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Abstract, The problem of distributed decision fusion is studied in the
case when the probability distributions of the individual detectors are not
available. The detector system is available so that a training sample can
be generated by sensing objects with known parameters or classifica-
tion. Earlier solutions to this problem required some knowledge of the
error distributions of the detectors, for example, either in a parametric
form or in a closed analytical form. Here we present three methods that,
given a sufficiently large training sample, yield an approximation to the
optimal fusion rule with an arbitrary level of confidence. These methods
are based on (i) empirical estimation, (ii) approximate decision rule, and
{iif) nearest-neighbor rule. We show that a nearest-neighbor rule pro-
vides a computationally viable solutlon, which approximates a neural
network-based one while ensuring fast computation. © 7996 Society of
Photo-Optical Instrumentation Engineers.
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1 Introduction

The problem of fusing decisions made by individual agents
has been extensively studied in areas such as political
economy,' reliability forecasting,® pattern recognition,?
neural networks,” and decision fusion.® In the well-studied
area of decision fusion, the basic problem is to combine the
decisions made by a number of distributed detectors.” 10 A
typical fusion rule in this case is in the form of a Bayesian
rule” or Neyman-Pearson test,>!” and requires the knowl-
edge of underlying error probability densities. Furthermore,
analytical expressions for the error densities must be in a
convenient form to ensure reasonable computational
speeds. In many detection systems, it might be possible to
utilize the knowledge about the system to obtain the re-
quired probability densities. Tn tumn, this knowledge could
be based on the experience with the system, possibly in the
form of empirical data observed during experimentation or
operation. Thus such an approach involves inferring densi-
ties from empirical data. In the distributed decision fusion
context (and in several other contexts'!), the density esti-
mation is harder than the problem of estimating a fusion
rule {or function in general) directly from empirical data;
the latter involves estimation over a smaller class of func-
tions, e.g., a set of Boolean functions in the present prob-
lem, whereas the former involves estimation over a much
larger class of densities.

In this paper, we study the case when no information
about the probability distributions is available (along the
lines of Ref. 12). Our solution relies on utilizing a training
sample. We obtain the sample sizes required to arbitrarily
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bound the probability of disagreement between a fusion
rule computable when the error densities are known and its
empirical implementation based on a sample.

The proposed technique is to be used mainly when ac-
curate estimates of the probabilities are either not available
or are computationally difficult. For a system of indepen-
dent detectors, if the exact analytical form of the probabili-
ties is available, the methods of Refs. 1 and 9 could be used
to implement the required fusion rule. Also, the sample-
based approach could be useful from an additiona! view-
point. In some cases—typically in a system of nonindepen-
dent detectors—even if the distributions are available, it
could be computationally intractable (NP-complete) to
implement a Bayesian test.”** In such cases, Monte Carlo
simulation can be used to generate the empirical data and
the methods proposed here can be used to implement a

.possibly suboptimal fusion rule (as illustrated in the ex-

ample of Sec. 3).

Consider that the data vector x e R? is produced accord-
ing to the distribution P,. Let a probabilistic mle yield
hypothesis 7 e{H,,H,} based on data vector xeM? ac-
cording to a probability distribution Py For example, in
object detection systems, x corresponds to readings taken
by a sensor system and A is the decision where the hypoth-
esis Hq (or H ) corresponds to the presence (or absence) of
the required object. Consider a parallel suite® of & detectors
(see Fig. 1) such that corresponding to data vector x efRY,
the i’th detector outputs ¥ e {#,,H,} according to an un-
known probability distribution Py(j)kx" Each detector D;,
for i=1,2,...,N, makes a decision y\¥ & {H,,H,}, and the
fu-
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Fig. 1 Parallel sensor suite.

sion  center  receives  the decision vector
y=[yV,yP ™ and outputs either Hy or H,, The
fuser design calls for a method (typically a function) that
combines the outputs of various detectors and returns a
“consolidated” hypothesis while minimizing a suitable cost
function such as expected error, Thus our objective® is to
choose a fusion rule f: {Hc, H\YW—{H,,H,} from a family
of functions % to minimize the expected error given by

