
432 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 4, APRIL 1996 

abilistic Relaxation Scheme 
plication to Edge Detection 

Weian Deng and S. Sitharama lyengar 

Abstract-This paper presents a new scheme for probabilistic 
relaxation labeling that consists of an update function and a dictionary 
construction method. The nonlinear update function is derived from 
Markov Random Field theory and Bayes’ formula. The method 
combines evidence from neighboring label assignments and eliminates 
label ambiguity efficiently. This result is important for a variety of image 
processing tasks, such as image restoration, edge enhancement, edge 
detection, pixel classification, and image segmentation. 

relaxation step of the proposed edge-detection algorithm greatly 
reduces noise effects, gets better edge localization such as line ends 
and corners, and plays a crucial role in refining edge outputs. The 
experiments show that our algorithm converges quickly and is robust in 
noisy environments. 

Index Terms-Probabilistic relaxation, dictionary scheme, MRF, edge 
detection. 

We successfully applied this method to edge detection. The 

1 INTRODUCTION 
THE past decade has seen an explosive growth in the study of re- 
laxation labeling techiques for image processing. The integration 
of contextual information with conventional image processing 
techniques is an important research topic. Relaxation labeling uses 
contextual information to resolve object labeling ambiguities as 
locally as possible. The amount of contextual information em- 
ployed is expanded recursively until a unique labeling results. 
Relaxation labeling has been applied to a variety of image proc- 
essing problems, such as image restoration [31, edge enhancement 
[171, edge detection [5], [61; [71, [16], pixel classification [21, and 
image segmentation [8]. 

Given a set of objectdor vertices) V = {1,2, ..., n), a graph G = (V, E )  
that describes neighborhood relations among objects in V ,  a set of 
labels A = (4, 4, ..., AJ,  a set of noisy observations 
Y = {ijz = h(xt, ui)I i E V) ( 9 ,  is the vector of observations for object 

i that depends on the true label assignment x, and the random 
noise U,.  xi and U,  are assumed to be independent and noise degra- 
dation is assumed to be object-independent), and the a priori prob- 
ability P{ijz I xr = A j l  for all i E V and j E A, The problem of prob- 

abilistic relaxation labeling is to find a consistent label assignment 
for objects in V based on the a posteriori probability P{x, = 2, I Y), the 
probability that assigns label A) to object i under observation set Y. 
x, is the random variable defined for object i on label set A. Two 
objects connected by an edge are neighbors of each other. For ob- 
ject i ,  its neighborhood ai is defined as the set of all its neighbors, 
ai = [ j  I (i, j )  E E ,  j # i). For object- set V, its neighborhood system aV is 
the collection of neighborhoods for the objects in V .  The label of an 
object highly relates to the labels of its neighbors (called directly 
interacting objects). Other objects provide indirect contextual 
information. 
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For a given problem, X = {xl, , xn) is the set of random vari- 
ables for the object set V w = {x, = Al,,x2 = A12 ,  ), 

called a configuration, represents a label assignment for the ob- 
ject set The set of all configurations is called a configuration 
space SL = AIX1 We use X, to denote the set of all the random vari- 

ables associated with objects in V excluding object z, X, = {xl, xp, , 
x , ~ ~ ,  x,,~, , YJ w, denotes a configuration for X,, and Qt is the 
correspondmg configuration space Q, represents a configuration 

for variable set Xa, = {xi I I E 321, a neighborhood configuration for 

object I And Qa, denotes the configuration space of configurations 

e, over ai 
w is regarded as a sample realization of a random field X over 

i2 Tlus random held X is called a Mavkov Random Field if the 
measures (or probabilities) P of its configurations w have the fol- 
l o m g  two properties 

,x, = 

1) P{w) > 0, for all W E  Cl, and 
2) the locality of Markov Random Field P{x, = AI I w,} = P{x, = A) 

I *,}, 1 e ,  the probability of assigning label Al to object z de- 
pends only on object z’s neighborhood label configuration 

We consider random variable set X as a Markov Random Field 
with its neighborhood relation defined by graph G According to 
property 2, PLY, = 

The problem of relaxation labeling was described by Rosenfeld 
et a1 [161 Later, various approaches were developed that fall into 
two categories discrete relaxation labeling and probabilistic re- 
laxahon labeling In discrete relaxation labeling, label assignments 
are either possible or impossible However, in probabilistic relaxa- 
tion labeling, label assignments are measured by probabilities 
Therefore, the construction of update functions over the probabil- 
ity vector space is a critical issue Rosenfeld et a1 concluded that 
nonhear  probabihstic update functions yielded the best results 
However, their heuristic nonlinear update function induces the 
problem of bias, convergence, and choice of supporting function, 
etc Hummel and Zucker [lo] addressed some of these problems 
They introduced a projected gradient update scheme and derived 
the property of local convergence for their update function The 
function has a sound theoretical basis and permits an analytic 
proof of convergence However, the update function is not easy to 
mplement efficiently. 

