
926 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 4, JULY 1996

Lear ms for Feed
ased on Finite Sa es

Nageswara S. V. Rao, Member, IEEE, Vladimir Protopopescu, Reinhold C. Mann, Member, IEEE,
E. M. Oblow, and S. Sitharama Iyengar, Fellow, IEEE

Abstract-We present two classes of convergent algorithms for
learning continuous functions and regressions that are approx-
imated by feedforward networks. The first class of algorithms,
applicable to networks with unknown weights located only in
the output layer, is obtained by utilizing the potential function
methods of Aizerman et al. [2]. The second class, applicable
to general feedforward networks, is obtained by utilizing the
classical Robbins-Monro style stochastic approximation methods.
Conditions relating the sample sizes to the error bounds are
derived for both classes of algorithms using martingale-type
inequalities. For concreteness, the discussion is presented in terms
of neural networks, but the results are applicable to general
feedforward networks, in particular to wavelet networks. The
algorithms can be directly adapted to concept learning problems.

I. INTRODUCTION
HE problem of learning (or inferring) a function or a set
(concept) from a finite set of examples has been the focus

of considerable research in areas such as pattern recognition,
machine learning, neural networks, etc. Recent density results
guarantee that finite-sized networks can approximate contin-
uous or indicator functions within any specified precision.
These results enable us to formulate the function learning
problem as one of estimating finite dimensional vectors (that
typically represent connection weights of a network) at the cost
of settling for an approximation. The learning methods that
compute the connection weights of a required network based
on a finite sample have been extensively studied recently both
analytically and heuristically. The recent renewal of interest in
such methods can be attributed, at least in part, to the success
of neural networks in a wide variety of applications. Typically,
the performance of such methods depends on 1) the form of
network employed and 2) the learning algorithm that computes
the parameters of the network.

We illustrate the application of two well-known meth-
ods, namely the potential function method [2] and stochastic
approximation [4], [37], to obtain leaming algorithms im-
plemented in two basic feedforward network architectures.
The first method is applicable to feedforward networks with

unknown weights located only in the output layer, and the sec-
ond technique is applicable to general feedforward networks.
For concreteness, we illustrate the first method using the
networks of Kurkova [29] and the second using the networks
of Cybenko [141. Yet our approach can also be used to obtain:
1) efficient algorithms for learning sets (concepts)-for which
most existing methods are nonalgorithmic [35], [S3], and 2)
learning algorithms for wavelet networks [S9]-for which no
finite sample results are known.

General density results guarantee that a continuous function
can be approximated by a finite-sized network of nonpoly-
nomial units with a single hidden layer within a specified
precision [31], [34]. When the units are sigmoid functions,
the networks are called feedforward neural networks [3], [14],
[22]. Density properties of sigmoidal feedforward networks
with two hidden layers have been studied by Kurkova [29]
by using Kolmogorov’s superposition theorem [28]. Similar
density properties of slightly different architectures based
on wavelets have been studied by Zhang and Benveniste
[S9]. These density results can be utilized for approximating
arbitrary continuous mappings or concepts by networks whose
parameters (in the form of connection weights) are to be
determined by the function being approximated.

For the task of learning functions from a finite sample, the
utility of the above density results depends critically on the
availability of suitable learning (or training) algorithms. There
are several algorithms that train the networks of sigmoidal
units based on finite samples [51], [S4], [57]. The performance
of such algorithms has been assessed only to a limited extent,
and mostly in asymptotic cases. The popular backpropagation
algorithm [46], [S7], which is a gradient descent method based
on mean square error, seems to be effective in some cases but
very slow to converge in others, Significant effort has been
spent to improve the convergence of this and similar gradient
search algorithms [IO], [lS], [20], [27], [48]. Convergence
properties of learning algorithms based on wavelet networks
[59] are unknown. Also, to our knowledge, no learning al-
gorithms have been published for the networks based on

Manuscript received September 19, 1994; revised February 3, 1996. This
work was sponsored by the Engineering Research Program of the Office of
Basic Energy Sciences of the U S . Department of Energy, under Contract DE-
AC05-960R22464 with Lockheed Martin Energy Research Corp.

N. S. V. Rao, V. Protopopescu, R. C. Mann, and E. M. Oblow are with
the Center for Engineering Systems Advanced Research, Oak Ridge National
Laboratory, Oak Ridge, TN 37831-6364 USA.

