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Abstract-We present two classes of convergent algorithms for 
learning continuous functions and regressions that are approx- 
imated by feedforward networks. The first class of algorithms, 
applicable to networks with unknown weights located only in 
the output layer, is obtained by utilizing the potential function 
methods of Aizerman et al. [2]. The second class, applicable 
to general feedforward networks, is obtained by utilizing the 
classical Robbins-Monro style stochastic approximation methods. 
Conditions relating the sample sizes to the error bounds are 
derived for both classes of algorithms using martingale-type 
inequalities. For concreteness, the discussion is presented in terms 
of neural networks, but the results are applicable to general 
feedforward networks, in particular to wavelet networks. The 
algorithms can be directly adapted to concept learning problems. 

I. INTRODUCTION 
HE problem of learning (or inferring) a function or a set 
(concept) from a finite set of examples has been the focus 

of considerable research in areas such as pattern recognition, 
machine learning, neural networks, etc. Recent density results 
guarantee that finite-sized networks can approximate contin- 
uous or indicator functions within any specified precision. 
These results enable us to formulate the function learning 
problem as one of estimating finite dimensional vectors (that 
typically represent connection weights of a network) at the cost 
of settling for an approximation. The learning methods that 
compute the connection weights of a required network based 
on a finite sample have been extensively studied recently both 
analytically and heuristically. The recent renewal of interest in 
such methods can be attributed, at least in part, to the success 
of neural networks in a wide variety of applications. Typically, 
the performance of such methods depends on 1) the form of 
network employed and 2) the learning algorithm that computes 
the parameters of the network. 

We illustrate the application of two well-known meth- 
ods, namely the potential function method [2] and stochastic 
approximation [4], [37], to obtain leaming algorithms im- 
plemented in two basic feedforward network architectures. 
The first method is applicable to feedforward networks with 

unknown weights located only in the output layer, and the sec- 
ond technique is applicable to general feedforward networks. 
For concreteness, we illustrate the first method using the 
networks of Kurkova [29] and the second using the networks 
of Cybenko [ 141. Yet our approach can also be used to obtain: 
1) efficient algorithms for learning sets (concepts)-for which 
most existing methods are nonalgorithmic [35], [S3], and 2) 
learning algorithms for wavelet networks [S9]-for which no 
finite sample results are known. 

General density results guarantee that a continuous function 
can be approximated by a finite-sized network of nonpoly- 
nomial units with a single hidden layer within a specified 
precision [31], [34]. When the units are sigmoid functions, 
the networks are called feedforward neural networks [3], [14], 
[22].  Density properties of sigmoidal feedforward networks 
with two hidden layers have been studied by Kurkova [29] 
by using Kolmogorov’s superposition theorem [28]. Similar 
density properties of slightly different architectures based 
on wavelets have been studied by Zhang and Benveniste 
[S9]. These density results can be utilized for approximating 
arbitrary continuous mappings or concepts by networks whose 
parameters (in the form of connection weights) are to be 
determined by the function being approximated. 

For the task of learning functions from a finite sample, the 
utility of the above density results depends critically on the 
availability of suitable learning (or training) algorithms. There 
are several algorithms that train the networks of sigmoidal 
units based on finite samples [51], [S4], [57]. The performance 
of such algorithms has been assessed only to a limited extent, 
and mostly in asymptotic cases. The popular backpropagation 
algorithm [46], [S7], which is a gradient descent method based 
on mean square error, seems to be effective in some cases but 
very slow to converge in others, Significant effort has been 
spent to improve the convergence of this and similar gradient 
search algorithms [IO], [lS], [20], [27], [48]. Convergence 
properties of learning algorithms based on wavelet networks 
[59] are unknown. Also, to our knowledge, no learning al- 
gorithms have been published for the networks based on 
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In the 1960’~, the method of potential functions was studied 
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man et L2]. A number Of properties Of these 
including finite sample results, have been extensively studied. 
Due to the specific representation used in [2],  this method is 
not applicable a priori to wide classes of functions. By using 
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learn arbitrary continuous maps within a specified precision. In 
the more difficult case of estimating a regression function, we 
additionally employ the empirical estimation results of Vapnik 
[55]  to obtain suitable learning algorithms. 