The effectiveness of relaxation labeling lies in its use of con- 
textual mformation to eliminate ambiguous labels, which is 
achieved by iterative label assignment updates Markov Random 
Field (MRF) theory provides a theoretical basis Geman and Ge- 
man [31 considered images as instances of MRFs Energy functions 
were defined for the MRFs such that the original image has mini- 
mal energy A stochastic approach to minimize the energy utilized 
a simulated annealing technique and resulted in a highly parallel 
relaxahon algorithm that uses the a posteriori distribution to yield 
a MAP estimate, restoring images from degraded observations 
However, their method has a low convergence rate Due to the 
nature of simulated annealing, hundreds of iterations are needed 
to obtain good restoration 

Pelkowitz [151 developed a probabilistic relaxation algorithm 
using MRF theory by applying the Maximum Entropy approach 
and deriving a multilinear relaxation update function The func- 
tion is data dependent and the final configuration (a fixed point in 
the configuration space) is a function of observations that locally 
optimizes the a posteriori probability 

Kittler and Hancock ([51 and [121) developed an evidence com- 
bining formula in the framework of probability theory They de- 
rived a nonlinear update function that is similar to Rosenfeld’s 

I 0,) can be estimated by P{x,  = Ai I 4,) 
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Because no heuristics were used, the four problems that Rosenfeld 
encountered were solved. However, one of the difficulties was its 
potential computational complexity. The number of possible label 
configurations is exponential in the number of objects. In reality, 
far from being exponential, the number of permissible configura- 
tions is relatively small because labeling problems are highly 
structured. An exhaustive enumeration of permissible configura- 
tions is possible. This can significantly improve the efficiency of 
relaxation labeling. In this way, Kittler and Hancock successfully 
developed their algorithm. Their experimental results show better 
performance than some well-known edge detection algorithms 
like Canny's [I], Hildretchs [9], and Spacek's 1181. 

Theoretically, relaxation algorithms are computationally inten- 
sive and their convergence rates are still not well formulated. 
Therefore, improving their efficiency, especially under certain 
practical assumptions that hold for most applications, is an im- 
portant goal. In this study, we investigate a new probabilistic re- 
laxation labeling algorithm that derives from a different update 
function and a different dictionary construction method. 

2 OUR APPROACH 
Given a set of objects V and a set of observations Y over V, after the a 
posteriori probability of assigning label RJ to object i under Y, P{x, = 

Rj I Yl, is calculated for i E V and /IJ E A, the label assignment with 
the highest a posteriori probability can be selected as the label as- 
signment for object i, if P(x, = R, I Y] = m ~ x , " ~ P { x ,  = 

However, relations among objects in V are usually complicated 
and not easy to model. Calculating P(x, =3 I Y) from observation Y 
directly is difficult. One way to solve this problem is to give P{xi = 4 I 
Y) a reasonable estimate. 

Let's first consider a simple estimate for P{x, = RI I Y). Assume 
that a label assignment for an object depends on the observations 
on that object only, P(x, = R, I Y] = P(xz  = R, I ijl J . When a priori 

probability P(x ,  = RI) and conditional probability P{ij! I x, = R, 1 are 

both known, P{x,  = R, I Y) can be estimated by 

/ Y). 

But, jji contains noise. When the above estimates are used to 
assign labels, errors will occur. The assumption that label assign- 
ments only depend on local observations presents the problem. 
Error labels are likely inconsistent with the label context. Thus, the 
label context can be used to refine the estimates. However, the 
interactions between objects are complicated. Capturing all the 
interactions with a single formula is impractical. In order to incor- 
porate contextual information into the estimates, the neighbor- 
hood system dV is used to divide the interactions into two catego- 
ries: direct interactions with the neighbors and indirect interac- 
tions with other objects. Using direct interactions to estimate Plx, = 

RI 1 YJ balances the need to use contextual information and the 
complexity of modeling object interactions. 