S. S. Iyengar is with the Department of Computer Science, Louisiana State
University, Baton Rouge, LA 70803 USA.

Kurkova’s [291.
In the 1960’~, the method of potential functions was studied

for the purpose of learning functions from samples by ~ i ~ ~ ~ -
man et L2]. A number Of properties Of these
including finite sample results, have been extensively studied.
Due to the specific representation used in [2], this method is
not applicable a priori to wide classes of functions. By using
Kurkova’s networks [29], however, we employ this method to Publisher Item Identifier S 1045-9227(96)04395-0.

1045-9227/96$05.00 0 1996 IEEE

R A 0 et al.: LEARNING ALGORITHMS FOR FEEDFORWARD NETWORKS 927

learn arbitrary continuous maps within a specified precision. In
the more difficult case of estimating a regression function, we
additionally employ the empirical estimation results of Vapnik
[55] to obtain suitable learning algorithms.

The area of stochastic approximation has been well estab-
lished since the pioneering works of Robbins and Monro in
1951 [44] (see also [4] and [30]). The relevance of these
methods to the learning algorithms for neural networks has
been recognized by a number of investigators. For example,
White [58] showed that the popular backpropagation algorithm
is an implementation of the Robbins-Monro-style algorithm
for the problem of minimizing the mean-square error. Similar
asymptotic results are also shown by Nedeljkovic [36] and also
by Stankovic and Milosavljevic [50]. Rao et al. [42] establish
that the concept learning problem can be solved by using
a network of nonpolynomial units by employing stochastic
approximation algorithms. We extend these results to the case
of function and regression learning problems; in particular, the
Hilbert space methods of Revesz [43] are utilized to obtain
algorithms for feedforward networks.

The aim of this paper is to provide a comprehensive
framework for designing efficient function learning algorithms
based on two general classes of feedforward network architec-
tures. Our main criteria are performance guarantees based on
finite-sized samples. For most existing algorithms such results
are not available, yet they are strongly needed in practical
applications, where the samples are always finite. Although the
elemental methods, e.g., stochastic approximation, potential
functions, empirical estimation, have been individually well
established, we provide a new synthesis of these methods
tailored to the present problem formulation and solution. In
particular, our contributions include the following:

combination of empirical estimation and potential func-
tion methods to obtain finite sample results for function
and regression estimation (Section 111);
application of Lyapunov methods of Polyak [37] to
obtain finite sample results for learning algorithms based
on stochastic approximation (Section IV);
combination of density results of feedforward networks
with the Hilbert space methods of Revesz [43] to
obtain learning algorithms for feedforward networks
(Section IV-A);
constructive algorithms for solving several classes of
concept learning problems (outlined in Section V-A);
and
finite sample results for concept and function learn-
ing algorithms based on wavelet networks (outlined in
Section V-B).

The organization of the paper is as follows. Some prelimi-
nary discussion on function and regression learning problems,
empirical estimation methods, neural network approximations,
stochastic approximation and potential function algorithms, are
presented in Section 11. The potential function algorithms are
utilized in conjunction with Kurkova’s networks [29] to learn
arbitrary continuous functions and regressions in Section 111.
Learning algorithms based on stochastic approximation are
described in Section IV. The concept learning problems, and

wavelet network algorithms are described in Section V. To
make the treatment self-contained, our presentation is partly
tutorial in nature: we provide, in one place, the adapted
versions of some existing theorems and proofs (that are
otherwise scattered in various papers). Some useful results on
combinatorial and martingale inequalities are reviewed in the
Appendix.

11. PRELIMINARIES

The basic formulation of the function and concept learning
problem is reviewed in Section 11-A. Empirical estimation
of functions from finite samples is, in principle, possible
as outlined in Section 11-B. Yet most results to date are
only abstract existence and/or asymptotic results. To construct
concrete efficient learning algorithms, we use the density
properties described in Section 11-C to approximate functions
by neural networks to any desired accuracy. As a result of
this approximate representation, one can reduce the problem
of function (and concept) learning to the much simpler prob-
lem of “learning” the approximating neural network. Such
a network is actually represented by the finite dimensional
vector formed by its parameters (essentially its weights). Two
convergent algorithms for these finite-dimensional iterations
are briefly discussed in Section 11-D.

