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Abstract-Edge detection plays an important role in computer vision tasks, and has received considerable 
attention in image processing literature. To detect edges correctly and precisely, contextual information is 
needed. How to use contextual information is a key issue. In this paper, we introduce an edge detection 
method that will use edge contextual information of the whole image efficiency. This new method tries to 
employ contextual information within a certain distance from the focus pixel at a time. This distance keeps 
increasing recursively until the edge feature of a pixel is uniquely defined. In this manner, we can minimize 
the need for contextual information. Experimental results are presented to characterize the performance of 
our new method in terms of better connectedness of edges and less distortion, and in terms of computational 
efficiency. A detailed comparison of our method with the context free zero-crossing edge operator that uses 
optimal exponential filter is discussed in this paper. 
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1. INTRODUCTION 

Edge detection plays an important role in computer 
vision tasks, and has received considerable attention 
in image processing literature. An edge corresponds to 
intensity discontinuities in an image. For most machine 
vision tasks, an edge map is sufficient to conduct 
further processes such as motion analysis and object 
recognition. Edges mainly correspond to boundaries 
of objects of a scene. They may also correspond to 
images of shadows or surface marks,(‘) or the results 
of noise or blurring. A variety of edge detectors have 
been proposed. Most of them perform reasonably well 
for simple noise free images, but tend to fail for noisy 
images. In our opinion, image smoothing is not the 
solution. A better way is to make use of edge contextual 
information. 

The ultimate goal of edge detection is to characterize 
intensity changes of an image in terms of physical 
process that originate them.@’ It is commonly believed 
that, to achieve this goal, at least two stages are required: 
the characterization of intensity changes, and the use 
of structural and high-level knowledge to find real 
boundaries. 

Intensity changes are detected by differentials of 
intensity functions. The local maximum of the first 
order intensity differential and the zero-crossing of the 
second order intensity differential are the two com- 
monly used characteristics. The results of these dif- 
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ferentiation operators are rough edge maps that de- 
scribe intensity changes of an image. Vaiious tech- 
niques have been presented in the literature. Robert’s 
operator(3’ and Sobel’s operator(4) are examples of 
these simple edge detection operators. 

Canny ~1 formulated edge detection problem as an 
optimization problem. He put forward three objective 
criteria-good detection, good localization and 
minimum false alarms- to define an optimal filter. He 
obtained an optimal one dimensional (1D) operator 
for step edge detection and found that this optimal 
operator can be efficiently approximated by the first 
derivative of Gaussian function. These three criteria 
were also used by other authors, notably R. Deriche@) 
and Shen and Castan,(732) to extend the design of 
optimal filters. The advantage of these two extensions 
is the recursive feature of the filters. Recursive technique 
provides an efficient way for image filtering. Both 
methods use infinite extent filters. Deriche’s filters is an 
infinite extension of Canny’s optimal filter and requires 
five multiplications and five additions for each pixel. 
Shen and Castan’s filter is even more efficient. It is an 
infinite exponential filter that requires only four mul- 
tiplications and nine additions for each pixel. As a 
resemblance to receptive profile of simple cells in 
mammalian visual systems, Gabor filters have attracted 
attention recently. (‘x9) Gabor liltes are modulation 
products of Gaussian and sinusoidal signals. Based on 
Canny’s optimal criteria, Mehrotra et ~1.“~’ discovered 
the best performance was a Gabor odd filter and 
developed an edge detection algorithm based on the 
filter. Hancock, in his paper,“) used two filters, a modi- 
lied Gabor odd filter to detect lines, and a modified 
Gabor even filter to detect step edges. However, all the 
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above mentioned filters, more or less, have the effect 
of blurring edges, especially edge junctions. A promising 
approach to solve this problem is to use nonlinear 
image filters that encourage intraregion smoothin in 
preference to inter-region smoothing.oO~“) Perona and 
Malikcz2) proposed anisotropic diffusion for image 
filtering. The technique is similar to heat flow diffusion 
phenomenon in physics. Backward Bows occur in 
boundary areas and shapen edges while regions inside 
boundaries are smoothed. Nitzberg and Shiota”‘) 
further extended this technique. They used regulation 
to guarantee that diffusion equations had solutions 
and that corners and T junctures were enhanced. 

Although many improvements have been made on 
image filters (or intensity differentiation operators), 
using any image filter alone is not sufficient to obtain 
good edge detection results, especially in noisy situ- 
ations. One reason is that most filters use models of a 
single isolated edge. However, the quality of edge de- 
tection should not be determined by small differences 
in smoothing functions. Postprocessing, therefore, is 
required to further reline rough edge maps obtained 
from intensity differentiation. One of the techniques to 
reline rough edge maps is edge tracing.(‘2,‘3) Wu, 
Iyengar and Min (12) investigated edge detection using 
gradient directional information. In their algorithm, 
a pixel adjacent to a detected edge pixel, whose magni- 
tude exceeds a given threshold, and whose direction is 
not perpendicular to that of the edge pixel, is considered 
as another edge pixel. The algorithm works fine after 
eliminating many small edges whose length (the num- 
ber of pixels in an edge) is less than an ad hoc threshold 
value. Ungureanu et al. (13) designed another (tracing 
algorithm that used two bar like control windows. 
These two windows are perpendicular to each other 
and are used to walk through edges of an image. 
They further discussed the VLSI implementation of 
their algorithm that provided realtime edge refinement. 
The problem with these approaches is that, they are 
insensitive to weak edges, and if an edge has a pixel 
whose magnitude is less than the threshold, they will 
cut the edge into two smaller edges. 