1= 3 [ voenir,ap,ap..

yeiHy !;l’l}"'r hE{HO Hi}
(1)

where y=(yV,y®,...,y™) is conditionally distributed
according to an unknown P, , and

0 if a=b
b=
a® 1 otherwise,

In general, % can consist of all possible functions of the
form f:{Hy,H}'+>{H,,H,} in which case [#] = 27" For
example in neural network methods, % may correspond to
a set of all neural networks of a fixed architecture (ﬁxed
number of hidden layers and fixed connections). The mini-
mization problem in such case is to choose weights that
minimize Eq. (1) for a network of the chosen architecture.
_ In object recognition systems, each detector could base

its decision on possibly different object features, i.e., each
detector D; may be sensitive to only certain components of
x. A number of formulations along the lines of Eq. (1) have
been studied (see Ref. 6 for a comprehensive treatment)
under various conditions. One of the earliest formulations
deals with independent detectors in which case the fusion
rule takes the form of an easily computable test {e.g. Baye-
sian rule or Neyman—Pearson test expressed in terins of the
densities of various detectors’). Most existing solutions to
this class of problems require knowledge about the eITor
densities, with the exception of some recent results.'? Here

*Only the fusion problem is addressed here in that the local detectors are
given, i.e., we do not address the problem of designing the local detec-
tors.
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we consider the case of unknown distributions, where the
information from the system is in the form of a training
sample.

A waining I-sample  (x;.k1,y), (Iz,kza)’z)
(x1,h1,y)) is given where y;=[y{"), y!¥ .. {1 and 30
is the output of D, in response to input X e, Informally,
the training example (x;,0;.y;) gives the data vector x;
the correct hypothesis #;, and the vector y; of hypotheses
of the detectors. The problem is to estimate a fusion rule
Sfi{Ho,H }¥—={H,,H,}, based on the sample, such that
Sf(y) “closely” approximates h corresponding to x.

Let f* e.% minimize I(f ) in Bq. (1) (it is assumed that
F is suitably chosen such that f* exists'®). In our formu-
lation, f* cannot be computed since the underlying distri-
butions are unknown. Furthermore, since no restrictions are
placed on the distributions, it will not be possible to infer
the function f* (with probability one) based on only a finite

-sample, Typically, it is only possible to compute an ap-

proximation to f* with some probabilistic guarantees.

We consider three types of methods to compute an ap-
proximation to f*: (i) empirical estimation, (ii) approxi-
mate decision riles, and (jii) the nearest-neighbor rule.
These methods are based on well-known techniques but
their applicability and performance is to be examined in
detail for the case of a distributed decision problem. The
first and second methods are general but do not yield con-
veniently computable approximations and sample sizes re-
spectively. The third method provides a computationally
conducive method but is not as general (in that % is re-
stricted to a class of Lipschitz functions). Further, the last
method also provides an approximation to a neural network
solution without incurring the high computational cost for
the training of the latter. Special attention is paid to (feed-
forward) neural nefwork methods in this paper, since the
fusion rule estimation problem is unlikely to be handled
effectively by linear methods and neural networks have
been found to be effective in a number of nonlinear fune-
tion estimation problems. But the training problem of neu-
ral networks is particularly difficult in a number of situa-
tions. For the present problem, our results indicate that the
nearest-neighbor rule provides a good alternative to neural
networks,

The present formulation has been motivated by the sen-
sor fusion problems that arise in robotic applications,'®

where the individual sensors have been built and mounted

on the robot. Obtaining accurate probabilistic models of the
sensors is a more challenging task than performing experi-
ments by sensing a set of objects with known features (the
situation in other applications, however, could be signifi-
cantly different). Here, the training samples can be obtained
by sensing the objects that belong to given classes and also
the objects that do not. Distributed decision fusion prob-
lems with unknown probabilities have been studied in Refs,
12 and 16; both methods are based on estimating the prob-
abilities from a sample, but the latter provides sample size
estimates that guarantee specified levels of confidence. The
general problems of estimating functions based on finite
sample have been extensively studied.!™® Recently, the
computational aspects of such problemns have been receiv-
ing increasing attention,'™®
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.