The following is a list of symbols that will be used through-
out:

1) U (.) : sigmoid function.
2) vi(.): component function of Kurkova’s network.
3) $J(.): wavelet function.
4) 3i;: step-size of learning algorithms.
5) +,(.): constituent potential function.
Throughout the paper, X and x denote unconditional ran-

dom and deterministic variables, respectively, and it is as-
sumed that all functions satisfy the required measurability
conditions.

A. Function and Regression Learning Problems

A training n-sample of a function f : [0, lld ++ R is

X I , X 2 , . . . , X,, X , E [0, lid, are independently and identi-
cally distributed (IID) according to PX . The function learning
problem is to estimate a function f : [0,lId ++ !I?, based on
the sample, such that f (x) “closely” approximates f (x) . We
consider either the expected square error

given by [X I , f(x1)], 1x2, f (X2)1 , . . . $ [X n , f (X n) l where

or the expected absolute error

J

which is to be minimized over a family of functions F based
on the given n-sample. Let f* E F minimize I (.) [or J (.)]
over F. In general, f* cannot be computed from (la) or
(lb) since Px is unknown. Furthermore, since no restrictions
are placed on the underlying distribution, it is not possible
in general to infer the exact f * (i.e., with probability one)

928 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. I, NO. 4, JULY 1996

based on a finite sample. Consequently, most often only an
approximation f to f * is feasible. We shall give sufficient
conditions under which an approximation f to f * can be
computed such that for a sufficiently large sample we have

P [I (f) - I (f *) > E] < s

P [J (f) - J(f*) > E] < 6

(2 4

(2b)

or

corresponding to (la) and (lb), respectively, for arbitrarily
specified E > 0 and 6 0 < 6 < 1, where P = P$ is the product
measure on the set of all IID n-samples. Thus the "error" due
to f is to be bounded within an arbitrarily specified precision
t of minimum possible error, with an arbitrarily specified
confidence 1 -6 (given a sufficiently large sample). A special
case of this formulation, where f is an indicator function,
constitutes a basic version of PAC learning problem formulated
by Valiant [53]. A general formulation of this nature, has been
studied extensively in empirical risk minimization methods
[S I . In the context of neural network learning, F corresponds
to a class of all networks, and the problem of computing f
involves computing a weight vector based on the given sample.

In the same context, we consider the more general regression
learning problem, which is more general than the above
problem. We are given (XI, Yl), (X2, Yz), ..., (X,. Y,)
IID according to P x , y (X E [0, lid, Y E 8) such that
f (x) = E y (Y 1 z) . The problem is to compute an estimate
.f of the regression function f that satisfies (2 4 or (2b) with
P = P;>y.

B. Empirical Estimation of Functions

One of the basic questions in network learning problems
deals with conditions under which a solution to (1) can be
obtained when only a finite sample is given. The empirical
estimation methods of Vapnik [55] (which are applicable to
more general classes of problems) provide a basis for the
feasibility of such solutions. An application of such ideas
establishes that a consistent solution to (1) can be obtained
in the context of (neural) network learning problems as shown
by Farago and Lugosi [17]. These results are, however, ex-
istential in nature and do not provide concrete algorithms to
evaluate the functions or suitable approximations thereof. We
briefly summarize the results from [55] which will be used
subsequently.

For a family {Ay}7Er, A, C A, and for a finite set
{al, az, ' " , a,} C A we define

nk
== \ <1.5 - k ! if n > k .

Notice that for a fixed k , the right-hand side increases ex-
ponentially with n until it reaches k and then varies as a
polynomial in n with fixed power IC. This quantity k is called
the Vapnik-Chervonenkis dimension of the family of sets A,;
it can also be alternatively defined as the largest size h of a set
{al, az, . . . a,} C A that can be subdivided in all possible
ways into two classes by means of sets A,.

For a set of functions, the capacity is defined as the largest
number h of pairs (X z , Yz) that can be subdivided in all
possible ways into two classes by means of rules of the form

where

Formally, the capacity of a family of functions .F is the Vap-
nik-Chervonenkis dimension of the set of indicator functions
(@[(Y - f(x)N2 + Pl>(f ,P) tF.xW

Consider f , E .F that minimizes the expected error in

Q(f) = 1 [Y - f(X)12 d P x , y (3)

over all f E F based on the sample (XI, YI) , (XZ, Yz), ...,
(X, , Y,) IID according to Px, y . Consider the empirical error
functional

x, y

. n

(4)

The minimizer of Qemp(.) over .F is denoted by f e m p . The
closeness of f e m p to f * is specified by the parameters E and
S in the condition

- Q (f *) > E] < 6

where P = P2,y . To ensure the (E , 6)-bound, two conditions
have to be satisfied: 1) the capacity of 3 must be bounded;
and 2) the error I (.) must be bounded [55].