Another technique of edge map refinement is to 
make use of interaction between edges. Chen and 
Medionio4) proposed an edge interaction model to 
capture interactions between edges within a small 
neighhorhood area. Initialized with zero-crossings of 
the signals convolved with a LOG filter, their method 
iteratively finds new and more accurate edge location 
by conveying the information from strongly interacting 
edges. This method yields good results despite the 
problems of its oversimplified model, its large mask, 
and its slow convergence rate. Haralick and Lee”” 
and Higgins and Hsu (16) also used structural infor- 
mation of neighborhood area to extract edge pixels. 

A prospective technique for postprocessing in edge 
detection is relaxation labeling. Relaxation labeling 
refers to a family of labeling algorithms, which aim 
at global interpretations of image objects through 
iterative update of symbolic label (or meaning) assign- 

ments (17). The problem of relaxation labeling was 
elegantly described by Rosenfeld et al.(‘s) whos pro- 
posed four schemes to address it-discrete relaxation, 
fuzzy relaxation, linear probabilistic relaxation and 
nonlinear probabilistic relaxation. After that, this 
area has received much attention. Various approaches 
have been developed, and they have been successfully 
applied to many image processing tasks.“g-23) Their 
ability to convey not only local but also global con- 
textual information from interacting objects makes 
it a good candidate for edge detection. Kittler and 
Hancock(21,24,25,*,26) conducted intensive studies on 
the application of probabilistic relaxation labeling to 
edge detection. Their approaches employ dictionaries 
of permissible local edge configurations. A pixel along 
with its neighborhood is compared with these permis- 
sible configurations to estimate the probability that it 
is assigned a certain label. The goal of their algorithm 
is to find the globally consistent maximum a posteriori 
probability (MAP) estimate to assign a unique label to 
each pixel. Noise is modeled as a source of inconsis- 
tencies. Interactions among label assignments of pixels 
are used to eliminate these inconsistencies. However, 
their method produces good results only in lower 
signal to noise ratio (SNR) situation. Furthermore, 
relaxation labeling as a general label assignment frame- 
work has a higher time complexity, and takes more 
time than some other techniques such as the tracing 
techniques. However, relaxation labeling methods have 
their advantages. With the ability to link edge segments 
in local contexts, they produce better edge connected- 
ness. More important, they are easy to be parallelized. 

In this paper, we investigate the problem of using 
relaxation labeling as a post-processing method in 
edge detection. We propose a new dictionary based 
relaxation labeling algorithm that has a better noise- 
suppression performance than Kittler and Hancock’s 
evidence combining formulas. The proposed algorithm 
uses contextual information as locally as possible. It 
considers the label context within certain distance 
from a pixel at a time. This distance keeps increasing 
until the edge label of a pixel is uniquely determined. 
We first demonstrate the power of the new method by 
comparing the results with Kittler and Hancock’s 
algorithm under their assumption that noise is Gaussian 
distributed. Then, we discuss that initial probability 
estimate for label assignment is very important to 
obtain good results for relaxation labeling algorithms, 
and present a new initial estimation method that is 
based on histograms of image intensity changes. The 
advantages of the new method are its robustness to 
noise, its preservation of corners and T-junctures, and 
its output edge connectedness. 

This paper is organized as follows. The next section 
includes a description of the new probabilistic relaxa- 
tion scheme that is derived from Markov Random 
Field (MRF) theory. An implementation of edge detec- 
tion using the relaxation method is proposed in Sec- 
tion 3, where the importance of initial probability 
estimation is discussed, and a new method for initial 
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probability estimation is proposed. The method is 
based on statistics of a given image. Experimental 
results that demonstrate the performance of the method 
are given in Section 4, including comparisons with 
Kittler and Hancock’s relaxation algorithm and Shen 
and Castan’s optimal edge filter. Concluding remarks 
are given in Section 5. 

2. DICTIONARY BASED RELAXATION LABELING 

The general idea of probabilistic relaxation labeling 
is as follows. Suppose a set of objects V = { 1,2,. . . , s} 
are classified into m categories A = {&,?,,, . . , I+,,}, each 
categoryj is represented by a label aj, 1 <j < m. Suppose 
further that the category assignments are correlated, 
and the correlations are described by graph G = (V, E), 
where an edge in V represents a direct interaction 
between two objects. Let P”){xi = jlj} be an initial 
estimate of the probability that object i belongs to cate- 
gory 1,. For each object i, Pco){xi = S} should satisfy 
0 I P(‘){xi = nj} I 1 for 1 5 j I m and xi”= iPco). 
{xi = ii} = 1. This initial estimate is calculated from 
observation vector yi of each object i and Y = {Fil iE V}. 
ai depends on true label assignment xi and random 
noise ui, i.e. yi = h(xi, ui), where xi and ui are assumed 
to be independent. The goal of probabilistic relaxation 
labeling is to find a classification for the objects that is 
compatible with the initial estimate P”){xi = nj} and 
the correlation described by graph G. The assignment 
of a label /lj to object i is based on a posteriori prob- 
ability P{x, = 3.jl Y} of assigning label 3,, to object i 
under observation set Y. 

In relaxation labeling, graph G defines contextual 
relations among objects. It states that each object 
interacts with its neighboring objects. The neighbor- 
hood of object i is denoted by Bi. It is a set of all the 
adjacent objects of object i. The label of an object 
depends on the label context of its neighborhood directly. 
Other objects that are not adjacent provide contextual 
information in an indirect way. By distinguishing be- 
tween directly interacting objects and indirectly interac- 
ting objects, the internal consistency of the transfor- 
mation function is well maintained.(26) 

For example, in the case of edge detection, the object 
set V consists of all the pixels of an image. Suppose we 
want to distinguish between edge pixels and non-edge 
pixels, then, two labels, “edge” and “non-edge” are in 
the label set A. Interactions among objects are described 
by graph G with an edge set E that connect each pixel 
with its eight neighboring pixels. 

