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Abstract. The reachability of a robot manipulator to a target is defined as its ability to move its joints 
and links in free space in order for its hand to reach the given target. This paper presents a way of testing 
the teachability of a robot to given target. The target could be a three dimensional object represented 
by a cuboid, a line or merely a point. 

The reachability test problem is transformed into a nonlinear optimization problem, which is solved 
by using the Tunneling Algorithm [1-3]. 

The paradigm of the Tunneling Algorithm is described in detail. Several examples of testing the 
reachability of two robots to given targets are presented and the results are compared with that of the 
existing RGRG algorithm [5]. The results of comparisons show that the Tunneling Algorithm is better 
than the RGRG algorithm. It can always obtain the correct answers of testing, and it is effective and 
suitable to solve the reachability test problem. 
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1. Introduction 

Today, the robotics and automation community are being swept by broad, pervasive 
technological demands. With the increasing use of robots in remote unstructured 
environments, it has become necessary to identify various computation problems 
that need to be solved quickly in real time. One such problem, which has been of 
considerable interest, is the robot reachability in a given bounded workspace. 

In this paper, an approach is considered to study a class of problems in robot 
reachability for three dimensional workspace domains. 

The organization of the paper is as follows: Section 2 gives a definition of the 
reachability test problem, an example, and an analysis. Section 3 reviews the related 
research and the contribution of this paper. Section 4 presents the mathematical 
formulation of the reachability test problem. Section 5 briefly reviews the existing 
optimization methods. Section 6 reveals the details of the tunneling algorithm. The 
results of the tunneling algorithm to the robot reachability test problem, the compar- 
ison of the tunneling algorithm and the existing method are given in Section 7. In 
Section 8, a conclusion is given. 

. This project is partially supported by a grant from Martin Marietta (ORNL) 19x-55902V. 
Also this project is partially funded by ONR grant N00014-94-I-0343. 
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2. What is the Reachability Test Problem? 

2.1. DEFINITION 

The reachability of a robot manipulator to a target is defined as its ability to move 
its joints and links in free space in order for its hand to reach the given target. Thus, 
the Reachability Test is to test whether the robot has the ability to move its joints 
for its hand to reach the given target. 

When the target is a point, the definition is quite clear. When the target is a spatial 
object then the points on the object are considered. If there is at least one point on 
the object which can be reached by the robot hand, the object is said to be reachable 
by the robot. 

2.2. A SIMPLE ILLUSTRATION 

Consider the following example (see Figure 1), place the hand as close to the refer- 
ence point (x0, y0) as possible. The robot has two links, a and b. Obviously, when 
the two joint angles change, the end-effector (hand) of the robot can move around 
and reach many spatial points. The collection of all the points that the robot can 
reach is called reachable workspace of the robot. With this definition, the problem 
of the reachability test of the robot to a given point (xo, Yo) is actually a problem of 
testing whether or not the given point is within the robot reachable workspace. 

3. Previous  W o r k  and the Scope of this Paper 

There is a wealth of literature on robot workspace analysis and synthesis, many 
authors have investigated reachable workspace related problems. Tsai and Soni [6], 
investigated the accessible region of planner two-three link manipulators with pin- 
joints. Lee and Yang [7, 8] presented an algorithm for detecting the boundary of the 
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The 2R planar robot and its workspace with 0 ° ~ ql ~ 90° and 0 ° ~< q2 ~< 90°- Fig. 1. 
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workspace and gave the criteria for detecting the holes and voids in the workspace. 
Sugimoto and Duffy [9] developed an algorithm for calculating the extreme distances 
reached by a robot hand. Rastegar and Deravi [10] presented a general method to 
determine the workspace and its subspace with different number of configurations. 
Hsu and Kohli [11] provided a method for conducting the workspace analysis to 
determine the boundaries of the workspace and to determine the voids and holes 
inside the workspace. 

Many of their methods can be applied to the reachability test problem, but most 
of the methods deal with a special class of robots (i.e. three link, simple robot) or 
a particular robot. In this paper, the reachability test is formulated as a nonlinear 
optimization problem so that the method can be applied to any type of robot manip- 
ulators provided that the robot's forward homogenous transformation and the first 
and second order derivatives of the function exist. The Tunneling Algorithm, which 
is easy to apply and guaranteed to converge to the global minimum, is used to solve 
the nonlinear programming problem. 