Theorem 1: Suppose that the error is bounded as
s u ~ ~ , ~ , , - [y - f<z)12 5 7 for f E F.

1) Let h be the capacity of F. Then given n examples, we
have

P[Q(femp) - Q(f*) 2 2761 5 9-e-K2n/4. (an)
h!

2) Let .F = { f l (x) , fZ(x) , . . . f p (2)) for finite P. Then
given n examples, we have

P [& (f e m p) - & (f *) > 2 7 K] < 18Pne-"zn/4.

Parts 1) and 2) of this theorem directly follow from [55,
Theorems 7.1 and 7.31, respectively. Similar results can be
shown under the conditions of bounded error and simpler
solution conditions (see [40]).

The minimization of (3) is intimately connected to the
estimation of a regression function f (x) = Ey(Y1x) . The

RA0 et al.: LEARNING ALGORITHMS FOR FEEDFORWARD NETWORKS 929

function (3) can be rewritten as follows [55]: that any continuous and bounded function can be represented
within an arbitrarily specified precision E in the following
form:

The last term can be expanded as

where P Y ~ X is the conditional distribution of Y given X . The
above term is equal to zero since the quantity inside square
brackets is zero. Thus, the minimum of &(f) is achieved at
the regression function = f since the first term of Q (f) is
independent of f”.

C. Function Approximation by Neural Networks

We first consider feedforward neural networks with a single
hidden layer. A general architecture of a multilayer feedfor-
ward network consists of an input layer with d units and output
layer with m units, and one or more hidden layers. Consider
a network with a single hidden layer and single output node
(m = 1). The hidden unit j has a weight vector b, E
and a threshold t, E 8. The output of the j t h hidden unit is
a(bFx - t,), where x = (dl x2, . ..xd) is the input vector,
bTx denotes the scalar product, and a: R H !R is called an
activation function. The output of the network is given by

M

h(w, x) = a,a(b;x - t,) (5)
3=1

where w is the parameter vector consisting of a l , a2, . . ., a M ,

Cybenko [141 considered a continuous sigmoid function that
is a specific form of continuous a(.): !R H [0, I] such that
a(t) + 1 as t --+ +oo and a(t) i 0 as t -+ -W. He
showed that for a continuous and bounded f : [0, lId H R
there exists w such that the function g(w, x) of the form
(3) such that If(.) - g(w, x)I < E for all x E [0, lid. The
training of a neural network here corresponds to computing a
suitable weight vector w based on a sample. The unknowns
a,’s correspond to the output layer, while b,’s correspond to
the hidden layer.

The networks with unknown weights located only in the
output layer are amenable to potential function method, as will
be shown subsequently; such networks have been proposed by
Kurkova [29]. We consider now feedforward networks with
two hidden layers’ [29]. It can be shown [29, Theorem 21

b l , b2, b ~ , and t i , t2, . . .) t M .

on the function to be learned. Furthermore, this function can
be represented in the following simpler algebraic form:

M

,=I

where the functions vZ(.) are universal and the weights a,’s
depend on the function being approximated. The functions
77% (.) correspond to single hidden layer feedforward networks
consisting of sigmoid functions (see Kurkova [29] for details
on the construction of these functions). As shown in the
original formulation of Kolmogorov [28] , when E = 0, the
elemental functions r] , are highly nonsmooth functions (see
also [33]), which do not seem to be directly amenable to
computer implementations. Approximate versions of these
functions, however, have been implemented by Frisch et al.
[211.

D. Stochastic Approximation and Potential
Function Algorithms

takes the form
One of the simplest stochastic approximation algorithms

(7) wn+1 = wn + Y n S n (W n , Cn)

where the real vector w, is an estimate of the parameter
of interest at nth step, {Y,} is a sequence of scalars, {&}
is a sequence of random variables, and sn(w,, &) is a
random variable called the update rule. For example, in solving
min, f (w) , where gradient estimates of f (.) involve random
error terms, s,(.) could correspond to the noisy estimate of the
gradient. The convergence conditions of this type of algorithm
have been extensively studied using a variety of techniques
(for example, see [4], [30], and [56]). Notice that algorithm (5)
incrementally estimates a vector of fixed dimension, and the
function and regression learning problems involve estimation
of functions. The density results of last section enable us
to approximate continuous functions by finite dimensional
vectors.