In order to formulate direct interactions, we assume that a label 
assignment only depends on the label configuration of its neigh- 
boring objects and its observations gt.  This makes label assignment 
X a MRF. Under this assumption, we have Lemma 1. Lemma 1 is 
deduced from Pelkowitz's Lemma 1 [I51 with Bayes' rule. We call 
(3), (4), and (5) update function 57 

where 

(5) 

our algorithm is as follows. First, vector P'O' in the 
mn dimensional probability vector space is initialized by (1) and 
(2). Then, l i s  recursively applied to vector P'", r 2 0 to obtain a 
new vector P'"' which provides label assignment estimates over a 
gradually expanding contextual area. When the update process 
finally converges, the label assignment is found by maximizing the 
a posteriori probabilities. 

The time complexity of the algorithm, in the worst case, is ex- 
ponential in the number of objects. However, this complexity can 
be reduced considerably in two ways. First, the sizes of the neigh- 
borhoods are usually much smaller than the size of the object set. 
In image processing, neighborhood sizes are usually 3 x 3 or 5 x 5. 
However, even for a 3 x 3 neighborhood, the total number of con- 
figurations is m9, m being the size of label set A. In reality, applica- 
tions are well-structured and most configurations are physically 
impossible, so the number of configurations which can occur in a 
given application is relatively small. 

2.1 Types of Configurations 
Besides permissible configurations, there are other configurations 
that have significant influence on label assignments. For example, 
in edge detection, a pixel i takes its eight surrounding pixels as its 
neighboring pixels (See Fig. la). All the possible one pixel edge 
patterns across this 3 x 3 area are permissible configurations. One 
permissible configuration in this setting is showed in Fig. Ib. Here, 
arrows indicate the directions of edge pixels and blanks indicate 
nonedge pixels. The label set contains five elements: the four differ- 
ent edge directions +, ?, +, and 1, and a nonedge label E.  The per- 
missible configuration in Fig. l b  is denoted by {so = E, x1 = E, x2 = E, x3 
= E, x, = t, x5 = E, x, = t, x, = ?, xi = E]  and is associated with probabil- 
ity ~ { x ,  = E, xI = E, x2 = E, x3= E, x,= ?, xj= E, x6= ?, x7= t I x,= E ) .  

Now, let's assign another label for x, in the same neighborhood 
setting, for example, xi = t (Fig. IC). It is possible that in the previ- 
ous relaxation iterations, pixel 6 is erroneously labeled. Its label 
should be E, not 7'. Because this error may be corrected later in the 
relaxation process, the configuration provides support to assign ? 
to pixel i as suggested by the permissible configuration in Fig. Id. 
Thus, there are configurations that may contribution to label as- 
signments and that are not permissible Configurations. We call 
them possible supporting configurutions. 

1 n P(r)[xi = RJ,  w'" = 
W d  

xr =A,, €Ua 

Based on 

Fig. 1. Possible supporting configurations. 

In our scheme, a dictionary contains two kinds of configura- 
tions: perrriissible configurations that occur in ideally labeled situa- 
tions, and those configurations which would lead to permissible 
configurations if some of the neighboring object labels change 
while the label for object 1 remains the same. We call these con- 
figurations possible supporting configurations. 
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2.2 Dictionary Schemes 
Kittler and Hancock ([5], 161, [71, 1121) proposed a dictionary con- 
struction method. Each object i has a dictionary D, constructed 
from all permissible configurations of object i's neighborhood ai. 
Dictionary D, is further divided into m sections Di(.2,, according to 

different label assignments for object i, xi = A,, j = I, ..., m. Let A:, 
be the label on object I, I # i of the kth configuration in section 
D,(A]). The kth configuration in Di(AJ is denoted as 

Associated with every permissible configuration is the probability 
Pix,  = A I ,  xi = A:f, I E di} . For physically impossible configurations, 

i.e., {x, = A ,x = Ak , I  E di] si Di(ll), the probabilities are set to be 

zero. 
In update function ?: all the probabilities are either the a priori 

probabilities that remain unchanged during the relaxation process, 
or the a posteriori probability estimates P'"{x, = Aj I Y] that are ob- 
tained from the previous iteration. So, it is better to associate with 
each dictionary item the a priori probability 

I , ,  If 

A dictionary with only permissible configurations is not suit- 
able for our relaxation scheme. Equations (6) and (7) provide the 
update function for Kittler and Hancock's algorithm. For each 
object i, (7) is used to sum the support for a label assignment 4 
from all permissible configurations, and hence to obtain a sup- 
porting function value Q for that label. Normalization is per- 
formed by (6) after supports for all labels are found. A dictionary 
of permissible configurations works for this scheme. 