4. The Mathematical Formulation of the Reachability Test Problem 

In order to formulate the problem, let us consider a general case. Assume there 
is a robot manipulator, which has n links and n joint angles and moves in a three 
dimensional workspace. The relationship between the manipulator joint coordinates 
and end-effector's Cartesian coordinates is given by: 

Px = f x ( q l ,  q 2 , . . . ,  qn) 

Py = f v ( q l ,  q2 . . . . .  qn) 

Pz  = f z ( q l ,  q 2 , . . . ,  qn) 

(4.1) 

(4.2) 

(4.3) 

where (P~, Pv,  P~) is the Cartesian coordinate of the robot end-effector, ql, q2 . . . . .  q~ 
are its n joint variables, that is, joint angles. When the joint angles change, P~, Py, Pz 
will have different values, a set of (ql, q2 . . . . .  qn) corresponds to a unique set of 
(Px, Py, Pz). fx, fy, fz are continuous single value function mapping (ql, q2 . . . . .  qn) 
to (Px, Py, P~). 

The problem whether a given point (X, Y, Z) is within or out of the manipulator 
reachable workspace may be solved by formulating the following problem, which is 
a set of nonlinear equations: 

PROBLEM 4.1. Solving equations: 
X = f~c(ql, (]2 . . . . .  qr~) 

Y = f v ( q l ,  q2 . . . . .  qn) 

Z = f~ (q l ,  q2 . . . . .  q~) 

subject to : qi rain <<. qi <~ qi max 

(4.4) 
(4.5) 
(4.6) 
(4.7) 

where fx, fy, fz are identical to the functions given by equations (4.1)-(4.2); qimin 
and qimax, i = 1 . . . . .  ~ are the lower and upper bounds of the .manipulator joint 
variables. 
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The left-hand side of the equations is the given point, while the right-hand side 
of the equations is the point that the robot can reach. Problem 4.1 is to find a set 
of (qb q2 . . . . .  qn) which satisfies equations (4.4)-(4.6) and the constraint conditions 
(4.7). If there is at least one solution for the above problem, then the given point 
(X, Y, Z) is within the reachable workspace of the manipulator; if no solution exists, 
(X, Y, Z) is out of the reachable workspace of the manipulator. This is similar to a 
reverse kinematic problem, but without orientation information. To look at it from 
a different perspective, let us consider the following facts: 

The relation between the workspace of a robot and an object is equivalent to that 
between two spatial geometric bodies. There are three cases: inclusion, intersection 
and separation, corresponding to fully overlapping, partly overlapping and not over- 
lapping respectively. To test whether an object is reachable by the robot is just to 
test whether the object and the workspace of the robot overlap each other. 

When two objects A and B fully or partly overlap, we can find at least two points 
P1 and P2, where 

P1 c A, /:'2 ~ B (4.8) 

such that 

lIP1 - r2II  = o,  ( 4 . 9 )  

When two object are separate, for arbitrary P1 c A, and P2 ~ B, 

m i n  liP1 - P211 > 0. (4 .10)  

Suppose the object C is described by the cuboid: 

Xmin ~< z <~ Xmax 

C " ymin ~ Y ~ Ymax (4.1 1) 

Zmin ~< Z ~ Zmax 

and the reachable workspace of the robot is given by: 

Pz = fz (q l ,  q2 . . . .  , qn) 

W "  Pv = fv(ql ,  qa . . . .  , qr~) (4.12) 

Pz = fz(ql ,  q2 . . . . .  qn) 

where (Px, Py, Pz), ( q l ,  q2  . . . .  , q~), f~, fy, f~ have the same definitions as in equations 
(4.1)-(4.3). 

