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Abstract

Template matching is & fundamental method of
detecting the presence or the absence of abjects
and identifying them in an image. A template is
itself an image that containe o feature or on object
or a part of a bigger image, and is used to search
a given imgge for the presence or the absence of
the cantents of the template. This search is car-
ried out by transiating the template systematically
‘pizel-by-pizel all over the image, and at each posi-
tion of the template the closeness of the template
to the orea covered by it iz measured The loca-
tion at which the mazimum degree of closeness is
achieved is declared to be the location of the abject
detected,

The problem of object/shape recognition in im-
age is addressed in this paper in d mulbiresolu-
tignal seiting using pyromidal decornposition af
images with respect to an orthonormal wouvelet ba-
sis. A new approach to efficient template match-
ing to detect ohfects vaing computational geomet-
ric methods is put forward. An efficient paradigm
for abject recognition is described in detail with a
complexity analysis.

1  Introduction

The problem addressed here i that of object recog-
nition using template matching. It iz assumed that
an input image contains Anitely many objects from
gome superset § of objects. A database of templates
is stored, wherein each femplate v containg an,object
from S and is an M X M \mage. The input image
T is %o be searched for presence or absence of objects
from & and the types, location and apparent sizes of
those objects present in T are to be reported, using
the template database of objects in 5.

Since in the above described search process = mini-
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mum is always attained in $he distance between the
template and the area covered by it, & predetermined
proximity bound is set, as an upper bound for the min-
imum digtance cbheerved. If the minimum observed in
the search process is less than this bound, then the ob-
jeet ia declared to be present at the location 2t which
the minimum is attsined, else it is declared fo be ab-
aent,

More precisely, let

T=(26,)]054jSN-1}

and
r= (i, 04,7 M~1}

be & template of a given object . A measure of the
distanee of the template 7 from a region of the image
T covered by T, Is given by

M-1+p M~1+m

§
D{m, n} = [ 3> [I(a‘,z')"r(i—m.z'—n)’]

i=n fempm

This is the discrete version of the distance formuls

Dly, v) = [ f fp ACRY <rlz—uy- o) dza'yr

where, the image Z sud the template 7 aze congidered
$o vary continuously abd D is the domain of detinition
of the femplate. .
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The second term on the f.h.s of the above equationis &
constant independent of m and #, being the square of

_the energy of the template. If it can be assumed that
the energy of the image T over any window of the size
of the template remains approximately constant, then
Dim,n) is minimusa when

M=t4n M-14+m
Replmmy= 3, 3. LG, d)r(E—m,j—n)
J=n . :

{=m

is & maximum, _

Rz is called the erosa-correlation- coefficsent of
7 and 7 at {m,n).

Ln ) gexle;‘:-ral1 however, it is mnot true that

o Y e ™ T2(i, §) is approximately constant
for all (m,n) € {0,1,..., N—1}x{0,1,...,N—1}. f
we define the normalised cross-correlation coeflicient
of T and 7 at each point {m,n) by

M=14+n M~14m

Y, 3 L fyrl-mi-n)

Nz.f (m, n) I i i=m

f=m

M=l4n M-14m
F=n

EL
T"(i',a’)]
then by the Csuchy-Schwartz inequality,

M—-14n M-14m

-J\fz.r(m,ﬂ)S E z 72(‘:3) s

i=n {=m:

with equality iff
N =Eli—mi-n Ym<i<M—14+mn<iSH-14n

for some scalar & # 0. As a simple example of a tem-
plate matching problem, consider the M x M binary
image of an “L-shaped” diagram (figure 1) as & fem-
plate 7. .
"Given any N x N(N > M) binary image Z, in or-
der to detect the presence (or absence) of the I-shaped
object in T, the template 7 is transiated pixel-by-pixel
over the image T, and at each position the carrelation
coefficient is calculated to check whether it lies within
acceptable bounds to declare the presence of the ob-
ject at that position. Alternatively, the location of

Fig 1: Template of an L shaped objeét

¥

Fig 2: Image with scaled ‘L's

template ocurring in the image (figure 2) may go un-
detected. In order to accomodate variations in scale
and rotation of the object being searched in the image
with respect to the object in the template, one would

“have to perform a range of rotation and scale trans-
formations on the template, and each of these trans-

formed versions of the template correlated with the
image at each pixel, leading to an explesive search.
Nevertheless, the fundamental necessity of template
matching for object, shape and feature recognition in
the areas of image analysis, image understanding and
robotic and computer vision, make it an {ndispensable
tool. Several efficient implementations of variations of
correlation template matching and other alternatives
exist with varying degrees and aspects of efficiency,
and are constantly belng put forward. A brief survey

 of gome of the moré important and recent advances in

the peak value of the correlation coefficients computed *

over the entire image field Z is taken to be the posi-
tion of location of the object in the iamge. Clearly,
for sufficiently large images Z, this method of tem-
plate matching is computationaily intensive. More-
over, scaled and rotated versions of the object in the
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this aren is described in [3]. Details on the template
database, initerclass migration and pose-invariant tem-
plate matching can be found in (3],