Three solutions to the decision fusion problem are pre-
sented in Sec. 2. An example is discussed in Sec. 3.

2 Fusion Rule Estimation

We first consider the case when & is the set of Boolean
functions using the methods of empirical estimation and
approximate decision rules. Then we restrict % to a certain
class of Lipschitz functions and show that nearest-neighbor
rules provide a computationally viable option,

21 Empirical Risk Minimization

We apé:)ly the empirical risk minimization method of
Vapnik® specialized to the present problem. The I(f ) of
Eq. (1) can be rewritten as

I(f )= [fy)®hrldPy .,

¥ihox

where dPy ;. corresponds to dPy,dP
sider that the empirical estimate

sx@Px. Now con-

1 &
[emp(f):‘?‘; Lf(yneh;]

is minimized by f..,,€.%. Recall that f* that minimizes /(.)
cannot be computed since P, , . is not known, whereas
Semp can be computed since 7 emp(-) depends only on the
sample. If F is the set of all feedforward neural networks
of a fixed architecture, the computation of Semp 15 called the
training problem. We show in the following theorem that
for a sufficiently large sample

PU(feup) —I(f¥)> €] <8

for arbitrarily specified >0 and &, 0<<&<1. Thus this ap-
proach yields a fusion rule Semp Whose “‘error” is bounded
(within minimum possible error) by an arbitrarily specified
precision € with arbitrarily specified confidence 1~ & given
a sufficiently large sample.

Theorem 2.1 Let % denote the set of all Boolean functions
of N variables, and let fon, €% minimize 11} ,[f(y,)
® x;). Then we have PlI(f o) ~I(f*)>€]<8 given a
sample of size

2
I=— [2¥ In2+1n(2/8)].

Also, I{fomp)—I(f*) with probability one as /-,

Proof: The first part is a direct consequence of Theorem 6.1
of Vapnik'' (see also Ref. 16) which shows that

PUI(fomp) —I(f¥)> €] <21 +2"e <12

. . N
by noting that % contains 2% elements. For the second
part, consider for any >0

o

l—El P[I(femp)_l(f?)>é]-<_2]+2~2 e“{ezlﬂ)

=21 ”Nf%e“(fz””dx
0

224—21\7

s,
3

which is finite. Thus the result follows from the Borel—
Cantelli lemma.!® O

This result can be perceived as an existence proof for the
overall tractability of the present formulation of the distrib-
uted decision problem. However, a practical implementa-
tion of the solution is computationally difficult. In general,
the problem of computing Jemp 18 NP-hard and could re-

" quire a time complexity of 0(2%") for the sample size es-

timated above (with fixed € and ). A generalization of the
above method for the case of & taking continuous values
and % having nonfinite cardinality can be found in Ref. 16.

2.2 Approximate Decision Rule

We consider a technique that utilizes the solutions to the
distributed decision fusion problems applicable when the
error densities are known. Typically in these cases, the so-
lution is in the form of a probability ratic test®® expressed in
terms of the various densities, which are unknown in the
present formulation. Here we consider an approximation of
the test based on a sample,

We first show that the regression function E(%|y) mini-
mizes Eq. (1)!! and then show that an approximation to it
can be computed using the sample (see Refs. 21 and 22 for
the solutions of the latter type). Consider the following:

1 )= L [f0)@hlaP, s,

= [fO)~h)2aPy 4,

y.hx

= [ 01U ap, .+ [ (ELhly1-1y
XaP 42 [ U0V~ ETHIyY)
X(h —E[kly])dpy,h,x

- [ vo)-Eb1ar,

v [ @) -nap, .