According to (4.8) and (4.9), with P1 = (z, y, z) E C, Pa = (Px, Pv, Pz) E W ,  the 
following index function could be defined: 

J ( q l , q 2 , . . . , q n )  = ILP1-P2II 2 = ( z -  Px)2 + ( y -  P~)2 + ( z -  Pz) 2 (4.13) 

and the Reachability Testing problem can be transformed into the following nonlinear 
optimization problem: 
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PROBLEM 4.2. 

minimize J ( q i ,  q2 ,  . . . , q ~ )  (4.14) 

qi min ~ qi ~ qi max, i = I . . . . .  n ,  

Xmin ~ x ~ Xma x 
s.t. (4.15) 

ffrnin ~ Y ~ Ymax 

Zmin ~ z ~ Zmax- 

If a set of qi and (x, y, z) could be found such that J = O, it can be concluded that 
the cuboid overlaps with the robot reachable workspace because there is at least one 
point of the cuboid in the workspace of the robot. 

The cuboid defined by (4.11) is actually a general representation. When the lower 
and upper bounds of one, two or three inequalities in (4.11) are set to the same value, 
a rectangle, a line segment or a point can be represented. 

It should be mentioned that although the solution of the Problem 4.2 is not unique 
due to the multi-solution property of trigonometric functions, it is enough to solve 
the Reachability Testing problem. There may be more than one joint configuration 
for which J = 0. If any of them is found, we are done. If no joint configuration 
that makes J = 0 can be found, we conclude that the object is not reachable. In 
other word, J = 0 means that there exists at least one point of the cuboid within the 
workspace of the robot while J ¢ 0 means there is not. So the problem of whether 
two objects overlap can be definitely solved by the Problem 4.2. It is particularly 
valuable in the collision free path planning problem where the primary concern is 
to keep the robot from colliding with the enviornment. Now the question becomes 
what is the appropriate algorithm to solve this problem. If the global minimum of 
the optimization of Problem 4.2 can be found, the original teachability test problem 
is solved. A brief literature review will be given in the next section. 

5. A Short Overview of the Optimization Methods 

Almost all non-linear optimization algorithms have certain conditions for conver- 
gence. To ensure the convergence, most of them require that the Hessian Matrix be 
positive definite. But in Problem 4.2, because of the nature of f~, f y ,  f z ,  the index 
function J ' s  Hessian Matrix is not always positive definite. Also, many algorithms 
deals with a certain type of constraints. There are few algorithms which deal with 
the same constraints as in the reachability test problem. So, most of the classical 
optimization methods are not suitable for this problem. 

The Tunneling Algorithm, in the case one dimension function can handle any kind 
of function with the constraints of the form A ~< X ~ B (A and B are the low and 
up bounds of vector X), it does not have any requirements on the Hessian Matrix, 
that is one of its points of superiority; the other point of superiority is its guaranteed 
convergence to a global extrema in finite steps. It is also simple and easy to apply. 
The only requirement that the tunneling algorithm needs about the function is the 
existence of the first and second order derivative. All these make the Tunneling 
Algorithms suitable for solving the reachability test problem. 
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6. Tunneling Algorithm Paradigm 

The paradigm could viewed at two different levels: the abstract level and the concrete 
level. At the abstract level, the paradigm for designing the tunneling algorithm [1-3] 
can be split into two phases: (a) a local minimization phase; and (b) the tunneling 
phase. 

6,1. ABSTRACT LEVEL DESIGN 

The minimization phase is designed to decrease the value of the function until a 
local minima is found. For a given feasible start point, any minimization algorithm 
with a descent property on f ( X )  could be used to fulfill the task. 

The tunneling phase is designed to obtain a good starting point for the next mini- 
mization phase. It begins with the point X* obtained in the previous minimization 
phase, any try to find a zero of the tunneling function. 

A tunneling function could be defined as: 

T ( X ,  J (X*))  = ( J ( X )  - J(X*)) .  (6.1) 

Once a new point X0 is found such that T(Xo, J(X*))  <<, 0 and 32o ¢ X* the 
tunneling phase is terminated, this new point X0 is taken as the starting point for 
the next minimization phase. 

Notice that the local minima X* of the minimization phase will also make the 
tunneling function T ( X ,  J(X*))  equal to zero. How could the local minima obtained 
in the minimization phase be excluded? The answer is to construct a tunneling 
function in the following form: 

( J (X )  - J (X*))  
T ( X ,  L) = (6.2) 

( ( x  - - x * ) )  

where L = X*,  J(X*) ,  l), l is called pole strength of X*, 1 is used to cancel the zero 
of T(X* ,  L), as shown in Figure 2. 