Using our update function ?: normalizations for all possible la- 
bel assignments are performed for each configuration. Then, the 
normalized supports from all the configurations for a particular 
label assignment are added together. Normalization insures a 
proper distribution of support from a neighborhood setting to all 
possible label assignments. However, in many applications, most 
neighborhood settings have no, or only one, permissible configu- 
ration. This makes the distribution of support by (4) inefficient, 
and so deteriorates the relaxation process. For example, in the 
edge detection problem we mentioned above, with those 165 con- 
figurations, there are 149 neighborhood settings. Only 16 of them 
have two permissible configurations. Others have only one. Thus, 
the dictionary constructed by Kittler and Hancock's method does 
not work well with 

where 

A suitable dictionary for our scheme contains all the configura- 
tions for the neighborhood settings that are obtained from permis- 
sible configurations. In the example of edge detection, each neigh- 
borhood setting contains five different configurations. In all, the 
new dictionary, called D!', has 745 configurations of which 165 are 
permissible configurations while the rest are possible supporting 
configurations. 

Dictionary Dl' is a table with s rows' and m columns, where s is 

the number of neighborhood settings and m is the size of the label 
set D;(Al)  is a column corresponding to the assignment of label A, 
to object I Let Ailk be the label on object I, I + I ,  of the kth neighbor- 

hood configuration in column D,'(A,) The kth configuration in 

D:(/2,) is C:(Ll) = (x, = A:, , I  E d 1 x, = A,}, and the associated 

probability is P{x, = ,$,I E &I x, = A)}, the probability that con- 

figuration {x, = A,, x, = At, I E &) occurs when x, = A,. 
The new dictionary can be derived from K & Hs. First, we cal- 

culate the a priori probability P { x ,  = 41 by adding together the 
probabilities of all permissible configurations in D,(A,): 

Then, the probability for each permissible configuration in D>'(A, 
is obtained by 

The probabilities for possible supporting configurations are 
calculated from the permissible configurations. possible support- 
ing configurations occurs when labeling errors are presented. 
Thus, it is natural to consider possible supporting configurations 
as corrupted permissible configuratibns. In 171, Kittler and Han- 
cock proposed a label error process for discrete relaxation. They 
derived formulas to estimate the probability for any configuration 
from permissible configurations. The idea is to sum the likelihoods 
of the configuration with all the permissible configurations. We 
adopt this method to estimate the probabilities for possible sup- 
porting configurations. Assuming that labeling errors occur with 
equal probability pe, the likelihood of a possible supporting configu- 
ration {xi = Aj, QJ with a permissible configuration I f ( A j )  E D , ( A j )  
is calculated by 

Now, /ail is the number of neighborhood objects and K(i, k )  is the 
number of labels that are different between a configuration qi and a 
given permissible configuration I : (A , ) .  This likelihood is called the 

neighborhood transition probability. The probability of a possible sup- 
porting configuration is the summation of the neighborhood transi- 
tion probabilities over all permissible configurations. 

To summarize, the procedure of our dictionary construction is 

1) Find all permissible configurations in the application and 

2) Find all possible supporting configurations from the set of 

3) Use label error process, (8) and (9), to calculate probabilities 

4) The permissible configurations and the possible supporting 

as follows 

assign each permissible configuration a probability, 

permissible configurations, 

for all possible supporting configurations, 

configurations together form the dictionary Or' 

2.3 An Edge Detection Application 
Edge detection is very important in image processing The per- 
formance of many vision systems depend on the performance of 
their edge detectors Traditional edge detectors use first or second 
order derivatives However, these detectors are very sensitive to 
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noise. The noise characteristics of an edge detector depend on the 
size of the operator. Though larger sized operators reduce more 
random noise, they are also more likely to simultaneously lose 
some important edge features, degrading their resolutions. 