Note that the second term is independent of f and hence the
minimum is achieved by the regression function. It is well
known that f%. given by

Fa={ 0 I PranslHob)> Py ps(Hily)
@7 1 otherwise
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minimizes the first term, This function in tum can be ex-
pressed  as a  test checking the condition
Py ax(Holy) >P}.'h,x(H.1 Ay). Now consider an empirical
implementation f,4 of f75 defined as

Ho if By, (HyNy)>B,, (H Ny)
H, otherwise

Faaly)=

where ﬁy' n.x(H 1y} be the fraction of sample points of the
form (y,H;) in the sample for i=0,1. By Theorem 3.1 of
Ref. 22 (which can also be derived from Lemma 3.1 of Ref.

21), we have P[f5(y) # fuady)] < &for the sample size !/
given in the following theorem.,

Theorem 2.2 Let # denote the set of all Boolean functions
of N variables, and let P, , .(H;Ny) be the fraction of
sample points of the form (y,H;) in the sample for {=0,1.

Let faly)=Hy if Py.h,x(HDny)>Py,h,x(H1 Myl 3-nd fade
(y)=H, otherwise, Then we have P[I(f,.)>I(f*)]<s8
given a sample of size /=1/¢* In(2/8) where

1+ |ﬁy,k,x(H0ﬂy)ﬁﬁy,h,x(Hlny)l 11'2“
r

€= 1

for any r>2, O

Note that computation of f,4 is very simple, This
sample estimate, however, is not very useful since it uses
the empirical measures that depend on the sample: & is
sensitive to both the size and the sample itself. Thus & can
be computed based on the sample, and the decision to em-
ploy this method can then be made based on performance
measures of a competitive method. In Sec. 3, we apply this
method to an example.

In the special case when y’s are independent, faar can
be implemented by the test (Theorem 3.1 of Ref. 22)

N N
11;[1 ﬁy,J‘i..::[fft)r-b’(j):l>j:l_=.[1 ﬁy,h,x[H!nyU}]

such that the sample size is given by
1 2
I= P In(8n*/ 5),

where

1 N
E+“‘[ ﬁy hx[HonyU)}
F =i v

N Uy
-"_]._.[1 ﬁy.h,x[Hlny(j)}}) -1
j=

Several variations of this technique have been studied in
Refs, 12 and 16, which are both geared toward implement-
ing a test using estimates for the required probabilities. Our
method is geared toward minimizing the expected error and
provides the sample size estimates as a function of a speci-
fied level of confidence.
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2.3 Nearest-Neighbor Rule

We now consider a method based on the nearest-neighbor
rule which is convenient to compute (unlike £,.,) and also
yields a sample size that does not depend on Lﬁe specific
sample (unlike f,;). This method also provides an alterna-
tive to popular methods based on sigmoidal feedforward
networks while not incurring the high computational com-
plexity of training the latter. As a side benefit, this method
aids us in understanding the performance of the neural net-
work approaches that are becoming increasingly popular.

We first show that the nearest-neighbor rule provides a
good approximation to f* when %% is a set of rounded-off
Lipschitz functions. We then consider a popular type of
feedforward network that constitutes a subset of the re-
quired Lipschitz functions.

2.3.1 Approximation of Lipschitz functions

We assume that H, and H, are represented by 0 and 1
respectively, and we allow y to take continuous values from
[Osl]N' Given (hl ,yl)S(hZ ?yZ)’-”s(hl ,}’[), for yie [OsI]Ns
h;e{0,13, let

Viy)={y[0.1)": for all jly—yil<ly—y]}

whete || is the Euclidean norm. We then have the Voronoi
decomposition of [0,1F into V(y;)’s whose boundaries
could have nonempty intersections, Let Int[V(y,)] denote
the interior of V(y,;), and let A¥(y;), k=0,1, denote the
number of ks in the sample that correspond to y; with
Ry=k. Now hyy is defined by

Hy if yeInt[V(y;)] and h¥(y)<hi(y)

hon(yy= | H0 i yemlV ()] and he(v)>Ri(y)
MWOITVH, o Hy arbitarly i yeV(y)NV(y)),

i+

To facilitate our main result, we define two new quanti-
ties, the function fyy(.) and the cost functional Iyy{.). For
fef, let fyy be the nearest-neighbor rule based on the
POimS [kl =f(y l)]s{h2 ,f(}’z)] :---:[hl ,f()’z)] as above [i.e.,
the same definition as that of hyy(.), except f(y;) replaces
h;]. Then we define the error functional

s )= [ D)= Fun NP P

where y=(yD,y@, .y, Let f%, minimize Iyy(f )
over %, We consider %, which are “rounded-off”” versions
as defined below so that By, (1) can still be used for the
expected error.