9 The object recognition algo-

rithm - :
TInput: T(ihage of size N x N);T Template database
1. Decompose I into an image pyramid {with re-
‘spect to a wavelet basis) of L levels T —
(28,1} 2, T}y To = O [£] 0 I OI7]O
* Ip. This takes O(N?) time,

2. Preprocess the jow-pass image Zr at level L by
segmenting and identifying the boundary points

of various objects present in by & seed-fill alge-




rithem.

. Cempute the convex hulis oEthe houndary points
of $he objects; this takes O(F 0, mrlogn:) time
where n; s the number of border polats of obiect
C; agd k is the nmumber of objects in . Also

i1 T4 € N3, so this computational time s very
small compared to the image size.

. Compute the MERs of the convex hulls obtained
from the previous step. This takes O(3 5, my)

* time, where m; £ 1y is the number of points in
the convex hull of O}, and again T my; € N3,

. Compute the aspect ratios p4(O;) and thée pose
vectors {I{04), c{0:}, o,(O)), 8(0;)). This takes
O(k) tirme, 'where k iv he number of objects in Z.

. For each object O; do

(8} For esch template In the mspect ratio class
p4{0;), transform the template 7 by scaling
it wing 1(0;) and by rotating it by #{0;).
(note: each template in stored in = I-level
pyramid)

(byeet s = L

{e) Apply the. transformed template 7} at level
. J to the location {of({O%), {0} in Z; and
compute the correlation coefficient. If the
correlation cosficient is above the thresh-
old #; for level 7, accept the template 28 a
promising template at level j; else, reject it.

(d) Reconstruct theimage and the selected tem-
plate pyramids by one step from the level §
io obtain Z;_; and r;_; et level 7 — L. Scale
751 fo obfain 7_; by doubling its size with
relation to 73 .

(e) et 7 10 7 — L; goto atep (c)

T Output the positions, scale, angle aund descrip-
tion of objects corzresponding to the unrejected
templates. .

One can associate many kluds of confidence mea-
sures describing the degtee of match obtained for the
various objects in the image, and there are several
ways of defining threshold walues ot voricus levels of
the pyramidal matehing to determine whether o ne-
" cept or refect & mateh for comparison at the next
higher resolution. The choice of these measures is
dependent on the application at hand, and what Is
acceptable (or not acceptable) for a specific applica-
4lon. For instance, ofien it may not be usefu! or nec-
eswary o miatch promising femplates at all levels for
& given application. For detsils ou the advantages of
orthonormal wavelet pyramid decomposition, ses [3].
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The algofithm hag been implemented and is shown 28
follows :
The fgures are presented at ‘the end- of the tex’s

Novelties and improvements

Salient features :

o In this method, the number of locations in an im-
age at which template matching is done depends
only on the number of objects. detected In the im-
age and not on the size of the image.

This method identifles the templates in the tem-"
plate database T that are likely to ind a match in
& given Image, thus making the selection of tem-
plates determiniatic and more efficient. This is
a significant improvement over existing methods,
since these methods do not specify any eriteria for
the chivice or rejeciion of a $emplate. In real ap-
tlications the number of templates in T Is large,
and hence an efficient method of narrowing down
the possible choices significantly affecte the com-
putational overhead of the matching procedure.

Apart fromi reducing the number of cholces of can-
didate templates, this method also identifies the
correct mealing and rotational transformations fo -
be performed on & candidate template, 28 well
8¢ the location in the image at which the match
should be computed. This completely eliminates
the search in the pose space for the right poee
of the template. In other methods, the femplate
pose is methedically or randomly searched in the
pose space, involving repeated matching of fem-
platea with incrementally corrected poses based
on previous matches. This wastes a Jot of com-
putations on searching for the pose alone. Thus -
the proposed method minimizes the number of
matches to be performed for identification,
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Figure 3 Tool Scene

Figure Tt Polygonal approximation of
contour image ’

Figure 4§—Segine:1tqd Image of Tool
Scenn '

Figtire 8t Convex hull Image obtained
_ from the polygonal image °

Figure 5: Moiphological closure of
°  Agure-ground lfmage

Figure 9: The MER lmage obtained from
' the convex huil image-

Figure & Contour image from boundary‘ '
tracing the sithoutte image
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