Using relaxation labeling as a postprocessing method is one 
prospective solution. First, a small size edge detector is employed 
to obtain an initial edge assignment for every pixel. Then, a dic- 
tionary of permissible configurations and possible supporting 
configurations in the 3 x 3 neighborhood of each pixel is con- 
structed and a probabilistic relaxation labeling algorithm is used to 
remove erroneously labeled pixels. This postprocessing reduces 
noise and helps to produce one pixel wide edge descriptions. In 
edge detection, the object set V = { ( U ,  v) I ( U ,  U) is the position of a 
pixel in the given image]. For each pixel ( U ,  v), vector jj(ii,u) consists 
of two first order partial differences cu and cv of the observed 
noisy intensity g'(u, v), c, = g'(u + 1, U) - g'(u, v), and c, = g'(u, v + 1) - 
g'(u, U) . The additive noise is assumed to be Gaussian distributed 
with a zero mean and a standard deviation of o, independent of 
the underlying noise-free image intensity g(u, U). The noise vari- 
ance a i s  estimated from the statistics of the given image (Kittler et 
al. 1141). Hancock and Kittler [51 described how to estimate initial 
label probabilities P{x  = E I e,, c,}, Plx = -+ I e,, cJ, P{x = t I e,, cJ, 

PIX = 1' I c,, cJ, and Plx = 1 I c,, cJ. 
In Section 2.2, we detailed how to construct the dictionary. A 

permissible configuration in a 3 x 3 lattice has only one continu- 
ous, single pixel wide edge. The 165 permissible configurations are 
found by manipulating the 15 configurations shown in Fig. 2a by 
reversal, reflection and rotation. 97 of them have label e for the 
center pixel, with 17 for each of the four different directional edge 
labels. In this study, all permissible configurations are considered 
equally likely. Out of these 165 configurations, 149 neighborhood 
settings are found. All of them are from the reversal, reflection and 
rotation of the 14 neighborhood settings in Fig. 2b. 

(a) Permissible configurations. 

(b) Neighborhood settings. 

Fig 2. Permissible configurations and neighborhood settings for edge 
detection. Empty cells indicate nonedge pixels. " X  for any of the five 
labels. 

Our relaxation approach differs from Pelkowitzts approach in 
two aspects. Although we both use maximum entropy estimate for 
the joint conditional probability P{m, I YJ, Pelkowitzts update 
function is multilinear; ours is nonlinear. Another difference is the 

implementation method. Pelkowitz proposed to divide the set of 
configurations into two: 

Clf ,  the "don't care" configuration set, contains configurations 
such that P{x, = A] = P{x, = /Ik I w J  for all 4. In this setting, P{x,  = AI] is 
independent of its neighbors. QF , the "care" configuration set, is 

the complement of Qf .  Configurations in Cl,' are in favor of 

changing the has about 3 x lo6 configurations. If IQ1 >> IQrl, i.e., 

IQ1 = IQFl, the computation is very expensive because there are 

large number of configurations to be considered. If 101 >> lClcl, 

which means that only a few "care" configurations are selected, 
the expense to compute l i s  acceptable. However, the convergence 
rate will be very slow because the factor for change (Zucc lF)  is 

much smaller than the factor for stability (X',,ny). In our imple- 

mentation, the use of a configuration dictionary avoids this diffi- 
culty. Experiments show that our algorithm converges after 10 
iterations in most cases. 

3 EXPERIMENTAL RESULTS 
The edge detection algorithm described above has been imple- 
mented along with two versions of Kittler and Hancock's algo- 
rithm. One uses their original dictionary, while the other uses our 
new dictionary. The behaviors of them are examined on both 
synthetic images and natural pictures. The two templates that are 
used to compute the first order differences are the smallest among 
the existing templates (2 x 1 and 1 x 2); they preserve more edge 
pixels and also keep more noise pixels. We choose these small 
templates because they can test the noise insensitivity and the 
robustness of relaxation algorithms to the greatest extent, and we 
can compare our algorithm with Kittler and Hancocks algorithm 
in an identical situation. 

An important feature for both algorithms is the convergence 
rate. After 10 iterations, the algorithms essentially converge and 
most pixelqs probabilities are either zero or one. In the following 
presentation, all the edge outputs are collected after 10 iterations. 
The figures show the final maximum a posteriori label assign- 
ments. No postprocessings such as linking, thinning, or cleaning, 
are used. 

We tested the algorithms on a well structured 50 x 50 synthetic 
image (Fig. 3). Within the circle, the gray intensity is 56 (the range 
of gray level is [0,255]). Inside the square, the gray intensity is 231. 
Outside the square, the gray intensity is 115. This image is then 
mixed with independent Gaussian noise of a zero mean and dif- 
ferent standard deviations of 40, 80, 120, 160, or 200. The experi- 
ment tests the performance of the algorithms under different noise 
levels, and the ability of the algorithms to detect edges of various 
orientations and curvatures. 

