeling 
module that uses the surface topology of a pixel and its 
neighborhood [ 101. A rule-based expert system predicts 
the future position of the mesoscale features [5], [ 111. We 
briefly discuss some edge detection algorithms specifi- 
cally designed for oceanographic images. 

SAMAS currently uses a cluster shade algorithm for the 
detection of edges [7], [ 121. The algorithm works in three 
stages: 1) computation of cluster shade texture measure 
from the gray-level cooccurrence (GLC matrix), 2) com- 
putations of zero crossings in the cluster shade image to 
detect the edges, and 3) a cleaning/dilation/thining step is 
applied to the edge image. The cluster shade edge detec- 
tor is characterized by accurate edge localization while 
rejecting fine structure within the detected edges. 

Cayula and Cornillon [ 131 have developed an edge-de- 
tection algorithm for oceanographic satellite images. Their 
algorithm operates at three levels: picture level, window 
level, and local/pixel level. At the picture level, most ob- 
vious clouds are identified and tagged so that they do not 
participate at the lower levels. The cloud-finding proce- 
dure is based on temperature and shape. At the window 
level, the temperature distribution in each window is ana- 
lyzed to determine the statistical relevance of each pos- 
sible front, using unsupervised learning techniques. Fi- 
nally, local edge operators are used to complete the 
contours found by the region-based algorithm. Since the 
local operations are used along with the window-based 
algorithm, the qualities of scale invariance and adaptivity 
associated with the region-based approach are not lost. 

111. MORPHOLOGICAL EDGE DETECTORS 
Mathematical morphology based on geometric shape is 

used in biomedical image processing, robot vision sys- 
tems, and low-level vision problems for its conceptual 
simplicity. Many techniques in computer vision use math- 

ematical morphology as a tool for the extraction of fea- 
tures and recognition of objects. Matheron [14] intro- 
duced the application of mathematical morphology for 
analyzing the geometric structure of metallic and geologic 
samples. Serra [ 151 applied mathematical morphology for 
image analysis. Haralick [ 161 presented a review of math- 
ematical morphology applied to image analysis. 

Peleg and Rosenfeld [ 171 use gray-scale morphology to 
generalize the medial axis transform to gray-scale imag- 
ing. Pelag et al. [ 181 measure changes in texture proper- 
ties as a function of resolution using gray-scale morphol- 
ogy. Werman and Pelag [19] use gray-scale morphology 
for texture feature extraction. We will study the use of 
gray-scale morphology and texture information for edge 
detection in oceanographic images. 

Recently, mathematical morphology has been applied 
for the extraction of edges. Most of the template-based 
edge detectors are known to perform satisfactorily under 
high signal-to-noise ratio, but degrade significantly when 
noise is introduced into the system. Some of the template- 
based edge detectors are the Prewitt operators and the 
Kirsh operator. A number of edge detectors fit a polyno- 
mial function on the image data. Then, the first and sec- 
ond directional derivatives are computed, from which the 
edges are extracted. Mathematical morphology-based 
edge detectors have been shown to outperform most spa- 
tial and differentiation-based edge detectors [20]. Mor- 
phological edge detectors are local neighborhood nonlin- 
ear operators. Appropriately used, morphological 
techniques tend to simplify image data while preserving 
the shape characteristics and eliminating irrelevancies. 
These algorithms often generate useful and surprising re- 
sults. We briefly present preliminary concepts of mathe- 
matical morphology. Matheron [14] gives a detailed dis- 
cussion of mathematical morphology. 

A .  Preliminary Concepts 
An image “f” is a set of pixels in a rectangular array 

(mesh). f(i ,  j )  is a pixel at coordinate (i, j )  in the image 
f. A structuring element is analogous to the kernelhem- 
plate of a convolution operation, and it is associated with 
a predesigned shape. A structuring element may have any 
shape. Morphologic operators can be visualized as work- 
ing with two images, the original image and the structur- 
ing element. The structuring element is used as a tool to 
manipulate the image using various operations, namely, 
dilation, erosion, opening, and closing. The dilation of a 
binary imagefby a structuring element S is defined as 

f Q S = {a + bla E ~ A  b E S } .  

The erosion of a binary imagefby a structuring element 
S is defined as 

f e S =  {a  - b l a E f A b E S } .  

The “dilation” d of a gray-scale imagefby a structuring 
element S is defined as 

d ( i , j )  = MAX (f(i + x , j  + y )  8 S(x, y ) )  
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where x and y are the coordinates of a cell in S whose 
center cell is the origin, and (i + x, j + y) is in the domain 
off.  Similarly, “erosion” of a gray-scale image f by a 
structuring element S is defined as 

e ( i , j )  = MIN (f(i + x , j  + y )  e S(x, y ) ) .  