Theorem 2.3 Let #={f:[0,11"[0,1]} denote the class of
Lipschitz functions with the constant , i.e. for all fe.7,
we have |f(x)— f(r)<kl|x—y| for all x,ye[0,1]". Let
F={f,: f e F), 0<t<1/2, where
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0 if fly}=s1/2—1¢
fiy)=y 1 if fy)=1/2+t
0 or 1 arbitrarily otherwise

Given a sample of size at least

kN3

&262*'2

we have PlI(hyy)—I(f*)>2e]<8, where I(f*)
=ming. 71(f ).

Proof: We first show that P[supse o |1(f ) — Iyn(f )| > €]

< & for the sample size given in the statement of the theo-
rem, which implies P[I(f5y) — I(f*) > 2€] < Sbythe ar-
gument of Ref, 11. This in turn implies the theorem since
Iun(hyy) = O = ming A yy(f ) and yy €., . Letus define

Coa={(y1:¥2,--.7) €[0,11%: max P[V(y;}]>a}.

1=i=]
We have

P[CQ}SP{())I ’st"'yl)

E{O,I]m :there is ¢ such that for all

J'?Efayjdfﬁ“()’f)}s

where 5“():,-) is a ball with the smallest radius that con-
tains V(y;), measuring at least cv. D®(y;) is a ball centered
at y; with smailest the radius measuring at least . Now we
have

P(C=IP{(y1,y2,70)
&[0,11¥:there is i such that for all
JELy; €Dy}
<IP{(y1,2:0.7) € [0,1]%:there is £e[0,17Y
such that for ail 1y e D6}

=/(1-a)"L

By choosing a=(1/I—1)In(}/&), and using the fact that
(1= B/n)"<e ? this probability is no more than &

Let us project the y,’s onto to each axis j=1,2,...,N and
identify for each y, the interval I/ that contains the projec-
tion of y; and contains all the points of the axis that are
closest to the projection of y; than a projection of any other
peint. We now classify y;’s into two classes based on the
condition max,{1j| <(#/yNk), where [F] is the length of the
interval I{. If the condition is satisfied for y,, the radius of
D(y,;) is less than or equal to #/k, where D{(y;) is a ball
with the smallest radius that contains V(y,); consequently
for this y;, we have |f(x)— fynl(x)<st. I the condition is
not satisfied for y,, then for some j we have [I{|> (#/yNk),
which implies that the radius of D(y;) is at least (#/ yNk).
Now there are no more than (kN>%/1) of i's with the above

condition not satisfied [because for each axis j, there are no
more than (kyN/1) such y;’s]. Thus we have with a prob-
ability at least 1—8, we have,

312

ka kN
P[{J’:ff()’)_fNN(J’)lat}JST= =) In(1/6).

The right-hand side can be made smaller than e under the
condition

H1=1)e=kN*2 In(l/ ),
which is satisfied under the condition
{I—1)e=kN¥2 1/ 5

by using In{x)=yx—1 for x>1. This condition is satisfied

under the condition

kN3
[= ;2—?6— +2,
which is satisfied under the hypothesis since the condition
I1>b242 implies 1= byl 42, d

This theorem indicates that the error of the nearest-
neighbor rule is within 2e of 7(f*) with a probability of
1—& when %, corresponds to rounded-off Lipschitz func-
tions, This method is implemented in Sec. 3 for an ex-
ample.

2.3.2 Feedforward neural networks

We now show that Zyy(.) of the last section is a good
approximation to the best possible neural network and also
ensures ease of computation, We consider the popular class
of feedforward sigmoidal networks which seem to be very
widely used.