By using this definition, the desired pole 32o (i.e. X~) is kept and the X* (i.e. X~) 
is eliminated (see Figure 2(b)). 

It is possible that the tunneling phase tunnels the solution to another local minimum 
at the same level. To avoid this situation, we need to keep the information X[ ,  li of 
all intermediate points and their J ( X [ )  values and generate the function T ( X ,  L) as: 

J ( X )  - J (X*)  
T ( X , L )  = p . (6.3) 

FI { ( x  - x s ( x  - x ; ) } "  
1 

When a better value of J* is found, the stored information is removed, setting p = 1. 

6.1.1. A Geometric Interpretation of Tunneling Algorithm 

Let us look at simple one dimensional example. Suppose there is a continuous 
function f (x) ,  with the x - f ( x )  relation plotted on Figure 2. Starting from any point 
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Xmin X 

(b) 

A simple illustration of Tunneling Algorithm (a) f(X) - X  relation; (b) T(X, X* ) -X  relation. 

x 1 (Zmi~ ~< x 1 <~ Xmax), a local minima is found as x~, 

f(x~) <~ f ( x l )  (6.4) 

* X* with the value of x 1 and f (  1)' a tunneling phase is started ending at z 2, the zero 
97" of the tunneling function. Obviously f(x2) ~ f ( 1 )  , this becomes a new start point 

for the next minimization phase, which results in x~ such that 

f(x2) <~ f(x2). (6.5) 
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6.1.2. The Elegant Property of the Tunneling Algorithm 

Repeating these two phases in sequence, a series of local minima of J(X) can be 

found at X*, i = 1 , 2 , . . . ,  m, such that 

J(X~) <~ J(X~+I) A <~ X.~ <<, B, i=  l , 2 , . . . , m - 1 .  

In this way the global minima can be approached in an orderly fashion. If a zero of 

(6.1) can not be found after a sufficient computing time (this time could be chosen 

as the worst case time needed in finding the previous optima times a constant. See 

also 6.2.3) then it can be assumed that the desired minima is found. 

Notice that the tunneling phase tunnels the irrelevant local minima, regardless of 

how many there are and where they are. Each time the tunneling phase is looking 

for a new X with its function value equal or less than the local minima obtained in 

the minimization phase, that means it always tries to tunnel X to a new yet lower 

position. 

It is very interesting to note that throughout, the two phases themselves converge 

only to local minimum. The sequence of their connection ensures the algorithm to 

converge to the global extrema in finite steps. (Proof can be found in [3].) 

6.2. THE ALGORITHMS 

In this section the details of the two phases in the tunneling algorithm will be given 

and some practical considerations on applications will also be presented. 

6.2.1. The Minimization Phase Algorithm 

In the minimization phase the conventional gradient method is used and described 

as follows: 

input: (c~, Xo) 

output: (Xo) 

begin 

while (d J(Xo)TdJ(Xo) > 10 -9) and (c~ > 1/2 2°) 

x ~  = X o  - ~*  J(Xo) 
if (J(X1) < J(Xo)) then X0 = X1 

else a = a / 2  

end while 

end 

where d J(X0) = [OJ(X)/Ox 1, OJ(X)/Ox2,..., OJ(X)/Ox~[X = Xo] T is the gra- 
dient vector of J(X) at X0, and 0 < a ~< 1 is a scalar to control the step length. 
Initially, c~ is chosen as 1. 
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6.2.2. The Tunneling Phase Algorithm 

The tunneling phase is actually a zero finding phase. It tries to find out a point X* 
which is different from the output of minimization phase (X0) but has the same or 
lower function value. 

The basic structure of the algorithm can be written as (6.6)-(6.7): 

Tx (X0, L)*d X = -T(Xo ,  L). (6.6) 

By solving this equation, the direction vector d X can be obtained. The next position 
vector can be computed as: 

X* = X0 +/3*dX (6.7) 

where 0 < /3  < l is a stepsize controller used to enforce a descent property on the 
norm of the error 

P(Xo) = T(Xo, L)TT(Xo, L). (6.8) 

If P(X*) < P(Xo) is satisfied, accept X* as the new position vector to start the next 
solution of (6.6). 