The closing operation is a dilation followed by an erosion, 
and similarly opening is an erosion followed by a dilation. 
Thus, closing is defined as 

c(i, j )  = MIN (d(i  + x, j + y )  e S(x, y)) 

where d is the dilated image of original imagef. Opening 
is defined as 

o ( i , j )  = MAX (e(i + x , j  + y )  8 S(x, y ) )  

where e is the eroded image of original imagef. A se- 
quence of these gray-scale morphological operations on 
an image often produces useful results. For instance, a 
simple morphological edge detector is the dilation resid- 
ual edge image, defined as 

DR ( i ,  j )  = d( i ,  j )  - f ( i ,  j ) .  

Similarly, the erosion residual edge detector is given by 

ER ( i ,  j )  = f(i, j )  - e(i, j ) .  

Even though these edge detectors are simple and robust, 
they are not reliable for extremely noisy images, and in- 
troduce spurious edges. 

Lee et al. [20] designed a Blur-Minimization Morpho- 
logical (BMM) operator for edge detection. The BMM 
operator blurs the original image by averaging the pixel 
values spanned by the structuring element. Dilated and 
eroded images are generated from the blurred image. Di- 
lation residual and eroded residual images are created us- 
ing these images. The edge strength at coordinate (i, j )  is 
given by the minimum of the dilation residual and erosion 
residual. Symbolically, we write 

where fa = Cf(i + x, j + y ) / N  is the blurred image, N is 
the number of cells in the structuring element, and (i + 
x, j + y) is defined in the domain of the image. In spite 
of being conceptually simple and computationally effi- 
cient, the BMM edge detector has been proven to perform 
better than the spatial- and differential-based edge detec- 
tors. 

Feehs and Arce [21] showed the importance of blurring 
the original image for morphological edge detection. They 
introduced an Alpha-Trimmed Multidimensional Mor- 
phological (ATM) edge detector that incorporates the 
opening and closing operations. They also proved statis- 
tically that ATM performs better than BMM. Let us con- 
sider the ATM edge detector for two-dimensional images 
with a structuring element of size n X n. The original 
image is initially blurred by fa = Cy=:+ f i / k  - 2 * a 

where k = n2 is the number of pixels in the original image 
spanned by the structuring image, fi is the ith smallest 
valued pixel in the sorted sequence of pixels infspanned 
by the structuring element, and a is the trimming factor. 
If a is 0, we consider all pixels spanned by the structuring 
element for blurring. If a = i ,  we consider all sorted pix- 
els greater than fi and less than fk - ; spanned by the struc- 
turing element. The edge strength at (i, j )  computed by 
the ATM edge detector is 

ATM ( i ,  j )  = MIN ((o(i, j )  - e(i, j ) ) ,  d ( i ,  j )  - c(i, j ) )  

in which the erosion and dilation operations are per- 
formed on the a trimmed blurred image, and the opening 
and closing operations are performed on the eroded and 
dilated images of the a trimmed blurred image. 

The ATM edge detector, like the BMM edge detector, 
is unable to extract the weak gradients associated with 
certain mesoscale features [22]. This possibly could be 
because the definition of gray-scale dilation and erosion 
considers only the maximum and the minimum intensity 
pixels in a given neighborhood of a pixel. As a result, the 
dilation and erosion residual values are not sufficient for 
these edge detectors to pick up the weak gradients. For 
increased structuring element sizes, weak gradients are 
extracted, along with other spurious edge pixels which are 
difficult to isolate. 

The cluster shade algorithm [7] presented earlier ex- 
tracts most of the weak gradient valued pixels, along with 
the strong gradient valued pixels. This is due to the ap- 
plication of a texture-based algorithm in an application 
where multiple gradient values are vital for interpretation. 
The algorithm is very computation intensive [12]. 

We seek a low-level segmentation module that is sim- 
ple in design and construction, despite making use of the 
texture information in the image. We anticipate that such 
a design would extract all the boundaries of the features 
irrespective of their gradient values. One of the possible 
methods of making use of texture information is to com- 
pute the first-order histogram in a neighborhood of a pixel. 