2.1. The transformation function 

The kernel of probabilistic relaxation labeling is a 
transformation function, also called projection operator, 
that describes the relation of a label assignment of an 
object with the label assignments of its neighboring 
objects. This function is used to gradually involve 
more and more contextual information from nearby 
objects to refine the estimate P{xi = ljl Y} for label 
assignment xi = lVj 

To present our transformation function, we first 
introduce some notations. Associated with each object 
i is a random variable xi defined on the set of labels A. 
X=(x,,..., x,} IS the set of random variables for a 
given problem. xi = lj represents the assignment of 
label lj to object i. Set w = {x1 = Sr, x2 = /Ij2,. . ,x, = 
A,}, called configuration, describes a label assignment 
for object set I/. The set of all configurations is called 
a configuration space R = AI”. We use Xi to denote 
the set of all the random variables associated with 
objects in V excluding xi, the random variable for 
object i, i.e. Xi = {x1,x2,. .,x~-~,x~+~,. . .,x,1. Thus, 
mi denotes a configuration for Xi. zZi denotes the confi- 
guration space of all the wis. uai denotes a configuration 
for variable set Xai = {xjl jeai}, i.e. neighborhood con- 
figuration for object i. w&) denotes the label assign- 
ment for object 1 in object i’s neighborhood under 
configuration cuai Rai denotes the configuration space 
of all the configurations oai over &. 

To estimate the a posteriori probability P{xi = /ljl Y}, 
let’s consider configuration space Qi for object i. For 
each configuration wi in Q, P{xi = Lj, coil Y} is the 
probability that a label assignment configuration de- 
scribed by xi = 3,j and oi, occurs under observation Y. 
Since Ri contains all the possible label assignment 
configurations for Xi. P{xi = Ajl Y} can be acquired by 
adding together all probabilities P{xi = Aj, oi( Y} over 
Ri. 

(1) 

Using Bayes formula, we get, 

P{xi=3”jlY) 

=c 
P{xi= qyi}P{wilx = kj) 

~iE~iCkm,lP{xi=~~l~~}P(WilXi=IZ~} 

x p{wil y> (2) 
In equation 2, oi is the configuration of the whole 

scene. To estimate P{xi = Ljl Y}, considering w as a 
sample realization of a Markov Random Field X over 
R, then, the locality of MRF 

P{Xi = djJCoi} = P{Xi = 2tjlw&} (3) 

can be used to simplify equation 2. Denote the filtered 
observation after rth iteration as Y(‘) = {y?ll < i I n}, 
and the a posteriori probability estimate of assigning 
label 3,, to object i after rth iteration as, 

P"'{Xi = Ai} = P(Xi = ljl Ycr)} (4) 

Furthermore, estimate P{wl Y} by maximum entropy 
estimation II leaiP('){xl = wai(l)}. We obtain the follow- 
ing transformation function T, 

Pcr+l){xi = Aj} = 1 W~~,E(‘)(i, j,wai) 
waiEn.3, . 

Where 

E(“)(i, j, wa.) = 
P”‘{Xi = Ij}P{CLQilXi = nj} 

’ ~~=lP"'{Xi=n,lP{oai(Xi=~",} 

(5) 

(6) 
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wgi = n P”‘{X, = co&)} (7) 
l&i 

For detailed derivation of this transformation func- 
tion. Please refer to,(“) Function T provides a new 
approach for probabilistic relaxation. A new estimate 
for P(xi = LjlY} is calculated by adding together all 
the supports from object i’s neighborhood configura- 
tions. Since the denominator of E(i, j, wai) is only a 
normalization factor, the support from a single confi- 
guration is proportional to the a priori probability of 
the configuration and the probability estimates of the 
label assignments for objects in current configuration. 
Though applying transformation function T once con- 
veys only the constraints of inter-object relations 
among neighboring objects, using T recursively can 
convey contextual information from indirect interact- 
ing objects, and the estimation of P{xi = Ail Y} will 
become more and more precise. Because of the use of 
Maximum Entropy estimate for P{wJ Y}, the trans- 
formation function is proved to converge to local 
optimal according to different initial estimate.“‘) 

This new relaxation scheme satisfies the two prob- 
abilities axioms 0 I Pcr){xi = iLj} 5 1, for all r, i and j, 
and xi”= i Pn{xi = Lj} = 1, for all r and i. These prop- 
erties guarantee that T is a transformation from mn 
dimensional probability space to itself. By the Bronwer 
fixed point theorem, the relaxation rule converges. 

The process to find a label assignment for object 
set V has two steps. First, the conditional probability 
P{xi = Ljl Y} is estimated. Then, a label is assigned to 
object i by maximizing a posteriori probability (MAP), 
i.e. Assign ij to object i if 

P{xi = ijI Y} = m1x P{x, = Ljkl Y} (8) 
k=l 

The estimation for P{xi = /,JY} begins with the 
information carried by object i only, i.e. the noisy 
observation yi. P{xi = l.,lyi} is used to calculate an 
initial estimate for P(xi = ijI Y}, 

P{x, = njls;,} = 
P{yilxi = kj}P{Xi = ,lj} 

p{Fi} 
(9) 

P{Fi} = F P{Filxi = ij}P{xi = ibj} (10) 
j=l 

Since yi contains noise, this estimation may cause 
labeling errors. However, these labeling errors can be 
detected because they are inconsistent within the con- 
text of label assignment of other objects. Therefore, 
transformation function T is recursively used to refine 
the estimation of P{xi = ljl Y}. 