If the stepsize controller becomes too small, (<1/3212]) then it is said to have been 
attracted to the neighbor of a singular point Xs. A singular point is a point that 
T£(Xo, L) = 0; once it is known, an equivalent system as follows can be established: 

T(X) 
S(X)  = ( (X - X . d T ( X  - X.~)) p (6.9) 

where Xm denotes the position of a "movable pole" [1] and p denotes its strength. 
The strength of the movable pole p can be easily calculated as follows: 

1 [ 2*p*(X - -X .~)* f (X)  ] 
S~(X) = ( (X - X ,  d T ( X  - X,~))p _f~(X) - (X  - X ,  OT(X -- Xm)J" (6.10) 

Compute S~(X) at point X = X,~ + e, where e is a small random number used just 
to avoid a divizion by zero. 
equivalent system: 

S:~(X)*d X = - S ( X )  

Xnew = X + d X/32.  

A tentative displacement d X is computed from the 

(6.11) 

(6.12) 

If the performance index Q(X) = S ( X ) T S ( X )  does not decrease, the pole strength p 
is increased to p + dp. Repeat the above process. If the condition Q(Xnew) < Q ( x )  
is satisfied, then keep the present pole strength and use Xnew as the new position 
vector for the next iteration on S(X).  Typically dp - 0.1. By using the equivalent 
system, the singularity is very effectively canceled [1]. 

6.2.3. The Terminator Conditions 

The stopping condition for the minimization phase and tunneling phase is quite 
straight forward. The stopping condition for global optimality is to some extent 
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difficult, because it is impossible to verify T(X, L) > 0 for every X in the search 
space. According to the authors of [1], a reasonable limit of iterations could be set 
as the overall stopping condition. For example, if the longest previous tunneling 
phase has N iterations then the overall stopping condition can be taken as 10N. This 
condition does take into account the complexity of each problem and the previous 
information gained by the algorithm as it proceeds to the global minimum. In practice 
an additional parameter e is introduced, that is the algorithm will also terminate when 
J (global minimum) ~< J (local minimum) ~< e, where e denotes the safe distance 
from the robot to the object. These two stopping condition work together can reduce 
the computation time. 

6.2.4. The Convergence of the Tunneling Algorithm 

The global convergence to global optima of this tunneling algorithm has been theo- 
retically proven for any given one dimensional scalar function of r~ variables (rep- 
resented by a vector X = [Zl, x2 . . . . .  x~] ) with A ~< X ~ /3 .  [21 Interested reader 
can find the detailed proof in [3]. 

7. The Application of the Tunneling Algorithm to the Reachability Test 
Problem 

In this section, some results of applications of the tunneling algorithm to the Reacha- 
bility Test Problem are given and they are compared with the method RGRG, which 
stands for the Revised Generalized Reduced Gradient, presented in [5]. 

First let us look at the advantage of using the Tunneling Algorithms (see Table I). 
Table I clearly shows the advantages that the Tunneling Algorithm has the RGRG 

algorithm. By using the tunneling algorithm, the start point could be arbitrary while 
in most of the other classical algorithms and the RGRG algorithm, the results depend 
on the start point. Although one use a lot of start points, the computation cost will 
be high, and there is still no guarantee of obtaining the correct result. 

To look at the effectiveness of the tunneling algorithm, the example of a two link 
planar robot (shown in Figure 1) is used. Suppose the range of the two joint variables 
are: 

- 90  °~<ql ~<180 °, 

-900 ~< q2 ~ 180° 

Table I. A simple comparison between the Tunneling Algorithm and the 
RGRG Algorithm 

Method Start Point Convergence 

Tunneling Algorithm Arbitrary Guaranteed 
RGRG (proposed in [ 5 ] )  Dependent No guarantee 

(7.1) 

(7.2) 
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Table II. The comparison of the Tunneling Algorithm and RGRG Algorithm 
(R: reachable, N: non-reachable) 