We now consider an algorithm based on the potential
functions of Aizerman et al. [2] (see also [19]). Consider a
function that can be represented in the form

M

Although the feedforward networks with single and double hidden layers
have similar density properties, they might be quite different from other

(8)
i=l

where di (x) are linearly independent functions. Now for some
viewpoints. From a control perspective, the networks with two hidden layers
possess stabilization properties that the networks with a single hidden layer
do not, as illustrated by Sontag [49]. From a computational viewpoint, if a
network is allowed to have size proportional to the sample size, a network

easily produced as shown by Blum and Li [7]. The problem of computing a
network with a single hidden layer that is consistent with the entire sample

real X I , X2, XM let
with two-hidden layers that is consistent with all training examples can be

could he computation-intensive as shown by Blum and Rivest [6] .

M

K (Y 1 2) = m % (Y) 4 l i (4 . (9)
i=l

930 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. I, NO. 4, JULY 1996

Given the sequence [X I , XI)], [X, , f (X ,)] consider
the following algorithm:

such that A > 5 max,.[o,lld K (z , z). The conditions under
which f " (.) converges to f(.) have been studied extensively.
A survey of these results is provided in [2]; our application
involves the results shown by Braveman and Pjatnickii [SI,
which deal with the case where M is finite. The density results
of Kurkova [29] enable us to apply these results to wide
classes of learning algorithms. Notice that these results are
not directly applicable to the functions of the form (2.5) since
the parameters a,, b, , and t , all depend on the function being
approximated; these functions can be handled by stochastic
approximation methods (see Section IV). The relationship
between the potential function methods and the stochastic
approximation methods has been discussed by Aizerman et
al. [1] and Tsypkin [52].

111. LEARNING ALGORITHMS
BASED ON POTENTIAL FUNCTIONS

Given a finite sample [XI, XI)], [XZ, ~ (X Z)] , ...,
[X,, f (X ,)] IID according to an unknown Px, consider
algorithm (10) which can be implemented in terms of
coefficients as follows

We shall now provide sufficient conditions under which algo-
rithms of this type can be used for solving the function and
regression learning problems.

A. Function Estimation

The following condition is utilized for the potential function
method.

Condition 1: There exists a natural number M such that
any function f E 3 with sx f ' (z) dPx > 0 admits the
expansion f (z) = a,$,(x) where (4,) is a linearly
independent set and a; # 0.

This condition is satisfied if f (.) is continuous and vanishes
at no more than a finite number of points. This condition im-
plies that the M x M matrix [p,,] = [J, &(z)4J(z)p(x) d z]
is positive definite. Thus

M

M M M

S R C u :
a=1

Theorem 2: Suppose the sample size, n, is given by

n =
In (I - ra)

where
M

c = c a :
i=l

and
max K (z , x)

x€[O, 1ld a=- 2 -
A

with 1-rn 2 0, where r and R are the smallest and largest
eigenvalues of the matrix [p,,], and A is a free parameter
chosen such that a > 0. Then under Condition 1, for f E F,
and f" given by algorithm (ll), we have

P [l (f ") < € 1 > 1 - S.

Furthermore I (f n) converges to zero with probability one.
Prooj? The outline of the proof is direct: Braverman and

Pjatnickii (19, Theorem 11) showed that E [l (f n)] 5 RC(1 -
r ~) ~ , which is combined with the Chebyshev's inequality to
show the theorem.

We provide the details here for completeness (this proof
can be found in [9] which makes use of results from earlier
publications) and also to facilitate the proof of Theorem 5.
Define the following quantities:

M

f(.) - f " (z) = A.rh(.)
e = l

where

Aap = a, - a:
and

M

and

.-

f (z) = E .id%(.)
i=l

M

cy, = c (say

r = l j=1

We express an+1 in terms of a, as

i=l
- - an - 2rn+l[f(Xn+l) - Pn(Xn+l)l

where r and R are the smallest and largest eigenvalues of the
matrix [p i j] . + T:+lK(Xn+l, Xn+l)