The area of stochastic approximation has been well estab- 
lished since the pioneering works of Robbins and Monro in 
1951 [44] (see also [4] and [30]). The relevance of these 
methods to the learning algorithms for neural networks has 
been recognized by a number of investigators. For example, 
White [58] showed that the popular backpropagation algorithm 
is an implementation of the Robbins-Monro-style algorithm 
for the problem of minimizing the mean-square error. Similar 
asymptotic results are also shown by Nedeljkovic [36] and also 
by Stankovic and Milosavljevic [50]. Rao et al. [42] establish 
that the concept learning problem can be solved by using 
a network of nonpolynomial units by employing stochastic 
approximation algorithms. We extend these results to the case 
of function and regression learning problems; in particular, the 
Hilbert space methods of Revesz [43] are utilized to obtain 
algorithms for feedforward networks. 

The aim of this paper is to provide a comprehensive 
framework for designing efficient function learning algorithms 
based on two general classes of feedforward network architec- 
tures. Our main criteria are performance guarantees based on 
finite-sized samples. For most existing algorithms such results 
are not available, yet they are strongly needed in practical 
applications, where the samples are always finite. Although the 
elemental methods, e.g., stochastic approximation, potential 
functions, empirical estimation, have been individually well 
established, we provide a new synthesis of these methods 
tailored to the present problem formulation and solution. In 
particular, our contributions include the following: 

combination of empirical estimation and potential func- 
tion methods to obtain finite sample results for function 
and regression estimation (Section 111); 
application of Lyapunov methods of Polyak [37] to 
obtain finite sample results for learning algorithms based 
on stochastic approximation (Section IV); 
combination of density results of feedforward networks 
with the Hilbert space methods of Revesz [43] to 
obtain learning algorithms for feedforward networks 
(Section IV-A); 
constructive algorithms for solving several classes of 
concept learning problems (outlined in Section V-A); 
and 
finite sample results for concept and function learn- 
ing algorithms based on wavelet networks (outlined in 
Section V-B). 

The organization of the paper is as follows. Some prelimi- 
nary discussion on function and regression learning problems, 
empirical estimation methods, neural network approximations, 
stochastic approximation and potential function algorithms, are 
presented in Section 11. The potential function algorithms are 
utilized in conjunction with Kurkova’s networks [29] to learn 
arbitrary continuous functions and regressions in Section 111. 
Learning algorithms based on stochastic approximation are 
described in Section IV. The concept learning problems, and 

wavelet network algorithms are described in Section V. To 
make the treatment self-contained, our presentation is partly 
tutorial in nature: we provide, in one place, the adapted 
versions of some existing theorems and proofs (that are 
otherwise scattered in various papers). Some useful results on 
combinatorial and martingale inequalities are reviewed in the 
Appendix. 

11. PRELIMINARIES 

The basic formulation of the function and concept learning 
problem is reviewed in Section 11-A. Empirical estimation 
of functions from finite samples is, in principle, possible 
as outlined in Section 11-B. Yet most results to date are 
only abstract existence and/or asymptotic results. To construct 
concrete efficient learning algorithms, we use the density 
properties described in Section 11-C to approximate functions 
by neural networks to any desired accuracy. As a result of 
this approximate representation, one can reduce the problem 
of function (and concept) learning to the much simpler prob- 
lem of “learning” the approximating neural network. Such 
a network is actually represented by the finite dimensional 
vector formed by its parameters (essentially its weights). Two 
convergent algorithms for these finite-dimensional iterations 
are briefly discussed in Section 11-D. 

The following is a list of symbols that will be used through- 
out: 

1) U ( . ) :  sigmoid function. 
2) vi(.): component function of Kurkova’s network. 
3) $J( .): wavelet function. 
4) 3i;: step-size of learning algorithms. 
5 )  +,( .): constituent potential function. 
Throughout the paper, X and x denote unconditional ran- 

dom and deterministic variables, respectively, and it is as- 
sumed that all functions satisfy the required measurability 
conditions. 