B. Motivation and Scope 
Previous morphological edge detectors are designed to 

work only in the image domain. Such designs ignore the 
vital information contained in the histogram of an (sub-) 
image. As a consequence, various weak gradient values 
pertaining to important features are missed in oceano- 
graphic IR images. We expect that a morphological edge 
detector that incorporates information from the image his- 
togram will provide improved performance while being 
conceptually simple and computationally efficient. In Sec- 
tion IV, we propose new morphological operations de- 
fined over the histogram of a neighborhood of a pixel. The 
new morphological operations are limited to erosion and 
dilation only, and the morphological basis of these new 
operations is explained in the context of oceanographic 
images only. 
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IV . HISTOGRAM-BASED MORPHOLOGICAL EDGE 
DETECTOR 

The histogram is a popular tool used in image process- 
ing and image analysis. It is used for edge detection, 
thresholding, texture feature extraction, and other related 
problems. Let H be the histogram of an image or sub- 
image, let go, g , ,  * * * , gi -  , be the gray levels for which 
the histogram is defined, and let h(go), h ( g l ) ,  - - - , 
h(gl- ,) be the count values for those gray levels. Previ- 
ously, researchers have designed image segmentation 
methods from the histogram using either global or local 
thresholding concepts. For instance, when a light object 
is present in dark background, the histogram may have 
twin peaks occumng at the intensities corresponding to 
the intensities of the object and background. A suitable 
threshold between the two peaks is selected to segment 
the object from the background [23]. When multiple ob- 
jects are present in the background, a global histogram is 
of little use. However, a local histogram in the neighbor- 
hood of a pixel would exhibit twin peaks from which an 
object can be segmented from the background [24]. 

It is noted that the gray-scale dilation and erosion are 
the maximum and minimum of the image pixels spanned 
by the structuring element, respectively. The definitions 
of gray-scale morphology, in fact, make use of the his- 
togram indirectly. This is explained using a structuring 
element S of height 0 in the following way: gray-scale 
dilation over the histogram is the maximum of go, g , ,  g;, 
. . .  , g i -  , for which h(gi) # 0. Similarly, the gray-scale 
erosion is the minimum of go,  g, ,  g i ,  - - , g l -  I for which 
h(gi) # 0. The average of the image pixels is computed 
from the histogram. It is also noted that the BMM and 
ATM edge detectors extract edges using the gray-scale 
dilation and erosion operations. But these definitions con- 
sider only the maximum and minimum of the image pixel 
intensities in a given neighborhood. Thus, we infer that 
there is a clear distinction in theories between the histo- 
gram-based edge detectors and morphology-based edge 
detectors. The essential ideas in the former methods stem 
from the fact that the histogram taken near the boundaries 
exhibits twin peaks, while the latter methods mark a pixel 
as an edge pixel depending on the maximum and mini- 
mum intensity values of the pixels near the boundaries. 
We anticipate that morphological edge detectors that use 
the histogram in an effective way would reduce the gap 
between these two edge detection theories. In doing so, 
we will develop extensions to the definitions of morpho- 
logical operations in the domain of the histogram, but not 
in the domain of the image. We anticipate that such ex- 
tensions provide us new directions in the notion of mor- 
phology-based edge detectors, particularly in the context 
of oceanographic images. 

Let a histogram H defined over gray levels go, g,, 
. . .  , gi- be computed using the image pixels spanned 
by the structuring element S centered at the coordinates 
(x, y). go and g l -  are the intensity of black and white 
pixels, respectively. Call the height of the histogram at 
these gray levels h(go), h ( g l ) ,  * - - , h(gl -  ,). Let the in- 

tensity of the pixel [at coordinates (x, y)], where the his- 
togram is computed, be g;. We define histogrammic di- 
lation h dilation at a pixel (x, y) as 

dh(xt Y) = (gj 1 W g j )  = max [h(g;),  h k ;  + 2), 

, h(g,- and (i I j I I - l)}. . . .  
Similarly, we define the histogrammic erosion h erosion 
as 

eh(x, Y) = ( g j l h k j )  = max [h(gO), h(gl), ' 
9 h(g;)l 

and (0 5 j I i)}. 
It is noted that both the dh and eh are defined in terms 

of peaks of the histogram on either side of the gray-level 
intensity gi of the pixel. By defining these operations in 
this fashion, we make a noticeable deviation from the tra- 
ditional dilation and erosion operations. 

is the gray-level intensity g, at which 
the histogram height is the maximum of all heights com- 
puted at gray-level intensities lower than the (average) 
gray-level intensity of the pixel. The value of dh is the 
intensity g d  at which the histogram height is the maximum 
of all histogram heights computed at intensities greater 
than the (average) intensity of the pixel. In case a unique 
intensity g,(gd) is not found, g,(gd) that is closer to g; is 
selected. 