A general architecture of a multilayer feedforward net-
work consists of an input layer with d units and an output
layer with m units, and one or more hidden layers. Con-
sider a network with 2 single hidden layer and single output
node (m=1). The hidden unit j has a weight vector & i e
and a threshold t;eR. The output of the j’th hidden unit is

b}y—tj), where y=(y!,y%,...,y9 is the input vector,
b}y denotes the scalar product, and 6:[0,1]1-5{0,1] is called
an activation function. The output of the neural network is
given by

M
f(y)=j=21 a;o(bly+1)),

where a=(a,,a,....,a,,) is the weight vector of the output
node, M is the number of neurons in the hidden layer, and
w is the parameter or weight vector of the network that
consists of a, by,by,....by and t,,1,,...,t,,. We consider
sigmoidal hidden units of the form o{x)=1/(1 +e” %), for
p:z €R. The Lipschitz constant of these networks is given
by
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—ab\/-_

4

where a=max a; and b=maxb;;. Let /" be the set of all
neural networks of this type with fixed M. Let ./, corre-
spond to the rounded-off version of .4 as in Theorem 2.3
and let f3 minimize Eq. (1) over .#,. Then from Theorem
2.3, for the sample size { y’a’b2Md*/ 16 5% €%} +2 we have
P[I(fNN) - I(f;:) > 26] < 6. ThquNN PrOVich agood ap-
proximation to fi . We note that f3 is hard to compute
even when the distributions are known, but fy, is easy to
compute based on a sample and reguires no knowledge of
the distributions.

Since f3 is not computable in our case, an empirical
approximation to it can be examined. One can consider
femp for F=,",, which minimizes the empirical error as
described in Sec. 2.1. But since .47, is not finite, Theorem
2.1 is not directly applicable. A generalization to Theorem
2.1 is feasible so the f,,,, approximates f5 , but the com-
putation of fu, is intractable™?% whereas the nearest-
neighbor rule offers the same type of apprommatlon to f*
while being computable in linear time in the sample size,

3 Example

We consider a system with five detectors, D,,...,Ds. The
hypotheses H, and H, are generated with equal probabﬂ1-
ties for any x. This behavior is simulated by generating' a
uniformly distributed random variable over the interval
[0,1] and checking to see if it lies in the interval [0, 0.5].
Each detector is given the hypothesis as input and it pro-
duces an ontput that disagrees with the input according to a
probabilistic strategy. The detector D;, i=1,2,...,5 intro-
duces an efror as follows: with a probability of 1—i/10 it
passes on the input to output, and with a probability i/10 it
passes on the opposite of the input. The individual detector
behavior is implemented by generating a uniform random
variable in the range [0,D] and checking if it falls in the
interval [0,iD/10]. Tt is assumed that the pseudo random
number generator yields independent cutputs and the error
processes of the individual detectors are probabilistically
independent.

A sequence of examples has been generated and given as
input to the Bayesian fuser, approximate decision rule, and
the nearest-neighbor mule. The Bayesian fuser is imple-
mented by using the analytical formulas for the distribution
of errors; here independence between the various detectors
is assumed to obtain the Bayesian rule. For the approximate
decision rule, the probabilities are estimated based on the
sample seen so far. The nearest-neighbor rule is based on
the sample seen so far. Each example is given as input to
the three fusers and their outputs are computed. The per-
centage of correctly classified examples (among the sample
seen so far) is computed and shown in Fig. 2 and Table 1.
The plots in Figs. 2(a), 2(b), and 2(c) are for 1,000, 10,000
and 100,000 examples respectively. The performances of
the approximate decision rule and nearest-neighbor rule
showed overall improving trends as the training progressed;