2.2. The dictionary model 

Based on transformation function T, the outline of 
the algorithm is as follows: First, we initialize vector 
PC’) in the mn dimensional probability vector space 
without considering contextual relations, and use 
maximum a posteriori probability principle to assign 
an initial label to each object. Then, transformation T 

is recursively applied to vector P(l) to obtain a refined 
estimate PC’+ ‘) that involves more contextual infor- 
mation. Each time, a new label assignment is found by 
maximizing a posteriori probabilities. Termination of 
the algorithm is guaranteed by the convergence of the 
transformation function discussed in Section 2.1. Once 
label assignments are stable, the algorithm stops. 

However, the complexity to calculate transformation 
T is proportional to l&l, the number of configurations 
of object i’s neighborhood. In the worst case, a neighbor- 
hood may consists of all other objects in the system, 
then the number of neighborhood configurations 
I&( = m” and is exponent in the number of objects. 
This time complexity can be cut down however. First, 
the size of neighborhoods is usually much smaller than 
the size of the whole object set, e.g., in the case of image 
processing, neighborhood size is usually 3 x 3 or 5 x 5 
etc. However, even with 3 x 3 neighborhood, the num- 
ber of all configurations is still m9, where m is the 
number of labels in the label set. However, most ap- 
plications are well-structured. Thus, most of the conti- 
gurations are physically impossible. A small set of 
permissible configurations results. Permissible co@ 
gurations are the configurations which can occur in the 
given application in an ideal situation. As an example, 
in edge detection application with a neighborhood of 
3 x 3 lattice and a set of five labels (Four labels for the 
four different edge directions and a non-edge label), the 
number of all configurations is 59 z 2 x 106. But only 
165 of them are permissible configurations. This sug- 
gests that, for an application, with the construction of 
configuration dictionary that excludes all impossible 
configurations, relaxation labeling method can be 
implemented efficiently. 

Transformation function T contains two types of 
probabilities. One of them has the form PCr){xi = A,} 
that is the current estimate of a label assignment. The 
other type has the form P{wailxi = ij} and is a priori 
probability that indicates how often configuration aai 
occurs when object i is assigned a partiEular label lj 
Transformation function T is the sum of supports from 
all configurations of an object’s neighborhood. This 
can be further divided into two sums. 

PfS+l){xi = Aj} = c W$,E”‘(i, j,wai) 
weisnai 

= 2&* ’ 
Wti.E(‘)(i, j, wCi) 

where Q$, the “don’t care” configuration set,@l) 
contains configurations such that P{oailxi = Aj} = 
P{wai} for all label assignment i, i.e. under the 
neighborhood configuration odi, P{xi = Aj} is inde- 
pendent from its neighbors. Q$, the “care” configura- 
tion set, is the complement of n~i,n,, = Q$ + a$. 
Configurations in Q$i are in facour of changing the 
probability P{xi = lj}. Equation 11 provides an ap- 
proach to implement the relaxation scheme. However, 
this implementation has inherent difficulties. Because 
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(4 (e> 
Fig. 1. Possible supporting configurations. 

the number of configurations [nail is huge. For example, 
a 3 x 3 neighborhood with live labels has /Rail = 5’ x 
3 x lo6 configurations. If lQsil x lQ$il, the computa- 
tion is very expensive since there are large number of 
configurations in the calculation. Usually we prefer to 
have IRail >> lfl$l i.e., we choose only a few “care” 
configurations that have significant contributions to 
label assignments. Then, the expense to calculate T is 
acceptable. However, the rate of convergence will be 
very slow because Ififil >> lQ$l, i.e. the factor for change 
C c is much smaller than the factor for stable 

Z:;;:;;. 

Another method has been proposed@) that considers 
P{xi = lj, wai} as zero for configuration wai that has 
little contribution to label refinement, for example, 
those in @‘i. In this way, we get a small set of configura- 
tions that have significant influences to label assign- 
ments. We call it the Influential Configuration Set 
(ICS) z2ii. Then, we have 

P(‘+l){x, = nj} = C W$‘,,E”‘(1’, j,wJ (12) 
uVi.$ 

For the Influential Configuration Set Qg, dictionary 
method can be employed to provide an efficient search. 
Dictionary method was successfully used by Kittler 
and Hancock. Here, we use a new construction method 
that includes more configurations. Each object i has 
its own dictionary Di. Di consists of configurations that 
come from ICS figi. Dictionary Di is a table with s rows 
and m columns, where s is the number of neighborhood 
settings and m is the number of possible labels. Di(Aj) 
denotes the column corresponding to the assignment 
of /zj to object i. Let ;I$ be the label on object 1,1= i of 
the kth neighborhood configuration item in column 
Di(lj). The kth configuration in Di(Aj) is 

CQ) = (x1 = A$, lE8ilX, = S} (13) 

And the probability associated with Cf(nj) is P{x, = 
A:, Z~ailx~ = S}, the conditional probability that a 
configuration of i’s neighborhood (xI = n:, 1 E ai) occurs 
whenxi=Aj 

Our method differ from Kittler from Hancock’s@) 
in that, we consider the ICS rZg, It includes not only 
all the permissible configurations that are used in K & 

H’s method, but also other configurations that have 
significant influence over label assignments. For 
example, in image edge detection, for a pixel i, we take 
the eight surrounding pixels as its neighboring pixels 
(See Fig. la). All the possible one pixel edge patterns 
across this 3 x 3 area are permissible configurations. 
One permissible configuration in this setting is showed 
in Fig. lb. Here, arrows indicate directions of edge 
pixels and blank spaces non-edge pixels. The label set 
contains five labels: four different edge directions +, 
t, + and 1, and a non-edge label E. This permissible 
configuration {x~=E, x1 =E, x2 =E, xj =E, x4= 7, 

x5 = E, x6 = t, x7 = t, xi = E} is an entry in the dic- 
tionary and has a conditional probability P{x, = E, 
Xi=&, X2=&, X3=&, x,=t, X5=&, x,=7, x7=?, 
xi = E} associated with it. 