One of the motivations for using h dilation and h ero- 
sion is as follows. Fig. 1 is unusually free of clouds. Even 
though many cloud detection algorithms are available, 
none of them detects all cloud pixels [6]. Therefore, some 
cloud pixels will be present in the input image. We recall 
that the traditional dilation and erosion definitions con- 
sider only the extreme values in the neighborhood of a 
pixel. If a cloud pixel is one of the extreme values, then 
an edge detector based on traditional mathematical mor- 
phology will extract spurious edge pixels. We anticipate 
a reduction in the extraction of spurious edge pixels when 
we use the h-dilation and h-erosion operations. 

A careful examination of these definitions indicates a 
strong link between the histogram-based and morphology- 
based edge detectors. For instance, consider a histogram 
computed in a neighborhood of a pixel near the boundary 
having (twin) peaks with the average intensity falling be- 
tween the peaks. The histogram-based methods search for 
the vulkys and peaks in the histogram, whereas the mor- 
phological methods (BMM and ATM) search for the ex- 
treme intensities that have nonzero histogram heights. 

Fig. 2 is the new edge detector that makes use of the 
histogrammic dilation and erosion. The edge strength in 
the edge image at (x, y) is given by 

The value of 

HMED (x, y) = min ( f ( x ,  Y )  - e h k  Y), 

' dh(x, Y> - f(x, Y)) 
where f ( x ,  y) is the average intensity gi  at coordinate 
(x, Y). 

Thus, the edge magnitude values in the output image 
are computed in a similar fashion to that of the BMM and 
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Fig. 2. Flowchart of HMED. 

ATM edge detectors. Normally, an edge detector should 
generate edge pixels of width two in case of ideal step 
edges. However, this is not true for edge detectors that 
take input images which are blurred or smoothed versions 
of the original image. The HMED technique, when used 
with large structuring elements, produces significant non- 
zero edge strength of width more than one pixel. This is 
consistent with the fact that HMED blurs the original im- 
age. Usually, the true edge pixels get assigned higher edge 
strength than their neighbors. Normally, a suitable thresh- 
old is selected to extract the true edge pixels. However, 
HMED extracts the true edge pixels using a nonmaxima 
suppression technique. 

Thus, we establish a computational framework that 
adapts the advantages of two edge detection theories. With 
such a computational framework, we show that HMED 
performs better than the BMM and ATM edge detectors. 

A. Comments on HMED 
The procedure HMED given in Fig. 2 takes a blurred 

image as input and produces an edge strength image in 
which nonmaxima suppression has to be performed. 

It is noted that a new histogram is not computed from 
scratch at every pixel’s neighborhood. The histogram of 
the adjacent neighborhood (x,  y + 1) is computed by us- 
ing the histogram computed at pixel (x,  y) as described in 
version 6 in [12]. 

The HMED algorithm presented here involves only pa- 
rameters such as the size of the structuring element and 
nonmaxima suppression. No strict rules can be stated in 
this regard. For the images considered here, we present 
results that are produced with structuring element sizes 15 
x 15, 17 x 17, 19 x 19, and 21 x 21. 

There are at least two ways in which we can extract the 
true edges: computation of zero crossings and suppression 
of nonmaxima. 

1) Let B denote a pixel in the blurred image, D the 
corresponding pixel in the H-dilated image, and E the cor- 
responding pixel in the H-eroded image. Extract zero 
crossings in the following way. If (B-E) is less than (D-B), 
then assign -(B-E) as the value at that point in the edge 
strength image, else assign (D-B) as the value. Then a 
zero-crossing test has to be performed. The significance 
of a negative value is that the histogram is skewed to the 
negative side of the mean value. A positive value indi- 
cates that the histogram is skewed to the positive side of 
the mean value. 
2) In case of nonmaxima suppression in the edge 

strength image, we suppress a pixel as a nonedge pixel if 
there exists a group of pixels whose value is much greater 
than the pixel to be suppressed [24]. 

B. Handling of Cloud Cover 
The test image in Fig. 1 is unusually free of clouds. A 

typical oceanographic image contains cloud cover as well 
as attenuation due to water vapor. Thus, the low-level vi- 
sion algorithms have to be designed to handle the cloud 
cover. One simple method to avoid the cloud pixels is to 
generate a cloud mask using a technique proposed in [6] .  
The cloud mask is a binary image that contains the values 
0 or 1. A value 0 signifies that the pixel is part of a cloud 
and 1 signifies a noncloud pixel. In this application, cloud 
pixels are treated as follows. 