YAl simulations are carried out using pseudo random pumber generators.
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Fig. 2 Relative performance of Bayesian {user, approximate deci-
sion rule, and nearest-neighbor rule,

the performance of the latter was consistently better during
the entire training process. After 1,000 examples, the ap-
proximate decision rule and nearest-neighbor rule achieved
performances within 10 and 2% respectively of that of the
Bayesian fuser, as shown in Fig, 2(a). After 10,000 ex-
amples, the performances of the approximate decision rule
and nearest-neighbor rule were within 1 and 0.3% respec-
tively of that of the Bayesian fuser [Fig. 2(b)]. After
100,000 examples, the performances of the approximate
decision rule and nearest-neighbor rule were within 0.096
and 0.03% respectively of that of Bayesian fuser [Fig.
2(c)]. This simulation has been repeated with different
starting seeds for the pseudo random number generator
with almost identical qualitative behavior. The training pro-
gram has been implemented on an SPARC workstation
IPX; the total execution time for the entire simulation is 2
days when executed as a background process. The superior
performance of the nearest-neighbor rule over the approxi-
mate decision rule appears to be an artifact of the present
exarnple—no general results are known that indicate the
upilateral superiority of the former.
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Table 1 Percentage of correct classification by Bayesian fuser, ap-
proximate decision rule, and nearest-neighbor rule.

number of Bayesian approximate nearest
samples fuser decision rule neighbor rule
100 91.9192 23.0000 82.8283
200 93.0000 47.0000 87.0000
300 92.3333 61.6667 88.3333
400 915000 68.5000 88.5000
500 91.2000 72.8000 88.8000
] 81.3333 76.0000 89.0000
700 01.142¢9 78.1420 - 88.2857
800 91.125¢ 79.7500 89.3750
500 91.5556 81.2222 89.8889
1000 91,8920 82.5826 90.3904
2000 90.8000 86.0000 89.6000
3000 91.2333 88.0333 20,2333
4000 91.2000 88,8000 90.4500
5000 91.2800 89.3600 90.6800
6000 91.3167 89.7167 90.8187
7000 91.1857 89.8143 90.7571
8000 91.0125 89.3125 90.6375
2000 00.9889 89,9222 90.6556
10000 91.1100 90.1500 90.8100
20000 £1.2650 90.7850 91.1150
30000 91.1500 90.8300 91.0500
40000 91.1675 £0.9275 91.0925
50000 21.1900 90.9980 91.1300
60000 91.1867 91.0267 91.1367
70000 91.1800 91.0429 91.1371
80000 91.1263 91,0062 91.0887
80000 91.1622 91.0556 91.1289
130000 91.1650 91.0690 91.1350

In some cases, typically when independence is not sat-
isfied, the problem of implementing a Bayesian fuser could
be computationally expensive (since the problem could be
NP-complete). In such cases, information about the a priori
probabilities and error distributions can be used to generate
examples by using Monte Carlo methods. The approximate
decision rule and the nearest-neighbor rule can be com-
puted based on the examples generated (as shown in the
above example). The utility of such methods depends on
the ease with which the examples can be generated and the
characteristics of the programs that generate the pseudo
random variables. .

4 Conclusions

We have studied the problem of decision fusion in distrib-
uted detection systems when training examples are avail-
able but no information is available about the probability of
errors committed by the individual detectors. Since no in-
formation about the underlying probabilities is available, an
exact implementation of the optimal rule is not possible
based on a finite set of examples, We describe three meth-
ods that, given a sufficiently large training sample, yield a

fusion rule that approximates an optimal one with an arbi-
trarily high level of confidence. The three methods are (i)
empirical estimation, (ii} approximate decision rule, and
(iii} nearest-neighbor rule. We show that a nearest-neighbor
rule provides a computationally viable solution. The pro-
posed method is useful in systems where either the under-
lying probabilities are not known or the optimal rule is too
difficult to implement due to computational complexity.

There are two generalizations of the formulation studied
here. Rao'® discusses the estimation of fusion rules in mul-
tiple sensor systems, and Rao and Oblow?! discuss empiri-
cal implementation of optimal fusion rules for a system of
probably approximately correct learners. These results are
more general in that % is not finite and consequently the
sample size estimates are presented in terms of the Vapnik
and Chervonenkis dimension.!!

Several directions can be pursued for future work. It
would be interesting to investigate computational methods

- for fusion rule estimation based on wavelets and traditional -

regression estimates. The sample sizes presented in this pa-
per are only sufficient, but lower bounds on the sample
sizes provide a better understanding of the complexity of
the undertying problem.
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