Now, let’s assign other labels for xi in the same 
neighborhood setting. For example, xi = t in Fig. lc 
and xi = -+ in Fig. ld. In Fig. lc, it is possible that in 
the previous relaxation iterations, there is a label error 
for pixel 6, i.e. its label should be E not t. Because this 
error may be corrected later in the relaxation process, 
the configuration provides a support to assign t to 
pixel i. However, in Fig. Id, the neighborhood conti- 
guration surely has no support for xi = --f because no 
premissible configurations with xi = --t can be obtained 
by removing some of pixel i’s neighboring edge pixels. 
Thus, we further divide the category of physically 
impossible configurations like those in Fig. lc and d 
into two categories: those that are included in ICS 
because they have contributions to certain label assign- 
ments for pixels, i.e. Fig. lc. We call them possible 
supporting configurations. The other category contains 
configurations such as the one in Fig. Id. 

Therefore, in our scheme, the set of configurations 
that we are used i.e., ICS, consists of: 

(1) permissible configurations which occur in the 
ideally situation, and, 

(2) the configurations which would lead to some 
permissible configurations if some of its neighboring 
objects’ labels changes while the label for the object i 
remains the same. We call this kind of configurations 
as possible supporting conjigurations. 

Based on the proposed transformation function T 
and the dictionary model, the relaxation labeling algo- 
rithm is depicted in Fig. 2. First, an initial estimate 
@“{xi= nj} for P{xi= ljlY} is calculated from ob- 
servation vector yi for object i by equations 9 and 10. 
Based on Pco){xi = ii}, an initial label assignment is 
selected by maximizing a posteriori probability (equa- 
tion 8). The result is a rough label assignment for object 
system V. The relaxation carrying out by equation 
12 where the influential configurations and their as- 
sociated conditional probabilities are obtained by 
looking up dictionary. Di(Jj) for object i and its assigned 
label li. In each relaxation iteration, label assignments 
are updated by MAP rule (equation 8). This procedure 
ends with refined label assignments. 
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Fig. 2. The relaxation algorithm. 

3. RELAXATION BASED EDGE DETECTION 

In traditional edge detection, differentials are used. 
However, differentiations are very sensitive to noise. 
Although this problem can be eased by smoothing, 
smoothing can also eliminate edge features and degrade 
resolution capabilities of edge detectors simultaneously. 

Using relaxation labeling as a postprocessing step 
is a prospective solution. First, a traditional differential 
operator is employed to obtain an initial edge assign- 
ment for every pixel. This edge detector should preserve 
as many edges as possible. A dictionary of configurations 
in 3 x 3 neighborhood of each pixel is then constructed 
and used in probabilistic relaxation labeling algorithm 
to correct the erroneously labeled pixels. The effect of 
this postprocessing is to remove noise and to acquire 
the refined one pixel wide edge map of the given image. 

To develop an edge detection algorithm from the 
dictionary based relaxation scheme, two problems need 
to be addressed: 

(1) how to calculate initial label probability esti- 
mates; 

(2) how to find the configurations for the dictionary 
and to calculate the a priori conditional probabilities 
associated with them. 

3.1. Previous results 

In our previous preliminary investigation,C4) we de- 
scribed a relaxation labeling scheme under the assump- 

tion that noise was Gaussian distributed. The smallest 
differential operators (1 x 2 and 2 x 1 windows) were 
used. In that implementation, each pixel (u, v) had an 
observation vector jjC.,,, with two first order partial 
differentials c, and c, of the observed intensity function 
g’(u, v), 

c, = g’(u + 1, u) - g’(u, v) 

C” = g’(u, v + 1) - g’(u, v) 

The Gaussian noise was assumed to have a zero mean 
and a standard deviation of CT. For non-edge pixel (u, v), 
pixels(u + 1, t’), (u, u + 1) and (u, v) belong to the same 
image segment and should have the same standard 
deviation o-. Thus, a priori probability P{c,,c,lx = E) 
was calculated by, 

1 
P{C”,Ca~X=E}=--- 

2J57d 
exp 

[ 

c.’ + c,’ - C,C” 

302 1 (14) 

The initial label assignment probabilities were then 
computed by first estimating P{x = ~Ic,,c,} from 
equation 14 and Bayes formula, and then distributing 
the residual among the four edge labels (upward, 
downward, rightward and leftward). 

Five labels were used to classify pixels. They were E 

for non-edge pixel, T for upward edge pixel, + for 
rightward edge pixel, 1 for downward edge pixel, and 
+ for leftward edge pixel. The criteria to find the 
permissible configurations were: 
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(I) edges arc all closed; 
(2) edges are all one pixel wide; 
(3) edges are all continuous. 

One hundred and sixty live permissible conligura- 
tions wcrc found based on these criteria. Of these 97 
had label I: for the center pixel. And for each of the four 
edge labels assigned to center pixel, there wcrc I7 
permissible conligurations. All permissible configura- 
tions wcrc considered equally likely thus, for each 
permissible configuration CU. 

Two kinds of images were used (an artifact image 
with additional Gaussian noise of different level. and 
some natural images) to compare the algorithm with 
K & H’s,“’ The results showed that both methods are 
very good in preserving corner and edge connectivity. 
but our method has a better noise suppression cap- 
ability. SC&‘) for details. However, a primary goal to 
obtain single pixel edge was not fully accomplished. 
For example, Fig. lib and d are the edge outputs 
obtained from Kittler and Hancock’s method and our 
relaxation method. In both cases, the edges around the 
fluorescent lamps are not very well constructed. 