1) A pixel in the IR image is considered a candidate 
edge pixel if and only if the cloud mask has value 1 at the 
same coordinate. 
2) For a candidate edge pixel, the histogram is com- 

puted by considering only the noncloud pixels. 

V. IMPLEMENTATION RESULTS 
The test data set consists of 12 satellite IR images of 

the North Atlantic. We present results from three. We 
processed the images with the BMM and ATM detectors 
using structuring elements of sizes 5 x 5, 7 x 7, 9 x 9, 
1 1 X 11, and 13 X 13, while we used structuring element 
sizes of 13 X 13, 15 x 15, 17 X 17, 19 x 19, and 21 x 
21 with the HMED detector. The ATM edge detector’s a 
parameter was 3 in all cases. We do not know of any strict 
rules to govern the choice of the structuring element’s size 
or the value of a. 

Figs. 3 and 4 all show the results obtained with Fig. 1. 
Fig. 3 shows the results of applying the BMM edge de- 
tector with structuring elements of sizes 5 x 5, 7 x 7, l l 
X 11, and 13 X 13. Increasing the structuring element’s 
size results in finding more edges. Fig. 4 shows the results 
of applying the ATM detector with structuring elements 
of sizes 5 X 5,9 X 9, 11 x 11, and 13 x 13. The results 
are slightly different, but again increasing the structuring 
element’s size finds more edges. Figs. 5 and 6 are the 
h-dilated and h-eroded images of Fig. 1. Fig. 7 is the gra- 
dient image created by taking the minimum of the resid- 
uals. Fig. 8 shows the results of applying the HMED de- 
tector with window sizes 13 x 13, 15 x 15, 17 x 17, 
and 19 X 19. The HMED detector finds far fewer spurious 
edges, and increasing the window size seems to increase 
the continuity of the edges without finding many more. 

Figs. 9 and 10 are also satellite images of the North 
Atlantic. Figs. 11, 12, and 13 show a comparative anal- 
ysis of the three methods applied to the three images. In 
each case, the result with the structuring element judged 
to give the best performance is shown. 

All three methods find the Gulf Stream’s North Wall 
and boundaries of warm eddies for all structuring ele- 
ments. These edges have high gradient values, so detec- 
tion is relatively easy. The South Wall and boundaries of 
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Fig. 3. Results of applying BMM on Fig. 1, (a) 5 X 5 structuring element. 
(b) 7 X 7 structuring element, (c) I 1  x 1 1  structuring element, (d) 
13 X 13 structuring element. 

Fig. 4.  Results of applying ATM on Fig. 1. (a) 5 X 5 structuring element, 
(b) 9 X 9 structuring element, (c) 1 1  x 1 1  structuring element, (d) 
13 X 13 structuring element. 

Fig. 5 .  H-dilated image of Fig. 1. Fig. 6 .  H-eroded image of Fig. 1 

cold eddies are spatially distributed over 6-7 pixels with creasing the size causes the BMM and ATM detectors to 
low gradient values. None of the detectors does as well introduce many spurious edges. However, the HMED de- 
in extracting these weak gradients as in finding the tector is able to extract these weak gradient values without 
stronger ones when using small structuring elements. In- introducing many spurious edge pixels. 
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Fig. 7.  Gradient image using Figs. 5 and 6. 

Fig. 8. Results of applying HMED with various stucturing elements on Fig. 1 .  (a) 13 x 13 structuring element, (b) 15 X 15 
structuring element, (c) 17 x 17 structuring element, (d) 19 x 19 structuring element. 

Fig. 9. North Atlantic image obtained on April 10. Fig. 10. North Atlantic image obtained on April 2 1 .  
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Fig. 11. Results of applying BMM, ATM, and HMED on Fig. 1. (a) BMM 
with 9 x 9 structuring element, (b) ATM with 7 x 7 structuring element, 
(c) HMED with 21 x 21 structuring element. 

Fig. 12. Results of applying BMM, ATM, and HMED on Fig. 9. (a) BMM 
with 9 X 9 structuring element, (b) ATM with 7 X 7 structuring element, 
(c) HMED with 21 X 21 structuring element. 

Fig. 13. Results of applying BMM, ATM, and HMED on Fig. 10. (a) 
BMM with 9 x 9 structuring element, (b) ATM with 7 X 7 structuring 
element, (c) HMED with 21 x 21 structuring element. 

Again, HMED is able to extract the boundaries of the 
mesoscale features without introducing spurious edge pix- 
els. We conclude that the HMED’s better performance is 
due to the use of h dilation and h erosion. 
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