97 

Given Points Start Point RGRG test Tunneling Algorithm 
(x0, Y0) (ql, q2) (deg) result test result 

a: ( -14,0)  (0°,0 °) N R 
b: ( - 1 0 , - 4 )  (45o,45 °) R R 

c: ( -4 ,  -10)  (180 °, 180 °) R R 
d: ( -7 ,  0) (0 °, 0 °) N R 

e: ( - 1 0 , - 4 )  (0°,0 °) N R 

f: (0,13) (-90°,0.1 °) R R 
g: (15,0) (180 °, 180 °) N N 

h: (1,0) ( -90  °, - 90  °) N N 

and the two link length is a = 10, b = 4. 
By observing Table II and look at Figure 3, we find that the Tunneling Algorithm 

can always find the right answer while the RGRG sometimes does not. To further 
verify the effectiveness of the Tunneling Algorithm, a three dimentional robot with: 

Px = COS (ql)" PP, 

Pv = sin (ql)" PP, 

P~ = 9 sin (q2) + 9 sin (q3) + 4 sin (q4) + 10.5 

PP = 9 cos (q2) + 9 cos (q3) + 4cos (q4) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

is also used to do the following reachability test. P~, Pv, Pz are the X, Y, Z coor- 
dinates of the robot's hand, ql, q2, q3, q4 are the four joint angles of the robot. Here 
not constraints are imposed on the joint angles. 

Notice that in Table III, test No. 1 and No. 3 are cuboid; while test No. 2 is 
acturally a square, test No. 4 is a line segment and test No. 5 is a single point. This 
robot does not have any joint limit, its reachable workspace is a ball with origin at 
(0,0,10.5) and a radius of 22. The test results are correct. 

The general computation time for Tunneling and RGRG algorithm are O(a(M*r~ + 
K)) and O(M*rO respectively, where M is the maximum number of cycles for 
minimization, n is the input size, and a is the maximum number of switches between 

Table III. The result of reachability test for 3D targets (R: reachable, 
N: non-reachable) 

Test No. Given Target Tunneling Algorithm 
test result 

1 ( -1,  -1,33)-(1,1,35) N 
2 (9,-22,9)-(I 1,-22, i1) N 
3 (7,7,2)-(12,12,4) R 

4 (0,0,20)-(0,0,23) R 
5 (0,30,0)-(0,30,0) N 
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f 

a I d 

t h 

0 X 

b(e) 

Fig. 3. The reachable workspace of 2R planar robot with - 9 0  ° ~ ql ~ 180° and - 9 0  ° <~ q2 <~ 
180 ° . 

a minimization phase and a tunneling phase, K is the maximum number of cycles in 
tunneling phase algorithm. This means, the tunneling algorithm takes longer time, 
but that is the cost to guarantee the global minimum. Overall it is still a better 
algorithm than RGRG algorithm. 

8, O the r  P rob lems  tha t  could be  Benefitted from the Tunneling 
Algorithms 

One of the direct benefits we can get is applying the tunneling algorithm in the 
computation of the robot reachable workspace and the boundary of the dexterous 
workspace [13]. 

If the reachable workspace is bounded in a three dimensional cuboid, we can 
divide the cuboid into finite sub-cuboids with desired accuracy, and use the Tunneling 
Algorithm to test these sub-cuboids one by one. 

To make it more specific, assume that the workspace is bounded in a cuboid: 

Xrrfin ~ Px ~. Xmax, (8 .1)  

ymin <~ Py ~< Ymax, (8 .2)  

Zroin ~ Pz ~ Zmax, (8.3) 



ROBOT REACHABILITY PROBLEM 99 

where P~,Pv, Pz are the same as in (4.1)-(4.3). If the desired accuracy is e, then 
the cuboid can be divided according to three directions: 

x-direction u = [(Zmax - Zmin)/e] ,  (8.4) 

y-direction v = [(Ymax - ymin)/e], (8.5) 

z-direction w = W(Zmax - Z~n)/e], (8.6) 

There will be altogether u*v*w* sub-cuboids. Using the Tunneling Algorithm to test 

them one by one, the reachable workspace of the robot can be obtained. This is of 
cource very inefficient. We will have another paper to deal with this matter. 

9. Conclusion 

In this paper, the reachability test problem is addressed and formulated in a new 
way. A global minimization algorithm - Tunneling Algorithm is introduced, which 

is said [3] to converge in the case of one dimensional scalar functions. Two robots 

are taken as examples to show that the tunneling algorithms are working and have 

good convergence properties. 
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