3.2. ‘1%~ problem qJ’irlitial rstinwrion 

Although designing an fast convergent update func- 
tion is a major step in developing probabilistic rclaxa- 
tion algorithm. the problem of initial assignment is 
also crucial. It is true that applying contextual infor- 
mation efficiently through the update procedure can 
eliminate ambiguities from imprecise initial label 
assignments. However. if initial assignments contain 
too many label errors, label contextual information 

may not be enough to eliminate all of them. Indeed 
that was the problem of our previous initial label 
assignment estimation approach. More precisely, the 
problem stems from: 

(1) the assumption that noise is Gaussian distributed 
may not work in real world applications: 

(2) it only uses lirst order differences as the obser- 
vation vector. 

Based on these observations, we propose a nev+ 
approach to compute initial label assignments. First. 
histogram h(I) of first order difference of an image is 
used instead of Gaussian distribution assumption. I 
Denotes the absolute change in gray level. Secondly, 
second order difference and first order diffcrencc are 
incorporated to obtain a better initial guess of label 
assignment, 

For a particular image, its noise may not bc Gaussian 
distributed. A histogram, on the other hand, is a statistic 
of a given image and better reflects the intensity distri- 
bution of the image. Thus, a histogram provides a 
better estimation. In our method, the histogram of first 
order difference of intensity Icvcl is used because the 
probability estimation of initial edge label assignment 
is based on intensity changes. 

Zero-crossings of second order difference of an image 
has been proved to be a good estimate of edge points. 
If a pixel is not a zero-crossing point, this pixel is not 
an cdgc pixel. However, a zero-crossing point may not 
be an edge pixel. The degree of intensity changes and 
label contextual information are needed to further 
reline the’edge map that was dcrivcd from zero-crossings. 

To get zero-crossings of a @en image, we adopt J. 
Shen and S. Castan’s Exponential recursive filtering 
approach. “PLY’) Their exponential filter (Fig. 3) has 
infinitely large window size and can be realized by a 

Fig. 3. The exponential tiltcr. 
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simple and efficient recursive algorithm. An excellent 
feature of this filter is that the limited Laplacian of an 
input image filtered by this filter can be computed from 
the difference between the input and the output of the 
filter. Thus, second order difference of an image can be 
calculated efficiently. The 1D exponential filter has the 
form 

and can be implemented by two recurrent relation: 
first, scan from left to right using 

Yr(i) = Y,(i - 1) + ao[x(i) - Yl(i - l)] 

Then, scan from right to left using 

Y2(i) + YZ(i - 1) + %CYl(i) - Y2(i - 111 
Since the filter is decomposable, a 2D exponential 

filter can be implemented by two 1D filters: one in x 
direction and the other in y direction. And the second 
order difference is calculated from the difference be- 
tween filter output and filter input. 

Binary Laplacian Image (BLI) is employed to find 
zero-crossings. A BLI is a binary image where a pixel 
gets value 1 (0) if the corresponding second order 
difference is non-negative (negative). The pixels lay in 
boundaries of l-segments are zero-crossing pixels. Since 
very small, isolated l(lO)-segments in BLI are the re- 
sults of random noise, an additional step is used to 
eliminate all small isolated segments, like those that 
have less than live pixels. 

To get a better estimate of initial label assignment, 
a histogram h(l) of the absolute intensity level changes 

of the image is calculated. This histogram is then used 
to estimated probabilities P{xi = “edge”} for initial 
assignments for the “edge” labels, 

P {xi = “edge”} 

0 xi is not a boundary pixel of l-segment 
= 

i 
0 ifci 5 6 
h(c) otherwise 

where ci = max(]c,,l, lc,,l), and the estimated prob- 
abilities for initial assignments of the “non-edge” label 
are 

P{xi = “non-edge”} = 1 - P{xi = “edge”} 

If pixel i is not a zero crossing point, the probability 
that i’s label is “edge” is zero. Otherwise, the intensity 
difference along c axis c,~, and the intensity difference 
along y axis cyj, is calculated. The maximum value ci 
between the absolute value of c,: and that of cy, is used 
as the measurement of an intensity change for the pixel. 
We use maximum value ci in the calculation instead of 
averaging lcXil and Icy,], because a significant intensity 
change in any direction is sufficient to consider the 
pixel as an edge pixel. It has been found that intensity 
changes below six gray levels [the just noticeable &lf 
ference (JND)] in 256 gray level scaled images are not 
detectable by human eyes.(32) Therefore, in the case 
that ci is less than or equal to gray level 6, the pixel is 
considered as a non-edge pixel. 

To summarize, the procedure of label assignment 
initialization is shown in Fig. 4. It first uses the ex- 
ponential filter to calculate second order intensity dif- 
ference of an image. With the help of the BLI, all zero 
crossing points are located. A histogram of the first 

BLI Image 1 
Initial edge labeling Get histogram of 

4 
probabilities gray level changes 

I 
Initial MAP 

label assignment 

1 

Rough Edge Map 

Fig. 4. The initialization procedure. 
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order intensity difference of the image is then calculated 
and is used to assign initial probability estimates for 
initial label assignments. An initial label is assigned to 
pixel i by: 

“edge” If P{xi = “edge”} 2 

xi = P { xi = “non-edge”} 

“non-edge” Otherwise 

3.3. The edge dictionary 

To complete the edge detection algorithm, a dic- 
tionary of configurations needs to be constructed. Here, 
only two labels, “edge” and “non-edge” are used to 
classify pixels. No direction information is employed 
in the current implementation of the algorithm. The 
permissible configurations in this application are ob- 
tained from ideal edge maps where the three criteria 
listed in Section 3.1 are satisfied. Nine basic permissible 
configurations are found which are listed in Fig. 5 (a 
dot in a pixel indicates an edge pixel). By rotation, 
reversal and reflection, we get 41 permissible conli- 
gurations, out of which, 12 configurations support the 
assignment of “edge” label and 29 configurations sup- 
port “non-edge” label. In this study, all permissible 
configurations are considered equally likely. Thus each 
permissible configuration o - (xi = /lj, xr = I,,, 1~ ai} is 
associated with a probability of 

P(0) = i. 