A. Function and Regression Learning Problems 

A training n-sample of a function f :  [0, lld ++ R is 

X I ,  X 2 ,  . . . , X,, X ,  E [0, lid, are independently and identi- 
cally distributed (IID) according to PX . The function learning 
problem is to estimate a function f :  [0,lId ++ !I?, based on 
the sample, such that f ( x )  “closely” approximates f ( x ) .  We 
consider either the expected square error 

given by [ X I ,  f(x1)], 1x2, f (X2)1 ,  . . . $  [ X n ,  f ( X n ) l  where 

or the expected absolute error 

J 

which is to be minimized over a family of functions F based 
on the given n-sample. Let f* E F minimize I ( . )  [or J ( . ) ]  
over F. In general, f* cannot be computed from (la) or 
(lb) since Px is unknown. Furthermore, since no restrictions 
are placed on the underlying distribution, it is not possible 
in general to infer the exact f *  (i.e., with probability one) 
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based on a finite sample. Consequently, most often only an 
approximation f to f *  is feasible. We shall give sufficient 
conditions under which an approximation f to f *  can be 
computed such that for a sufficiently large sample we have 

P [ I ( f )  - I ( f * )  > E] < s 

P [ J ( f )  - J(f*) > E] < 6 

( 2 4  

(2b) 

or 

corresponding to ( la)  and (lb), respectively, for arbitrarily 
specified E > 0 and 6 0 < 6 < 1, where P = P$ is the product 
measure on the set of all IID n-samples. Thus the "error" due 
to f is to be bounded within an arbitrarily specified precision 
t of minimum possible error, with an arbitrarily specified 
confidence 1 -6 (given a sufficiently large sample). A special 
case of this formulation, where f is an indicator function, 
constitutes a basic version of PAC learning problem formulated 
by Valiant [53]. A general formulation of this nature, has been 
studied extensively in empirical risk minimization methods 
[ S I .  In the context of neural network learning, F corresponds 
to a class of all networks, and the problem of computing f 
involves computing a weight vector based on the given sample. 

In the same context, we consider the more general regression 
learning problem, which is more general than the above 
problem. We are given (XI, Yl),  (X2, Yz), ..., (X,. Y,) 
IID according to P x , y  ( X  E [0, lid, Y E 8) such that 
f ( x )  = E y ( Y 1 z ) .  The problem is to compute an estimate 
.f of the regression function f that satisfies ( 2 4  or (2b) with 
P = P;>y. 

B. Empirical Estimation of Functions 

One of the basic questions in network learning problems 
deals with conditions under which a solution to (1) can be 
obtained when only a finite sample is given. The empirical 
estimation methods of Vapnik [55]  (which are applicable to 
more general classes of problems) provide a basis for the 
feasibility of such solutions. An application of such ideas 
establishes that a consistent solution to (1) can be obtained 
in the context of (neural) network learning problems as shown 
by Farago and Lugosi [17]. These results are, however, ex- 
istential in nature and do not provide concrete algorithms to 
evaluate the functions or suitable approximations thereof. We 
briefly summarize the results from [55] which will be used 
subsequently. 

For a family {Ay}7Er, A, C A, and for a finite set 
{al, az, ' " ,  a,} C A we define 

nk 
== \ <1.5 - k !  if n > k .  

Notice that for a fixed k ,  the right-hand side increases ex- 
ponentially with n until it reaches k and then varies as a 
polynomial in n with fixed power IC. This quantity k is called 
the Vapnik-Chervonenkis dimension of the family of sets A,; 
it can also be alternatively defined as the largest size h of a set 
{al, az, . . . a,} C A that can be subdivided in all possible 
ways into two classes by means of sets A,. 

For a set of functions, the capacity is defined as the largest 
number h of pairs ( X z ,  Yz) that can be subdivided in all 
possible ways into two classes by means of rules of the form 

where 

Formally, the capacity of a family of functions .F is the Vap- 
nik-Chervonenkis dimension of the set of indicator functions 
(@[(Y - f(x)N2 + Pl>(f ,P) tF.xW 

Consider f ,  E .F that minimizes the expected error in 

Q(f)  = 1 [Y - f(X)12 d P x , y  (3) 

over all f E F based on the sample (XI, YI ) ,  (XZ, Yz), ..., 
(X, , Y,) IID according to Px, y . Consider the empirical error 
functional 

x, y 

. n  

(4) 

The minimizer of Qemp(.) over .F is denoted by f e m p .  The 
closeness of f e m p  to f *  is specified by the parameters E and 
S in the condition 

- Q ( f * )  > E] < 6 

where P = P2,y .  To ensure the ( E ,  6)-bound, two conditions 
have to be satisfied: 1) the capacity of 3 must be bounded; 
and 2) the error I (  .) must be bounded [55].  

Theorem 1: Suppose that the error is bounded as 
s u ~ ~ , ~ , , - [ y  - f<z)12 5 7 for f E F. 