Fig. 3b is the result obtained from our algorithm, Fig. 3c from 
Kittler and Hancock's algorithm with their own dictionary, and 
Fig. 3d from Kittler and Hancock's algorithm with the new dic- 
tionary. All three algorithms work fine for both lines and curves in 
all orientations. All the corners are well reconstructed and the 
edges are continuous. Regarding noise suppression, our algorithm 
is better than Kittler and Hancock's algorithm. It eliminates much 
of the noise effects and gets good results for images with noise 
standard deviation less than 100. Reasonable results are obtained 
for noise levels up to a = 200. Kittler and Hancock's algorithm 
with its own dictionary works fine for noise levels of a < 60, but 
after this range the performance deteriorates. Kittler and Han- 
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( 4  

Fig 3 Synthetic image (0-255) with additional Gaussian noise ( o i n  20, 40, 60, 80, 100, 120, 140, 180, and 200). (a) is the original image, (b) is 
the result from our algorithm; (c) is from Kittler and Hancock's method with dictionary D,; (d) is from Kittler and Hancock's method with dictionary 
D' 

cock's algorithm using the new dictionary works fine only when 
the additional noise has a standard deviation of no greater than 20. 
Otherwise, too many noise pixels are preserved. 

Color pictures are also used to test the algorithms. The intensity 
is calculated by averaging the intensities of red, green, and blue. 
Fig. 4a (256 x 256) tests the ability of the algorithms to identify 
edges in the existence of texture. All three methods succeed in 
obtaining edges of the house with good connectedness, even for 
the very sharp curves. Among these three methods, the edge con- 
nectedness in Fig. 4d is the best, and that in Fig. 4b is next. How- 
ever, both Fig. 4b and Fig. 4c eliminate texture effects better than 
Fig. 4d. In Fig. 5 (450 x 320), Kittler and Hancock's original algo- 
rithm fails to get edges for the simple patterns on the wall. Again, 
Kittler and Hancocks algorithm with our new dictionary obtains 
the best edge connectedness but retains many noise pixels. Our 
algorithm achieves a better balance between making noticeable 
edges and reducing noise. Fig. 6 (450 x 320) shows the same per- 
formance differences among these three implementations. 

Fig 4. Image of a house (a) is the original input image, (b) is the out- 
put from our algorithm, (c) is the output from Kittler and Hancock's 
algorithm with dictionary D!, (d) is the output from Kittler and Hancock's 
algorithm with dictionary D' 
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(c) ( 4  

Fig. 5. The image of an office. (a) is the original input image; (b) is the 
output from our algorithm; (c) is the output from Kittler and Hancock‘s 
algorithm with dictionary Dr, (d) is the output from Kittler and Hancock’s 
algorithm with dictionary D,’ . 

(4 ( 4  

Fig. 6. The image of a car. (a) is the original input image; (b) is the 
output from our algorithm; (c) is the output from Kittler and Hancock’s 
algorithm with dictionary 0,; (d) is the output from Kittler and Hancock‘s 
algorithm with dictionary 4’. 

From these experiments, we observe that our relaxation algo- 
rithm is quite successful in using contextual information to per- 
form postprocessing for edge detection. It achieves a good balance 
between preserving edge features and eliminating noise effects. 
However, in some places, the edge output is not well connected. 
One explanation is that, although using contextual information 
through relaxation can eliminate ambiguities from imprecise ini- 
tial label assignments, if the initial assignment contains too many 
labeling errors, label contextual information may not be enough to 
correct all of them. 

4 CONCLUSION 
In this paper, we presented a new probabilistic relaxation algo- 
rithm based on a dictionary construction method. This algorithm 
is then successfully used in edge detection. The experiments show 
that our relaxation edge detector converges quickly and success- 

fully uses contextual information to balance edge preservation and 
noise suppression. 

Compared to Kittler and Hancocks approach, the difference is 
in the order of normalization and evidence combining. Theirs 
combines all the evidence from all permissible configurations to 
get a supporting function value Q first. Ours first distributes the 
support of a configuration among the label assignments for an 
object, then adds all the support together. Furthermore, a new 
method is used to construct the configuration dictionary. This new 
dictionary contains more configurations. 
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