The probability associated with dictionary item C$l,) = 
(xl = A:, ledilxi = lj} is P{x, = I$, 1~8ilx~ = Aj}, the 
conditional probability that configuration {xi = 1, 
xr = A:, Icar} occurs when xi = /lj. This probability is 
calculated as follows. Let RP be the set of all permissible 
configurations. First, we obtain the a priori prob- 
ability P{xi = ij} by adding together the probabilities 

a El a 
a 

a %I a 
a 

a 444 a 

Fig. 5. Permissible configurations for edge detection 

of all permissible configurations where xi = ij 

P{Xi = nj} = z (15) 
WERP 

where xi = lj 
Then, the probability for each permissible conti- 

guration item in D,(n,) is then calculated by 

P{c:(nj)} = 
P{xi= Lj,x, = @,IEc%} 

PjXi = nj} 
(16) 

Each of these 41 configurations has a distinct 
neighborhood setting. Thus, there are 41 neighborhood 
settings and the dictionary has 82 configurations, 41 
permissible configurations and 41 possible supporting 
configurations. 

Given all the permissible configurations and their 
probabilities P{x, = ij, xl = FL:, lEi?i}, we need to com- 
pute probabilities for possible supporting configura- 
tions. In the relaxation process, a possible supporting 
configuration occurs when labeling errors are present. 
Thus, it is natural to consider possible supporting 
configurations as corrupted permissible configurations. 
In (lo) Kittler and Hancock proposed a label error 
process for discrete relaxation. They derived formulas 
to estimate the probability for any possible conli- 
guration from permissible configurations in their 
attempt to develop a discrete relaxation algorithm. 
The idea in this estimation is to add together the 
likelihood of the current label configuration with all 
the permissible configurations. 

Assume that label errors occur with equal probability 
pe. The likelihood of a possible supporting label con- 
figuration w = {xi = A,, xl = $, 1~ CJi} with a permissible 
configuration wPEQP is described by 

p{wIw~} = (1 _ pe)l~il-~(~.~p)p~(~.~p) (17) 

Iail is the number of neighborhood objects, K(w, wJ’) is 
the number of labels that are different between a pos- 
sible supporting configuration o and a given permissible 
configuration wp. This likelihood is called neighborhood 
transition probability. The probability for a possible 
supporting configuration is the summation of all 
neighborhood transition probabilities over all permis- 
sible configurations. 

P{Xi = lj,o&} = 1 P{Xi = l.j,w&O}P{xi = Aj,W&} 
oEnP 

(18) 

where xi = lj 

4. EXPERIMENTS 

To understand the performance of the new algorithm, 
we examine the behavior of the algorithm on natural 
images as well as artifact images. These experiments 
are intended to test the robustness of the new dictionary 
based probabilistic relaxation labeling algorithm. We 
compared our results with Kittler and Hancock’s prob- 
abilistic relaxation algorithm (called K & H) and Shen 
and Castan’s optimal exponential edge detector, the 
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(4 

(b) 

(4 

(4 
Fig. 6. Synthetic image (O-255) with additional Gaussian noise (a = 20, 40, 60, 80, 100, 120, 140 and 180. 
(a) Is the original image without noise; (b) is the result of Kittler and Hancock’s algorithm; (c) is the result 
of Shen and Castan’s algorithm; (d) is the result of our first algorithm, and (e) is the result of our new 

algorithm. 

edge detection algorithm SDEF in image processing 
system Khoros. We developed two versions of our 
relaxation algorithm to examine the importance of 
initial label assignment estimation: one of them uses 
the initialization method proposed by Kittler and 
Hancock (Called Algol); the other follows the method 
described in last section (Called Algo2). All the algo- 
rithms are programmed on SiliconGraphics in C. 

In the following presentation, for algorithms K & 
H, Algol, and Algo2, all the edge outputs are collected 
after 10 iterations. The figures show the final maximum 
a posteriori label assignments. Black pixels correspond 
to non-edge pixels and white pixels are edge pixels. It 
should be noticed that all the results shown are obtained 

from initial probability assignments after applying the 
relaxation transformation functions 10 times. No post- 
processing like linking, thinning, or cleaning, etc. is 
done. 

A well structured simulated image (50 x 50 in 
dimension with a square and a circle) is used. Within 
the circle, the gray level is 56. Outside the circle but 
inside the square, the gray level is 231. Outside the 
square, the gray level is 115. This perfect image is then 
mixed with independent Gaussian noises using Khoros. 
These noises have a mean of zero and S.D.‘s of 20,60, 
100, 140 and 180, respectively. The artifact image and 
its standard one pixel-wide eight-connected edge map 
are shown in Fig. 6a. This is to test the performance 
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Table 1. Number of mislabeled pixels 

cr 20 60 100 140 180 

K&H 22 30 100 198 162 
SDEF 65 48 61 17 68 
Algol (proposed) 25 31 46 17 81 
Algo (proposed) 49 37 41 14 32 

Table 2. Number of break points 

CT 20 60 100 140 180 

K&H 0 1 0 0 0 
SDEF 4 5 3 6 3 
Algol (proposed) 0 0 1 0 1 
Algo (proposed) 0 0 0 0 1 

of the algorithms under different noisy situations and 
its ability to detect edges of various orientations and 
edges with high curvature. Figure 6 shows the result 
of these algorithms. In these figures, a black pixel 
indicates a correct labeling of an edge pixel. A red 

pixel is a pixel mislabeled as an edge pixel. A light blue 
pixel is a pixel mislabeled as a non-edge pixel. 