1) Let h be the capacity of F. Then given n examples, we 
have 

P[Q(femp)  - Q(f*) 2 2761 5 9-e-K2n/4. (an) 
h! 

2) Let .F = { f l ( x ) ,  fZ(x) ,  . . . f p (  2)) for finite P.  Then 
given n examples, we have 

P [ & ( f e m p )  - & ( f * )  > 2 7 K ]  < 18Pne-"zn/4. 

Parts 1) and 2) of this theorem directly follow from [55, 
Theorems 7.1 and 7.31, respectively. Similar results can be 
shown under the conditions of bounded error and simpler 
solution conditions (see [40]). 

The minimization of (3) is intimately connected to the 
estimation of a regression function f ( x )  = Ey(Y1x) .  The 
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function (3) can be rewritten as follows [55]: that any continuous and bounded function can be represented 
within an arbitrarily specified precision E in the following 
form: 

The last term can be expanded as 

where P Y ~ X  is the conditional distribution of Y given X .  The 
above term is equal to zero since the quantity inside square 
brackets is zero. Thus, the minimum of &(f)  is achieved at 
the regression function = f since the first term of Q ( f )  is 
independent of f”. 

C. Function Approximation by Neural Networks 

We first consider feedforward neural networks with a single 
hidden layer. A general architecture of a multilayer feedfor- 
ward network consists of an input layer with d units and output 
layer with m units, and one or more hidden layers. Consider 
a network with a single hidden layer and single output node 
(m = 1). The hidden unit j has a weight vector b, E 
and a threshold t, E 8. The output of the j t h  hidden unit is 
a(bFx - t,), where x = (dl x2, . ..xd) is the input vector, 
bTx denotes the scalar product, and a: R H !R is called an 
activation function. The output of the network is given by 

M 

h(w, x) = a,a(b;x - t,) ( 5 )  
3=1 

where w is the parameter vector consisting of a l ,  a2,  . . ., a M ,  

Cybenko [ 141 considered a continuous sigmoid function that 
is a specific form of continuous a(.):  !R H [0, I] such that 
a(t)  + 1 as t --+ +oo and a(t)  i 0 as t -+ -W. He 
showed that for a continuous and bounded f :  [0, lId H R 
there exists w such that the function g(w, x) of the form 
(3) such that If(.) - g(w, x)I < E for all x E [0, lid. The 
training of a neural network here corresponds to computing a 
suitable weight vector w based on a sample. The unknowns 
a,’s correspond to the output layer, while b,’s correspond to 
the hidden layer. 

The networks with unknown weights located only in the 
output layer are amenable to potential function method, as will 
be shown subsequently; such networks have been proposed by 
Kurkova [29]. We consider now feedforward networks with 
two hidden layers’ [29]. It can be shown [29, Theorem 21 

b l ,  b2, b ~ ,  and t i ,  t2, . . . )  t M .  

on the function to be learned. Furthermore, this function can 
be represented in the following simpler algebraic form: 

M 

,=I 

where the functions vZ(.) are universal and the weights a,’s 
depend on the function being approximated. The functions 
77% (.) correspond to single hidden layer feedforward networks 
consisting of sigmoid functions (see Kurkova [29] for details 
on the construction of these functions). As shown in the 
original formulation of Kolmogorov [28] ,  when E = 0, the 
elemental functions r] ,  are highly nonsmooth functions (see 
also [33]), which do not seem to be directly amenable to 
computer implementations. Approximate versions of these 
functions, however, have been implemented by Frisch et al. 
[211. 

D. Stochastic Approximation and Potential 
Function Algorithms 

takes the form 
One of the simplest stochastic approximation algorithms 

(7) wn+1 = wn + Y n S n ( W n ,  Cn) 

where the real vector w, is an estimate of the parameter 
of interest at nth step, {Y,} is a sequence of scalars, {&} 
is a sequence of random variables, and sn(w,, &) is a 
random variable called the update rule. For example, in solving 
min, f ( w ) ,  where gradient estimates of f ( . )  involve random 
error terms, s,(.) could correspond to the noisy estimate of the 
gradient. The convergence conditions of this type of algorithm 
have been extensively studied using a variety of techniques 
(for example, see [4], [30], and [56]).  Notice that algorithm ( 5 )  
incrementally estimates a vector of fixed dimension, and the 
function and regression learning problems involve estimation 
of functions. The density results of last section enable us 
to approximate continuous functions by finite dimensional 
vectors. 

We now consider an algorithm based on the potential 
functions of Aizerman et al. [2] (see also [19]). Consider a 
function that can be represented in the form 

M 

Although the feedforward networks with single and double hidden layers 
have similar density properties, they might be quite different from other 

(8) 
i=l 

where di (x) are linearly independent functions. Now for some 
viewpoints. From a control perspective, the networks with two hidden layers 
possess stabilization properties that the networks with a single hidden layer 
do not, as illustrated by Sontag [49]. From a computational viewpoint, if a 
network is allowed to have size proportional to the sample size, a network 

easily produced as shown by Blum and Li [7]. The problem of computing a 
network with a single hidden layer that is consistent with the entire sample 

real X I ,  X2, XM let 
with two-hidden layers that is consistent with all training examples can be 

could he computation-intensive as shown by Blum and Rivest [ 6 ] .  

M 

K ( Y 1  2 )  = m % ( Y ) 4 l i ( 4 .  (9) 
i=l 
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Given the sequence [ X I ,   XI)], [X, ,  f ( X , ) ] .  . . . consider 
the following algorithm: 

such that A > 5 max,.[o,lld K ( z ,  z). The conditions under 
which f " (  .) converges to f( .) have been studied extensively. 
A survey of these results is provided in [2]; our application 
involves the results shown by Braveman and Pjatnickii [SI, 
which deal with the case where M is finite. The density results 
of Kurkova [29] enable us to apply these results to wide 
classes of learning algorithms. Notice that these results are 
not directly applicable to the functions of the form (2.5) since 
the parameters a,, b, , and t ,  all depend on the function being 
approximated; these functions can be handled by stochastic 
approximation methods (see Section IV). The relationship 
between the potential function methods and the stochastic 
approximation methods has been discussed by Aizerman et 
al. [1] and Tsypkin [52]. 

111. LEARNING ALGORITHMS 
BASED ON POTENTIAL FUNCTIONS 

Given a finite sample [XI,  XI)], [XZ, ~ ( X Z ) ] ,  ..., 
[X,, f ( X , ) ]  IID according to an unknown Px,  consider 
algorithm (10) which can be implemented in terms of 
coefficients as follows 

We shall now provide sufficient conditions under which algo- 
rithms of this type can be used for solving the function and 
regression learning problems. 

A. Function Estimation 

The following condition is utilized for the potential function 
method. 

Condition 1: There exists a natural number M such that 
any function f E 3 with sx f ' ( z )  dPx > 0 admits the 
expansion f ( z )  = a,$,(x) where (4,) is a linearly 
independent set and a; # 0. 

This condition is satisfied if f (  .) is continuous and vanishes 
at no more than a finite number of points. This condition im- 
plies that the M x M matrix [p,,] = [J, &(z)4J(z)p(x) d z ]  
is positive definite. Thus 

M 

M M M  

S R C u :  
a=1 

Theorem 2: Suppose the sample size, n, is given by 

n =  
In (I - ra)  

where 
M 

c = c a :  
i=l 

and 
max K ( z ,  x) 

x€[O,  1ld a=- 2 -  
A 

with 1-rn 2 0, where r and R are the smallest and largest 
eigenvalues of the matrix [p,,], and A is a free parameter 
chosen such that a > 0. Then under Condition 1, for f E F, 
and f" given by algorithm (ll),  we have 

P [ l ( f " )  < € 1  > 1 - S. 

Furthermore I (  f n )  converges to zero with probability one. 
Prooj? The outline of the proof is direct: Braverman and 

Pjatnickii (19, Theorem 11) showed that E [ l ( f n ) ]  5 RC(1 - 
r ~ ) ~ ,  which is combined with the Chebyshev's inequality to 
show the theorem. 

We provide the details here for completeness (this proof 
can be found in [9] which makes use of results from earlier 
publications) and also to facilitate the proof of Theorem 5. 
Define the following quantities: 

M 

f(.) - f " ( z )  = A.rh(.) 
e = l  

where 

Aap = a, - a: 
and 

M 

and 

.- 

f ( z )  = E .id%(.) 
i=l 

M 

cy, = c (say 

r = l  j=1 

We express an+1 in terms of a,  as 

i=l 
- - an - 2rn+l[f(Xn+l)  - Pn(Xn+l)l 

where r and R are the smallest and largest eigenvalues of the 
matrix [ p i j ] .  + T:+lK(Xn+l, Xn+l) 