For noise suppression both SDEF and Algo have 
good noise resistance, and work consistently under 
different noise level. The performances of K & H and 
Algol are affected by noise. Noise with higher standard 
deviation causes more labeling errors. K & H method 
obtains more error labeled edge-pixels. Table 1 shows 
the number of mislabeled pixels for all the output 
images. 

For edge connectedness, if error labeled edge pixels 
are ignored, K & H and Algo capture the contours 
of the standard edge map (Fig. 6a) quite precisely and 
the results are almost free of distortions. Algol obtains 
the standard contour without distortion when CJ = 20 
and e = 60. The edge outputs are distorted for CJ 2 100 
and break points are also presented. SDEF has break 
points in al the cases and the contour for the circle tend 
to deviates from the standard edge map. Figure 7 
shows that the enlarged edge maps for CJ = 100 clearly 
demonstrates the correctness of the edge outputs. 
Table 2 summarizes the number of breaks in each 
case. 

Fig. 7. Synthetic image (O-255) with additional Gaussian noise (r = 100. (a) Is the result of Kittler and 
Hancock’s algorithm; (b) is the result of Shen and Castan’s algorithm; (c) is the result of our first algorithm 

and (d) is the result of our new algorithm. 
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(4 (b) 

(4 

Figure 8: Four natural images: (a) a corner of an office; (b) a car; (c) a house; (d) an indoor scene. 

The differences in both noise resistance and contour 
perfectness between the outputs from Algol (Fig. 6d) 
and those from Algo (Fig. 6e) reveal the importance 
of label assignment initialization. 

To assess the effectiveness of our method to correctly 
label edges for natural images, four images from an 
image base in the University of Massachusetts are used 
(Fig. 8). 

Figure 9 is the edge maps for the office scene (Fig. 8a). 
For the simple patterns on the wall. SDEF and Algo 
obtain clear one pixel wide edges. However, the outputs 
from K & H and Algol are not one pixel wide. An 
example ofweak contrast edges is the seat of the couch. 
Figure 10 highlights this portion of the output. The 
outputs from K & H and Algo capture more weak 
contrast edges. 

The results of processing Fig. 8c are shown in Fig. 11 
K & H’s method acquires more edges and also retains 
more noisy pixels. SDEF and Algo obtain clearer 
edge maps, especially in the areas near the fluorescent 
lamps. However, these two methods fail to capture the 
juncture between the left wall and the ceiling. SDEF 

also fails to capture the junctures between the wall and 
the floor. 

Figure 8b and d are two more examples of natural 
images, where all methods perform reasonable well. In 
both cases, K & H method retains more noise. K & H 
and Algol cannot obtain one pixel wide edges in some 
areas, the wheels of the car and the eaves of the house. 
These two images also reveal that relaxation methods, 
through the use of neighborhood label context, achieve 
better edge connectedness. This is demonstrated by the 
stripes on the body of the car and the eaves of the lower 
roofs of the house, where the relaxation methods obtain 
connected lines while SDEF gets dashes. 

To summarize, these experiments show that: 

(1) SDEF and Algo have better noise resistance; 
(2) relaxation methods, K & H, Algol and 

Algo2, obtain better edge connectedness and better 
contour; 

(3) K & H and Algo achieve better weak edge 
detection; 

(4) The estimation of initial label assignments is 



An efficient edge detection algorithm using relaxation labeling technique 531 

(b) 

Cd) 
Fig. 9. The scene of an offke. (a) Is from Kittler and Hancock’s algorithm: (b) is from Shen and Castan’s 

algorithm: (c) is from our algorithm Algol and (d) is from our algorithm Algo2. 
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(4 (4 

Fig. 10. Weak contrast edges. (a) Is from Kittler and Hancock’s algorithm; (b) is from Shen and Castan’s 
algorithm: (c) is from our algorithm Algol and (d) is from-our algorithm Algo2. 
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(4 

Fig. 11. An indoor scene. (a) Is from Kittler and Hancock’s algorithm; (b) ‘is from Shen and Castan’s 
algorithm; (c) is from our algorithm Algol and (d) is from our algorithm Algo2. 
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(4 (b) 

(4 
Fig. 12. The scene of a house. (a) Is from Kittler and Hancock’s algorithm; (b) is from Shen and Castan’s 

algorithm: (c) is from our algorithm Algol and (d) is from our algorithm Algo2. 
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(cl Cd) 
Fig. 13. The scene of a car. (a) is from Kittler and Hancock’s algorithm; (b) is from Shen and Castan’s 

algorithm; (c) is from our algorithm Algol and (d) is from our algorithm Algo2. 

very important. The results from Algo is much better 
than those from Algol; 

(5) An important feature of both Kittler and 
Hancock’s algorithm and our algorithms is therate of 
convergence. (31) After 10 iterations, the relaxation 
processes essentially converge; 

5. CONCLUDING REMARKS 

This paper presented an application of dictionary 
based relaxation label method to the edge detection 
problem. Throughout the paper, our main concern is 
how to use relaxation efficiently. Many techniques 
have been explored to achieve this goal. These include 
the dictionary model, the recursive exponential filtr, 
the zero-crossing of second order intensity difference 
and the JND concept. The experiments show that the 
relaxation edge detection algorithm converges quickly, 
and works efficiently by using contextual information 
to preserve edges and to eliminate noise. We found that 
relaxation, when use for edge detection, provides better 
connectedness. We also found that the quality of initial 
label assignment has a significant impact on the quality 
of the edge detection. 

For further research, the relation between relax- 
ation technique and neural network is an important 

issue.(28~29) has found that the general relaxation 
scheme and Hopfield networks are closely related. 
Since relaxation is a computational complex task, a 
study of dictionary based relaxation labeling methods 
and neural networks has the potential to find an efficient 
massive parallel implementation. 
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